Packing bore wear sleeve retainer system

Information

  • Patent Grant
  • 12049889
  • Patent Number
    12,049,889
  • Date Filed
    Thursday, August 18, 2022
    2 years ago
  • Date Issued
    Tuesday, July 30, 2024
    5 months ago
Abstract
A fluid end includes a housing having a bore extending toward a cavity and a wear sleeve positioned within the bore. The fluid end also includes a plunger positioned within a plunger bore extending through the wear sleeve, the plunger reciprocating within the plunger bore. The fluid end further includes a wear sleeve retainer coupled to the housing and positioned to block axial movement of the wear sleeve, the wear sleeve retainer having external threads along a body that engage internal threads formed in the housing. The fluid end also includes an anti-rotation system, coupled to the housing, the anti-rotation system engaging the wear sleeve retainer to block rotation of the wear sleeve retainer in at least one direction. The fluid end further includes a packing nut coupled to the wear sleeve retainer.
Description
TECHNICAL FIELD

Embodiments of the subject matter disclosed herein generally relate to pump systems, and in particular to retainer systems.


BACKGROUND

Pumping systems may be used in a variety of applications, especially industrial applications where pumping systems are used to elevate a working fluid pressure. One such application is hydraulic fracturing systems, which use high pressure pumps to increase a fluid pressure of a working fluid (e.g., fracturing fluid, slurry, etc.) for injection into an underground formation. The working fluid may include particulates, which are injected into fissures of the formation. When the fluid is removed from the formation, the particulates remain and “prop” open the fissures, facilitating flow of oil and gas. The abrasive fluid, along with the high operating pressures, may lead to erosion within the pumping system, which may affect different components in different ways. Traditional systems have either modified materials of construction, for example by using expensive metals or coatings, or by introducing sacrificial components that are replaced over time. One such component is a wear sleeve, which is a cylindrical sacrificial component that lines a fluid end packing bore to provide a sealing surface for various sealing elements, such as plunger packing. The wear sleeve is designed to be sacrificial and a sealing surface that degrades over time, and as a result, leaks may occur. When the sealing surface degrades, the wear sleeve is removed and replaced. Typically, these wear sleeves are bolted directly onto the pump body, which uses multiple threaded fittings and may also be difficult to access.


SUMMARY

Applicant recognized the problems noted above herein and conceived and developed embodiments of systems and methods, according to the present disclosure, for retainer systems.


In an embodiment, a wear sleeve retainer system includes a wear sleeve retainer and an anti-rotation system. The wear sleeve retainer includes a body portion extending for a length, the body portion having a bore extending along an axis. The wear sleeve retainer also includes a mating component extending from the body portion and into the bore, the mating component being annular and having a smaller diameter than a bore diameter. The wear sleeve retainer further includes threads arranged circumferentially about at least a portion of an outer diameter of the body portion. The wear sleeve retainer includes a profile formed about at least a portion of the body portion, the profile including a plurality of receptacles. The anti-rotation system includes a locking fastener adapted to engage a receptacle of the plurality of receptacles.


In an embodiment, a fluid end, includes a housing having a bore extending toward a cavity, a wear sleeve positioned within the bore, a plunger positioned within a plunger bore extending through the wear sleeve, the plunger reciprocating within the plunger bore, and a wear sleeve retainer coupled to the housing and positioned to block axial movement of the wear sleeve, the wear sleeve retainer having external threads along a body that engage internal threads formed in the housing. The fluid end also includes an anti-rotation system, coupled to the housing, the anti-rotation system engaging the wear sleeve retainer to block rotation of the wear sleeve retainer in at least one direction and a packing nut coupled to the wear sleeve retainer.


In an embodiment, a method for installing a retainer system includes positioning packing seal elements within a diameter of a wear sleeve while the wear sleeve is external to a fluid end housing. The method also includes positioning the wear sleeve within a bore formed in the fluid end housing. The method further includes securing a wear sleeve retainer to the fluid end housing by threading the wear sleeve retainer into the fluid end housing, wherein external threads on a body of the wear sleeve retainer engage internal threads in the bore, the wear sleeve retainer engaging at least a portion of the wear sleeve. The method includes securing an anti-rotation system to the wear sleeve retainer.





BRIEF DESCRIPTION OF THE DRAWINGS

The present technology will be better understood on reading the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:



FIG. 1 is a perspective view of an embodiment of a fluid end, in accordance with embodiments of the present disclosure;



FIG. 2 is a perspective view of an embodiment of a fluid end, in accordance with embodiments of the present disclosure;



FIG. 3 is a perspective view of an embodiment of a retainer system, in accordance with embodiments of the present disclosure;



FIG. 4 is a perspective view of an embodiment of a retainer system, in accordance with embodiments of the present disclosure;



FIG. 5 is a cross-sectional view of an embodiment of a retainer system for a plunger assembly, in accordance with embodiments of the present disclosure;



FIG. 6 is an exploded view of an embodiment of a retainer system, in accordance with embodiments of the present disclosure;



FIG. 7 is a perspective view of an embodiment of a wear sleeve retainer, in accordance with embodiments of the present disclosure;



FIG. 8 is a perspective view of an embodiment of a lock body, in accordance with embodiments of the present disclosure;



FIG. 9 is a front view of an embodiment of a lock body, in accordance with embodiments of the present disclosure;



FIG. 10 is a side view of an embodiment of a lock body, in accordance with embodiments of the present disclosure;



FIGS. 11A-11E are perspective views of embodiments of an installation procedure, in accordance with embodiments of the present disclosure;



FIGS. 12A and 12B are perspective views of embodiments of a ratchet and pawl anti-rotation system, in accordance with embodiments of the present disclosure;



FIG. 13 is a flow chart of an embodiment of a method for a retainer system, in accordance with embodiments of the present disclosure;



FIG. 14A is a front view of an embodiment of an anti-rotation system, in accordance with embodiments of the present disclosure;



FIG. 14B is a partial perspective view of an embodiment of an anti-rotation system, in accordance with embodiments of the present disclosure;



FIG. 14C is a cross-sectional view of an embodiment of an anti-rotation system, in accordance with embodiments of the present disclosure; and



FIG. 15 is a perspective view of an embodiment of an anti-rotation system, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

The foregoing aspects, features, and advantages of the present disclosure will be further appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing the embodiments of the disclosure illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.


When introducing elements of various embodiments of the present disclosure, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment”, “an embodiment”, “certain embodiments”, or “other embodiments” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, reference to terms such as “above”, “below”, “upper”, “lower”, “side”, “front”, “back”, or other terms regarding orientation or direction are made with reference to the illustrated embodiments and are not intended to be limiting or exclude other orientations or directions.


Embodiments of the present disclosure include a packing bore wear sleeve retainer system with an integrated anti-rotation device for use on positive displacement reciprocating pumps. Such pumps include hydraulic fracturing pumps, mud pumps, and similar plunger or piston pumps. Embodiments incorporate a wear sleeve retainer that has an outer diameter that is threaded and an internal diameter that is threaded at an end for receiving the mating component packing nut. On the opposite end, the wear sleeve retainer is configured geometrically to capture and secure the wear sleeve when it is fully threaded into the packing bore of the fluid end. The sleeve retainer is designed to secure the wear sleeve into the gland of the fluid end bore tightly and incorporates sealing elements to prevent high-pressure fluid leakage from the pumping chamber along with preventing leakage of high-pressure grease or oil, which is used to lubricate the plunger.


Embodiments of the present disclosure include features that allow the wear sleeve retainer to be removed and reassembled into the fluid end quickly by the operator and with ease by the use of a separate spanner wrench attachment tool that can be used in conjunction with industry standard ratchet style wrenches. Furthermore, embodiments include an integrated anti-rotation device. When the wear sleeve retainer is fully threaded into the packing bore of the fluid end, the device set screw bolt is tightened down and secures into one of multiple slots that are positioned at multiple points 360 degrees around the outer diameter, preventing the wear sleeve retainer from unthreading from the fluid end while in operation due to vibrations.


The wear sleeve is presented in various embodiments as a cylindrical sacrificial component that lines the fluid end packing bore to provide a sealing surface for the sealing elements (e.g., plunger packing), the wear sleeve is intended to be sacrificial, during pumping operations the packing will seal up on the plunger which is reciprocating in and out of the fluid end and the inner diameter of the wear sleeve. The sealing surface of the wear sleeve will begin to degrade with time due to high-pressure abrasive fluids eroding the material until it can no longer seal satisfactorily, and high-pressure fluid leakage will then occur causing washout metal erosion damage. At this point, maintenance occurs on the fluid end and the wear sleeve is removed from the fluid end and replaced with a new one. Embodiments of the present disclosure are directed toward a reliable, easy, and fast retention system to enable on-site maintenance by field service personnel. Prior art wear sleeve retainer systems incorporate a bolt on flange. The design is less reliable and slow to work on due to the many bolts that all required to be torqued down to specification. There is limited access space to maneuver tools to torque down the many bolts when the fluid end is attached to the pump, which is often the case when performing maintenance on the fluid end while the unit is on the job site. Another issue with prior art sleeve retainer designs is that they can at times begin to loosen or back out, causing the wear sleeve to be able to move back and forth in the gland, causing leakage or severe mechanical damage to the pump. Embodiments of the present disclosure overcome these problems by incorporating an integrated anti-rotation mechanical device that is fast and easy to use and prevents the wear sleeve retainer from backing out while pumping.


Embodiments of the present disclosure provide significant advantages over prior art systems and utilize a sleeve retainer system that threads into the fluid end via the use of a spanner wrench attachment and has an integrated anti-rotation lock mechanism to keep the sleeve retainer from backing out during pumping operations, thereby solving problems associated with back out during pumping, which may result in high pressure fluid leakage (washout erosion damage) or severe mechanical damage to pumping equipment. Embodiments of the present disclosure also eliminate the use of prior art bolts, which are torqued down to specification, this is difficult due to limited access behind the fluid end when being mounted to the power frame.


Embodiments of the present disclosure further incorporate one or more anti-rotation devices that may interact with a wear sleeve retainer positioned to maintain a position of a wear sleeve within a bore. A fastener may extend through at least a portion of a fluid end housing to engage a region of the wear sleeve retainer that is arranged within the bore. In at least one embodiment, a wedge-lock retainer profile may be incorporated into the system. In various embodiments, one or more steps or ridges of the wear sleeve retainer may include an aperture or orifice to receive the fastener. However, in other embodiments, the fastener may not interact with an aperture or orifice, which may increase useability of the system due to working in a variety of different alignments. The fastener may extend toward the wear sleeve retainer and be positioned proximate a ridge or step such that rotation of the ridge or step toward the fastener leads to the ridge or step engaging the fastener and thereby blocking rotation. The fastener may be arranged within a counterbored hole and extend through one or more of a top of the housing, a bottom of the housing, or a side of the housing. Additionally, the fastener may be positioned with a vertical orientation (e.g., axis of the fastener perpendicular to an axis of the bore) or at an orientation where the axis of the fastener is not perpendicular to the axis of the bore.


In at least one embodiment, systems and methods may incorporate a front-mounted system that engages the wear sleeve retainer to block rotation of the wear sleeve retainer. By way of example, a pad retainer may be incorporated into the system that is positioned to bear against a surface of the wear sleeve retainer, which may be textured or knurled surface to provide further resistance to rotation when incorporated with the pad retainer. The pad retainer may be fastened or otherwise secured to the housing and positioned to engage the textured surface of the wear sleeve retainer to apply a force against the wear sleeve retainer. In operation, as the wear sleeve retainer begins to rotate and/or receives a force to drive rotation, the pad retainer may cause a frictional force on the surface to resists or overcomes the rotational force, thereby blocking rotation of the wear sleeve retainer.



FIG. 1 is a perspective view of an embodiment of a fluid end 100. As noted above, fluid ends 100 may be utilized in industrial applications, such as oil and gas applications, to deliver high-pressure fluids to piping components leading to wellbores. For example, hydraulic fracturing operations use fluid ends 100 to increase a fluid pressure for fracturing fluid, which may be corrosive and/or abrasive, prior to injection into a wellbore. Fluid ends 100 are often coupled to engines, which provide motive power to drive reciprocation of various plungers. The engines may provide sufficient power to pressure fluid to pressure ranges from 5,000-25,000 pounds per square inch (psi). It should be noted that these pressure ranges are provided by example and are not intended to limit the scope of the present disclosure, as the pressures ranges may be less than 5,000 psi or greater than 25,000 psi in various applications. Furthermore, as noted, while discussion may be directed toward hydraulic fracturing operations systems and methods may be used in a variety of other industries that incorporate pumping systems.


The illustrated fluid end 100 includes a manifold body or housing 102 that is illustrated as a single, unitary piece, but it should be appreciated that the housing 102 may be formed of multiple sections. As will be appreciated, the housing 102 may include a conduit or bore that is represented as an inlet that received a low pressure fluid, a chamber that receives the low pressure fluid, and an outlet that intersects the chamber and discharges the high pressure fluid.


In this embodiment, the fluid end 100 includes five different plunger assemblies 104, each including a plunger 106, a wear sleeve retainer 108, a packing nut 110, and a flange 112. As shown, the wear sleeve retainer 108 is coupled directly to the housing 102 via fasteners 114, which are bolts in the illustrated embodiment. Because space is at a premium at a well site, it may be difficult to access the fasteners 114 when the wear sleeve (not pictured) is replaced. This may be difficult or time consuming for operators, which may lead to increased downtime at the site. Embodiments of the present disclosure include an improved system for retaining the wear sleeve as well as components for installation and removal.



FIG. 2 is a perspective view of an embodiment of the fluid end 100 including the plunger assemblies 104 having a wear sleeve retainer system 200. As will be described in detail below, the system 200 does not include the fasteners 114, but rather, uses internal threads to couple components to the housing 102. Such an arrangement enables faster assembly and disassembly, thereby reducing time for maintenance. Furthermore, embodiments may include an anti-rotation system 202 that reduces the likelihood of backing out of a wear sleeve retainer 204 that forms part of the system 200. Accordingly, the wear sleeve (not pictured) is still replaceable and may be utilized as a sacrificial component, however, installation is simplified and faster.



FIG. 3 is a perspective view of an embodiment of the system 200 coupled to the housing 102. In the illustrated embodiment, the wear sleeve retainer 204 is positioned against the housing 102, for example, against a housing external face 300 (e.g., face). It should be appreciated that in other embodiments there may be a recessed portion in the housing face 300, or a platform, to receive the wear sleeve retainer 204. In other words, the housing external face 300 may not be planar in all embodiments. As will be described below, the wear sleeve retainer 204 may engage internal threads formed along a bore extending through the housing 102 that receives the plunger 106. As a result, external fasteners for securing the wear sleeve retainer 204 to the housing 102 may be eliminated. That is, the fasteners 114 of FIG. 1 that provide a direct coupling that ends through the wear sleeve retainer 204 are reduced and/or eliminated by incorporating embodiments of the present disclosure.


The illustrated wear sleeve retainer 204 is secured against rotation by the anti-rotation system 202, which includes a locking mechanism 302 and a locking fastener 304. The locking mechanism 302 is secured to an aperture 306 formed in the housing 102. In various embodiments, the locking mechanism 302 is threaded into the aperture 306, press fit into the aperture 306, fastened to the aperture 306, or the like. For example, in an embodiment, a threaded fitting may be utilized to secure the locking mechanism 302 to the housing 102 via the aperture 306. In various embodiments, the aperture 306 is positioned in a particularly selected location to facilitate incorporation with the anti-rotation system and the wear sleeve retainer 204, as will be described below. However, in various other embodiments, the locking mechanism 302 may be adjustable to enable a modification of an anti-rotation angle of 308 of the locking fastener 304. As will be appreciated, even if threaded fasteners are utilized for the locking mechanism 302, a total of five threaded fasteners would be used for the illustrated embodiment (e.g., one for each of the five plunger assemblies 104), compared to potentially a dozen for each plunger assembly in prior configurations. The locking mechanism 302 receives the locking fastener 304, which is illustrated as a threaded bolt, which extends toward and engages the wear sleeve retainer 204. As shown, the locking fastener 304 is arranged at the anti-rotation angle 308 that is biased against a removal rotation for the wear sleeve retainer 204 (e.g., counter clockwise). By positioning the locking fastener 304 at the angle 308, forces may be distributed along two force component directions (e.g., vertically and horizontally), thereby enabling smaller locking fasteners 304. In this example, rotation in the counter clockwise direction is blocked due to engagement between the wear sleeve retainer 204 and the locking fastener 304. Accordingly, problems with traditional systems associated with backing out of wear sleeve retainers secured directly to the housing 102 by fasteners are overcome because each of the fasteners, such as the fasteners 114 of FIG. 1, are subjected to forces along a single plane. Moreover, as will be described, the locking fastener 304 may be marked or otherwise used as an indicator during installation and/or maintenance procedures.


The illustrated wear sleeve retainer 204 includes an outer circumference profile 310 having a plurality of spaced apart valleys 312 separated by flats 314. The valleys 312 are illustrated having a semi-circular shape with a radius, however, it should be appreciated that the valleys 312 may be any reasonable shape. For example, the valleys 312 may include sloped sides extending to trench or may include a single sloped side, among various other configurations. Moreover, the flats 314 may also be a different shape and are referred to as “flats” for illustrative purposes, but may include rounded edges or the like. In certain embodiments, the valleys 312 may also include a mating aperture for receiving the locking fastener 304. Each of the valleys 312 extend for a longitudinal valley depth 316 toward the housing external face 300. That is, the valleys 312 in the illustrated embodiment include a backstop 318, which may be a portion of a threaded body portion that is installed within a bore formed in the housing 102. The backstop 318 may provide a visual indication to the operator regarding installation of the wear sleeve retainer 204. For example, the backstop 318 may be substantially flush with the housing external face 300 to indicate full installation. However, it should be appreciated that the backstop 318 may also be recessed relative to the housing external face 300 to provide room for the locking fastener 304.


Further illustrated with respect to the wear sleeve retainer 204 are a plurality of blinds 320 positioned circumferentially about the wear sleeve retainer 204. The illustrated blinds 320 are radially inward, with respect to the valleys 312, and are positioned to align with the flats 314 in the illustrated embodiment. Such an arrangement is for illustrative purposes, and the blinds 320 may be particularly positioned based on a number of different factors. As will be described below, the blinds 320 may be utilized to receive a tool for installation of the wear sleeve retainer 204. For example, an extrusion or extension of a tool may be fitted to engage one or more blinds 320 to enable rotation of the wear sleeve retainer 204, thereby securing the wear sleeve retainer 204 to the housing 102.



FIG. 3 also includes the packing nut 110 positioned outward of the wear sleeve retainer 204 and also the plunger 106 extending through aligned bores extending through the wear sleeve retainer 204 and the packing nut 110. Accordingly, a familiar arrangement is maintained, which may simplify installation procedures for operators. Moreover, the illustrated configuration may enable other equipment to be utilized in the course of traditional operations, such as packing nut locks bars and the like.



FIG. 4 is a front perspective view of an embodiment of the retainer system 200 in which the plunger 106 has been removed for clarity. As described above, in various embodiments the wear sleeve retainer 204 is installed within a bore 400 formed in the housing 102. The bore may also include a wear sleeve, packing, and the like, as will be described in detail below. In this embodiment, the wear sleeve retainer 204 is installed along the bore 400 via external threads formed on the wear sleeve retainer 204 and internal threads of the bore 400. Furthermore, in this embodiment, a plunger bore 402 is shown extending through both the wear sleeve retainer 204 and the packing nut 110. In operation, the plunger 106 is installed through the plunger bore 402 and reciprocates back and forth, along a plunger bore axis 404 in order to pressurize fluid within the housing 102.


As described above, the circumferential profile 310 is illustrated extending entirely around the wear sleeve retainer 204, thereby enabling installation of the wear sleeve retainer 204 in any orientation that facilitates alignment with the threads. In this embodiment, each of the valleys 312 is equally spaced about an outer diameter 406 of the wear sleeve retainer 204. However, it should be appreciated that different patterns or positions for the valleys 312 may be provided in various embodiments, Moreover, spacing between valleys 312 may be different. That is, a flat length 408 may vary at different regions. Furthermore, a valley length 410 may also vary between different valleys 312. Accordingly, various profile 310 configurations may be particularly selected for different operational goals, such as reducing weight, driving alignment of components, and the like.


As noted above, the anti-rotation system 202 includes the locking mechanism 302 installed within the aperture 306 with the locking fastener 304 extending through the locking mechanism 302 at the angle 308. This angle 308 may be particularly selected to transmit a rotational force in a counter clockwise direction, which would correspond to a direction that would unthread or back out the wear sleeve retainer 204. The illustrated angle 308 is approximately 30 degrees. However, it should be appreciated that the angle 308 may be any reasonable angle to prevent rotation of the wear sleeve retainer 204, such as approximately 15 degrees, approximately 35 degrees, approximately 45 degrees, approximately 50 degrees, or the like. Furthermore, it should be appreciated that the relative location of the anti-rotation system 200 is for illustrative purposes only and may be below the wear sleeve retainer 204, next to the wear sleeve retainer 204, or at any other reasonable location to engage at least a portion of the wear sleeve retainer 204 and to block rotation of the wear sleeve retainer 204.



FIG. 5 is a cross-sectional view of an embodiment of the retainer system 200 coupled to the housing 102. It should be appreciated that various features have been eliminated for simplicity with the following discussion. The illustrated embodiment includes the bore 400 extending through the housing 102 toward a cavity 500. The bore 400 includes a first bore section 502, a second bore section 504, and a third bore section 506, each having a different respective bore diameter. For example, a first bore section diameter 508 is larger than a second bore section diameter 510, which is larger than a third bore section diameter 512. It should be appreciated that this arrangement is for illustrative purposes and in various embodiments there may be more sections and/or different diameters.


The illustrated plunger assembly 104 includes a wear sleeve 514 arranged within the bore 400 and extending through each of the first, second, and third bore sections 502, 504, 506. The wear sleeve 514 is a stepped sleeve having a transition 516 where the diameter changes. The illustrated wear sleeve 514 is positioned to bear against a wear sleeve seal 518 positioned within a wear seal groove 520 formed in the wear sleeve 514. It should be appreciated that the seal 518 and groove 520 may also be formed in the housing 102 in other embodiments. The wear sleeve 514 also includes a shelf 522 that enables packing 524 to be installed along an inner portion of the wear sleeve 514, which may bear against the plunger 106 extending through the bore 400. The wear sleeve 514 also includes an external seal 526 in an external seal groove 528 for engaging the wear sleeve retainer 514. It should be appreciated that the external seal 526 and groove 528 may also be arranged within the wear sleeve retainer 204.


In operation, the wear sleeve 514 is installed within the bore 400 and the wear sleeve retainer 204 is utilized to secure the wear sleeve 514 at a desired position. In this embodiment, the housing 104 includes threads 530, which may engage mating threads 532 on the wear sleeve retainer 204. The illustrated threads 530 are formed along the bore 400 at the first bore section 502. In other words, the threads 530 in the illustrated embodiment may be described as being internal to the housing 102. These threads 530 engage the mating threads 532 formed along a body outer circumference 534 of a body 536 of the wear sleeve retainer 204. As will be appreciated, the body 536 may extend axially into the first bore section 502 a predetermined amount to facilitate engagement of the wear sleeve 514. In this example, a mating component 538 extends radially inward, toward the axis 404, to engage the wear sleeve 514. As a result, axial movement of the wear sleeve 514 is blocked along the axis 404. That is, axial movement in a first direction 540 toward the chamber 500 is blocked by a transition 542 along the bore 400 and axial movement in a second direction 544 toward the wear sleeve retainer 204 is blocked via the mating component 538 and an opposing force provided by the threads 530 and the mating threads 532. Accordingly, the wear sleeve 514 is secured in position within the bore 400.


In various embodiments, ports 546 are formed within the housing 102 and align with mating ports 548 formed in the wear sleeve retainer 204. As a result, grease or other lubricants may be added to various components, such as the plunger 106, without removing the packing assemblies 524. Moreover, various seals may also be utilized to block fluid leakage, such as the external seal 526 and/or a wear sleeve seal 550 positioned in a wear sleeve seal groove 552 formed in the body 536, which as noted above may also be formed in the housing 102.


Installation may also include the packing nut 110, which secures the packing 524 within the wear sleeve 514. The packing nut 110 may couple to the wear sleeve retainer 204, for example via threads 554 and mating threads 556 formed on the packing nut and the wear sleeve retainer 204, respectively. However, it should be appreciated that other coupling devices, such as clamps or fasteners, may also be utilized. Accordingly, embodiments of the present disclosure provide the retainer system 200 for maintaining a position of the wear sleeve 514 within the bore 400 without using external threads to directly couple the wear sleeve retainer 204 to the housing 102.



FIG. 6 is a partial exploded view of an embodiment of components of the retainer system 200 for securing the wear sleeve 514 within the bore 400. As noted above, features have been eliminated for clarity and conciseness. The illustrated embodiment shows each of the wear sleeve 514, wear sleeve retainer 204, packing nut 110, and plunger 106 being aligned along the axis 404, thereby enabling coaxial alignment within the bore 400.



FIG. 7 is cross-sectional perspective view of the wear sleeve retainer 204. As noted above, the illustrated wear sleeve retainer 204 is a generally cylindrical component that includes a body 536 extending axially from a face end 700 that is substantially aligned with the external housing face 300 when installed within the housing 102. The face end includes the blinds 320 arranged circumferentially about the face end 700, as well as the profile 310 along the circumference. As noted above, the profile includes the valleys 312 and flats 314, where the flats 314 extend for the length 408 and the valleys 312 extend for the length 410, each of which may be adjusted as particularly selected for various applications. In various embodiments, the valleys 312 extend for the valley depth 316 that does not extend through an entire length 702 of the wear sleeve retainer 204, but rather, to a backstop 318. The backstop 318 abuts the threads 532 formed along the outer body diameter 534, which may facilitate engagement with the threads 530 formed in the housing 102.


The plunger bore 402 of the wear sleeve retainer 204 also includes the threads 556 for coupling to the packing nut 110. Also provided within the plunger bore 402 is the mating component 538, which is illustrated as extending annularly around the plunger bore 402. The mating component 538 engages the wear sleeve 514, thereby blocking movement of the wear sleeve 514 out of the bore 400 toward the face end 700.



FIG. 8 is a perspective view of an embodiment of a lock body 800 that may be utilized to install the wear sleeve retainer 204. The illustrated lock body 800 includes a pair of extensions 802 at opposite ends 804, 806 of the lock body 800. The illustrated extensions 802 are substantially circular and may be shaped to interact with the blinds 320 formed in the wear sleeve retainer 204. Accordingly, the lock body 800 may be aligned with the wear sleeve retainer 204 such that the extensions 802 interact with the blinds 320 to facilitate installation of the wear sleeve retainer 204, for example, by using a tool to rotate the wear sleeve retainer 204. The illustrated extensions 802 are positioned in a non-symmetrical arrangement in FIG. 8, however, it should be appreciated that the respective locations of the extensions 800 may be particularly selected based on the blind configuration of the wear sleeve retainer 204.


In various embodiments, the lock body 800 is configured to be adaptable to utilize existing tools, such as a ratchet wrench. Accordingly, the lock body 800 includes a coupling aperture 808 for receiving a mating tool part. In this manner, existing tools already present at the well site may be utilized with the lock body 800 to facilitate operations, thereby reducing clutter and leveraging existing components.



FIG. 9 is a front elevational view of the lock body 800. In the illustrated embodiment, the extensions 802 have a length 900, which may be particularly selected based on the size of the associated blinds 320. In various embodiments, the extensions 802 may have different sizes, thereby providing a guide or indication regarding proper alignment or coupling to the wear sleeve retainer 204. In this example, the non-symmetrical arrangement of the extensions 802 is further illustrated, in that the extensions 802 are not symmetrical about centerline 902. This configuration may facilitate coupling at different circumferential positions of the wear sleeve retainer 204, which may enable reduced force applications for installation and removal.



FIG. 10 is a side elevational view of the lock body 800. As noted above, each of the extensions 802 extend for the same length 900, but, in various embodiments the lengths 900, along with the shapes of the extensions 802, may be different. It should be appreciated that various other dimensions of the lock body 800, such as the width, thickness, length, etc. may be particularly selected based on operating conditions.



FIGS. 11A-11E illustrate perspective views of an installation procedure 1100 for securing the wear sleeve 514 within the bore 400 using the retainer system 200. As noted above, various components and have been removed for simplicity with the following explanation, for example steps involving applying coatings, grease, lubrication, installing seals, and the like. Additionally, features such as threads and the like have been removed for clarity, however, threaded components have been described elsewhere herein. Furthermore, the steps may be performed in a different order, unless otherwise indicated. FIG. 11A illustrates the wear sleeve 514 installed within the bore 400 such that the bore 400 engages the seal 518 positioned within the seal groove 520. In various embodiments, the wear sleeve 514 is inserted into the bore 400. FIG. 11B illustrates the procedure 1100 of wear sleeve retainer 204 aligned with the bore 400. As noted above, the wear sleeve retainer 204 may be installed within the bore 400 such that the mating threads 532 engage the threads 530 formed along the first bore section 502.



FIG. 11C illustrates the procedure 1100 of the installation of the wear sleeve retainer 204 using the lock body 800 and as associated tool 1102, which in this instance is a ratchet wrench. As shown, the anti-rotation system 202 is already installed within the aperture 306, for example, by bolting the locking mechanism 302 to the housing 102, among other options. The locking fastener 304 of the illustrated embodiment is positioned through the locking mechanism 302 and backed off such that the locking fastener 304 does not engage the wear sleeve retainer 204. Accordingly, the wear sleeve retainer 204 may be installed within the bore 400 by rotating the wear sleeve retainer 204 to a predetermined position indicative of engagement with the threads 530.



FIG. 11D illustrates the procedure 1100 of the engagement of the wear sleeve retainer 204 via the locking fastener 304. The locking fastener 304 extends through the locking mechanism 302 until it engages the valley 312. In various embodiments, the angle 308 is particularly selected to engage the wear sleeve retainer 204 at a predetermined location. This embodiment illustrates engagement between 12 o'clock and 1 o'clock positions, however, different configurations may also be utilized in various embodiments. Furthermore, while a single anti-rotation system 202 is shown for the illustrated plunger assembly 104, multiple anti-rotation systems 202 may be used, for example at different locations and/or the locking mechanism 302 may include multiple locking fasteners 304.



FIG. 11E illustrates the procedure 1100 of the packing nut 110 installed to engage the wear sleeve retainer 204, for example via the threads 554, 556 along with the plunger 106 installed within the plunger bore 402. In various embodiments, the packing 524 is installed prior to installation of the packing nut 110. It should be appreciated that components may be removed by reversing the steps described herein, for example, by removing the packing nut 110, removing the packing 524, disengaging the anti-rotation system 202, removing the wear sleeve retainer 204, and then removing the wear sleeve 514.



FIG. 12A is a perspective view of an embodiment of the anti-rotation system 202 using a ratchet and pawl system 1200. In this embodiment, the locking mechanism 302 and locking fastener 304 are replaced with a pawl 1202 while the circumferential profile 310 (e.g., the valleys 312 and flats) of the wear sleeve retainer 204 function as a ratchet 1204. It should be appreciated that, in various embodiments, the systems may be used interchangeably. By way of example, if there are 5 retainer systems 200 used on a fluid end 100, one or more may use the locking mechanism 302 and the locking fastener 304 and one or more may use the pawl 1202.


The illustrated pawl 1202 is coupled to the external face 300 of the fluid end 100, for example via the aperture 306, and is rotatable about a pawl axis 1206. The pawl 1202 includes an inner profile 1208 and an outer profile 1210. In this embodiment, the inner profile 1208 and outer profile 1210 are different, in that the inner profile 1208 has a more pronounced concave bend. It should be appreciated that inner and outer are used for illustrative and clarification purposes, and that such labels are not intended to limit embodiments of the present disclosure. For example, inner was selected in this instance because the inner profile 1208 is the leading edge of rotation about the pawl axis 1206 when moving the pawl 1202 into engagement with the ratchet 1204.


The illustrated pawl 1202 includes a contact region 1212, which is positioned to engage the valleys 312 of the wear sleeve retainer 204 (e.g., of the ratchet 1204). In operation, the pawl 1202 is rotated about the pawl axis 1206, in either a clockwise or counter-clockwise direction, to bring the contact region 1212 into the valleys 312. The pawl 1202 may be secured, such as via a fastener or spring to block rotation in an opposite direction, and as a result, block rotation of the wear sleeve retainer 204.



FIG. 12B is a perspective view of the ratchet and pawl system 1200 where the pawl 1202 has been rotated about the pawl axis 1206 to engage the ratchet 1204. Specifically, the contact region 1212 is positioned within the valley 312 after the pawl 1202 is rotated in the clockwise direction (compared to the position shown in FIG. 12A). As noted above, further rotation of the pawl 1202 may be blocked, for example via a fastener, spring or the like, and as a result, the pawl 1202 blocks rotation of the wear sleeve retainer 204 in the counter-clockwise direction. In this manner, the wear sleeve retainer 204 may be secured to the fluid end 100 without externally bolting through the wear sleeve retainer, as is done with current systems. This simplifies installation and reduces the number of bolts utilized at the site. It should be appreciated that, in other embodiments, rotation directions may be changed and still be within the scope of the present disclosure.



FIG. 13 is a flow chart of an embodiment of a method 1300 for installing a retainer system. It should be appreciated that this method, and all methods described herein, may include more or fewer steps. Additionally, the steps may be performed in a different order, or in parallel, unless otherwise specifically stated. The illustrated example includes installing the wear sleeve 1302. For example, the wear sleeve may be arranged within a bore. In various embodiments, one or more landing or locating features may be included to facilitate arrangement of the wear sleeve. The wear sleeve retainer is installed 1304. The wear sleeve retainer may be threaded to internal threads formed in a housing to eliminate external fasteners, which may be time consuming and difficult to install. An anti-rotation system may be utilized to block rotation of the wear sleeve retainer 1306. For example, a fastener may apply an opposing force to the wear sleeve retainer to prevent rotation in a direction that would cause the wear sleeve retainer to back off. In various embodiments, internal components are installed 1308, such as packing and the like. Then, a packing nut may be installed 1310, among other components, to enable operation of the pumping system.



FIG. 14A is a front view of an embodiment of the anti-rotation system 202 in which the locking fastener 304 extends through a portion of the housing 102. In this example, the wear sleeve retainer 204 is illustrated installed within the housing 102 with the plunger 106 extending through the plunger bore 402, as described above, such as in FIGS. 3 and 4. The wear sleeve retainer 204 may be threaded into the housing 102, as noted above, such that external fasteners are not used, or at least a reduced number of external fasteners are used. As such, the blinds 320 shown on the wear sleeve retainer 204 may be used with installation and removal, as noted herein.


In this example, the locking fastener 304 is positioned to extend through an aperture 1400 that extends through at least a portion of the housing 102. This example shows the housing in phantom for convenience and to more clearly illustrate the position of the locking fastener 304. For example, in at least one embodiment, the aperture 1400 is a counterbored opening that receives the locking fastener 304, such as a threaded fastener, that extends through the opening to engage the wear sleeve retainer 204. Threaded fasteners are provided as one example and are not intended to limit the scope of the present disclosure. Additional fasteners may include pins, tongue and groove fittings, bayonet connections, and the like. Furthermore, combinations of fasteners may be used and more than one fastener may be used to secure the wear sleeve retainer 204 into position. As shown, the locking fastener 304 engages the wear sleeve retainer along the profile 310, such as at either valleys 312 (not shown) and/or flats 314 (not shown), as noted above. In at least one embodiment, engagement may be within the housing 102 (e.g., not visible from an external portion of the housing 102) or may be outside of the housing 102.



FIG. 14B is a detailed perspective view of an embodiment of the anti-rotation system 202 in which a portion of the housing 102 is shown in phantom to illustrate interaction between the locking fastener 304 and the profile 310. In this example, the locking fastener 304 extends through the aperture 1400 to be positioned in alignment with a portion of the profile 310 such that rotation applied to the profile 310 (e.g., to the wear sleeve retainer 304) in a counter clockwise direction (from the perspective shown in FIG. 14B), will drive the flat 314 (or a portion thereof) into contact with the locking fastener 304, thereby preventing rotation of the wear sleeve retainer 304. As shown, and described herein, the profile 310 includes the series of flats 314 and valleys 312, where in this example the valleys 312 are not arcuate or curved like in FIG. 4, but are illustrated as substantially planar and in a stepped configuration with respect to the flats 314. As noted, a variety of different sizes for the flats 314 and valleys 312, as well as shapes, may be provided for various embodiments within the scope of the present disclosure.


As noted herein, the configuration of the profile 310 may permit installation of the locking fastener 304 at a variety of different positions. That is, there is not a single location associated with the locking fastener 304 in this illustrated embodiment. Instead, the locking fastener 304 may be positioned to interact with any of the flat/valley 314, 312 pairs in order to limit rotation of the wear sleeve retainer 204. It should be appreciated that various other embodiments may have a particular location for installation of the locking fastener 304.


The illustrated embodiment includes the aperture 1400 arranged proximate the port 546, but such a position is for illustrative purposes and not intended to limit the scope of the present disclosure. For example, the aperture 1400 can be on an underside of the housing 102, to the side, at an angle, or the like. Additionally, the aperture 1400 may be forwards of (e.g., closer to the face of the housing 102) or rewards of (e.g., farther from the face of the housing 102) than the port 546. The configuration of FIG. 14B shows the angle 308 (not pictured, shown in FIG. 3) to be approximately zero degrees (e.g., substantially perpendicular to the bore axis 402 (not pictured, shown in FIG. 4). This is in contrast to the angle 308 shown in FIGS. 3 and 4, but it should be appreciated that the aperture 1400 may also be formed at a different angle 308 to facilitate installation of the locking fastener 304 at an angle other than 0 degrees. The angle of the aperture 1400 may be based, at least in part, on the profile 310 configuration to facilitate force transfer to block rotational movement of the wear sleeve retainer 204.


In at least one embodiment, the profile 310 may be positioned axially inward, along the bore axis 402 (not pictured), compared to the threads 532. That is, the profile 310 may be arranged further from the exterior of the housing 102. However, in various other embodiments, the profile 310 may be positioned axially outward, along the bore axis 402, compared to the threads 532. It should be appreciated that the profile 310 may be arranged at various locations along the length of the wear sleeve retainer 304. In at least one embodiment, the depth 316 may be particularly selected to position an interface for engagement between the locking fastener 304 and the profile 310 within the bore 400. That is, the interaction may not be external to the housing 102, as shown in FIG. 4. However, it should be appreciated that an overhang or other component may be provided such that the engagement is external to the housing 102.



FIG. 14C is a cross-sectional view of an embodiment of the wear sleeve retainer 204 positioned within the bore 400 and secured into position by the locking fastener 304. In this configuration, engagement is formed within the bore 400 such that the interaction between the locking fastener 304 and the wear sleeve retainer 204 is not visible from an exterior portion of the housing 102. That is, the locking fastener 304 extends through the housing 102 to engage one or more portions of the wear sleeve retainer 204, such as the profile 310, which in this example may be arranged at an opposite end of the wear sleeve retainer when compared to the configurations of FIGS. 6 and 7. In other words, the profile 310 in the illustrated configuration may be positioned axially away from the front face of the wear ring retainer 304. It should be appreciated that the location of the profile 310 may vary based on one or more design considerations and that, in embodiments, the profile 310 may be closer to the front face than the position illustrated in FIG. 14C.


As shown, the wear sleeve retainer 204 includes the valley 312 for receiving the locking fastener 304. Accordingly, rotation of the wear ring retainer 204 will drive the associated flat 314 (not pictured) against the locking fastener 304, thereby blocking and/or resisting the rotation. In this manner, the wear sleeve retainer 204 may still be threaded into the housing 102, as noted above, to eliminate or reduce a number of external fasteners used to secure the wear sleeve retainer 204 to the housing 102.



FIG. 15 is a perspective view of an embodiment of the anti-rotation system 204 in which the locking fastener 304 is shown in the form of a pad retainer 1500. The pad retainer 1500 is positioned to bear against a front face 1502 of the wear sleeve retainer 204, for example against a textured surface 1504, to apply a frictional force to resist rotation of the wear sleeve retainer 204. In this example, the wear sleeve retainer 204 is secured to the housing 102 via one or more internal threads, as noted above. During operation, rotational forces may be applied to the wear sleeve retainer 204, which are undesirable for the reasons stated above. Accordingly, embodiments of the present disclosure may overcome those problems by providing the pad retainer 1500 to resist or block rotation of the wear sleeve retainer 204. The pad retainer 1500 may be secured to the housing 102, for example via one or more pad fasteners 1506. The pad fasteners 1506 may be threaded fasteners. As noted above, other wear sleeve retainers may include several fasteners to secure the wear sleeve retainers to an associated housing, but the illustrated embodiment includes two pad fasteners 1506, which may correspond to the locking mechanism 302 shown in FIG. 3, thereby reducing the time and components used. It should be appreciated that the two pad fasteners 1506 are shown by way of example only and are not intended to limit the scope of the present disclosure.


The textured surface 1504 may include knurling or one or more raised portions that interact with the pad retainer 1500 to generate friction, responsive to a rotational force applied to the wear sleeve retainer 304, to block rotation of the wear sleeve retainer 304. In at least one embodiment, the pad retainer 1500 may include a mating frictional surface (not visible) or may include a smooth surface, or some combination thereof. The pad retainer 1500 may be installed such that the pad retainer 1500 bears against the wear sleeve retainer 204, which may provide a visual indication to the operator regarding installation. Furthermore, rotation may also be identified by visual review if scratches or other marks are shown on the front face 1502, indicating rotation.


The foregoing disclosure and description of the disclosed embodiments is illustrative and explanatory of the embodiments of the disclosure. Various changes in the details of the illustrated embodiments can be made within the scope of the appended claims without departing from the true spirit of the disclosure. The embodiments of the present disclosure should only be limited by the following claims and their legal equivalents.

Claims
  • 1. A wear sleeve retainer system, the system comprising: a wear sleeve retainer comprising: a body portion extending for a length and having a bore extending along an axis,a mating component extending from the body portion and into the bore, the mating component being annular and having a smaller diameter than a bore diameter of the bore of the body portion,threads arranged circumferentially about at least a portion of an outer diameter of the body portion, anda profile formed about at least a portion of the body portion, the profile including a plurality of receptacles; anda locking fastener adapted to engage one of the plurality of receptacles.
  • 2. The wear sleeve retainer system of claim 1, wherein the body portion comprises a housing, and wherein the locking fastener extends through the housing having the bore.
  • 3. The wear sleeve retainer system of claim 1, wherein the profile is arranged within the bore.
  • 4. The wear sleeve retainer system of claim 1, wherein the profile includes sets of flats and valleys, and wherein respective flats of the sets of flats and valleys extend radially outward from respective valleys of the sets of flats and valleys.
  • 5. The wear sleeve retainer system of claim 1, wherein the threads comprise first threads, and the wear retainer system further comprising: second threads arranged along the bore extending from a face of the body portion to the mating component.
  • 6. The wear sleeve retainer system of claim 1, wherein the locking fastener comprises a threaded fastener.
  • 7. The system of claim 1, wherein the threads comprise first threads, and the wear retainer system further comprising: second threads extending along at least a portion of the bore, the second threads ending prior to the mating component.
  • 8. A fluid end comprising: a housing having a cavity, internal threads, and a bore extending toward the cavity;a wear sleeve positioned within the bore;a plunger bore extending in the wear sleeve;a plunger positioned within the plunger bore and operatively to reciprocate within the plunger bore;a wear sleeve retainer coupled to the housing and positioned to block axial movement of the wear sleeve, the wear sleeve retainer having external threads along a body that engage the internal threads of the housing;an anti-rotation system to engage the wear sleeve retainer to block rotation of the wear sleeve retainer in at least one direction; anda packing nut coupled to the wear sleeve retainer.
  • 9. The fluid end of claim 8, wherein the anti-rotation system comprises: a locking fastener to engage the wear sleeve retainer, the locking fastener extending through the housing.
  • 10. The fluid end of claim 8, wherein the anti-rotation system comprises: a pad retainer to be positioned to apply a force to a front face of the wear sleeve retainer.
  • 11. The fluid end of claim 10, wherein one or more of the front face or the pad retainer includes a textured surface.
  • 12. The fluid end of claim 8, wherein the wear sleeve retainer includes a profile positioned along an outer diameter to receive at least a portion of the anti-rotation system.
  • 13. The fluid end of claim 12, wherein the profile is positioned within the bore when the wear sleeve retainer is installed within the bore.
  • 14. The fluid end of claim 12, wherein the profile comprises a circumferential profile extending substantially around the wear sleeve retainer.
  • 15. The fluid end of claim 8, wherein the wear sleeve retainer further comprises: at least a portion of the plunger bore, anda mating component extending into the plunger bore, the mating component having a smaller diameter than the plunger bore, the mating component also contacting the wear sleeve when the wear sleeve retainer is installed within the housing, thereby to block axial movement of the wear sleeve.
  • 16. The fluid end of claim 8, wherein the wear sleeve retainer further comprises: a plurality of blinds arranged circumferentially about the face, the plurality of blinds positioned radially inward of the profile.
  • 17. The fluid end of claim 14, further comprising: a lock body having an extension, the extension corresponding to at least one blind of the plurality of blinds, the lock body adapted to couple to a rotational tool, thereby to drive rotation of the wear sleeve retainer about an axis.
  • 18. A method for installing a retainer system, the method comprising: positioning packing seal elements within a diameter of a wear sleeve when the wear sleeve is external to a fluid end housing;positioning the wear sleeve within a bore located in the fluid end housing;securing a wear sleeve retainer to the fluid end housing, the securing including the step of threading the wear sleeve retainer into the fluid end housing so that external threads on a body of the wear sleeve retainer engage internal threads in the bore and so that the wear sleeve retainer engages at least a portion of the wear sleeve; andsecuring an anti-rotation system to the wear sleeve retainer.
  • 19. The method of claim 18, wherein the securing the anti-rotation system comprises: engaging an outer profile of the wear sleeve retainer via a locking fastener, the locking fastener positioned to extend through the fluid end housing.
  • 20. The method of claim 18, wherein the securing the anti-rotation system comprises: engaging a front face of the wear sleeve retainer via a pad retainer, the pad retainer positioned to apply a frictional force to the wear sleeve retainer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent Ser. No. 16/916,593, titled “PACKING BORE WEAR SLEEVE RETAINER SYSTEM,” filed Jun. 30, 2020, now U.S. Pat. No. 11,421,680, issued Aug. 23, 2022, the full disclosure of which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (559)
Number Name Date Kind
1316539 Ford Sep 1919 A
1364848 Walsh Jan 1921 A
1576269 Durant Mar 1926 A
1595459 Durant Aug 1926 A
1671139 Wilson May 1928 A
1873318 Eason Aug 1932 A
1914737 Elms Jun 1933 A
1948628 Penick Feb 1934 A
1963684 Shimer Jun 1934 A
1963685 Shimer Jun 1934 A
2011547 Campbell Aug 1935 A
2069443 Hill Feb 1937 A
2103504 White Dec 1937 A
2143399 Abercrombie Jan 1939 A
2151442 Hardy Mar 1939 A
2163472 Shimer Jun 1939 A
2252488 Bierend Aug 1941 A
2304991 Foster Dec 1942 A
2506128 Ashton May 1950 A
2547831 Mueller Apr 1951 A
2713522 Lorenz Jul 1955 A
2719737 Fletcher Oct 1955 A
2745631 Shellman May 1956 A
2756960 Church Jul 1956 A
2898082 Von Almen Aug 1959 A
2969951 Walton Jan 1961 A
2977874 Ritzerfeld et al. Apr 1961 A
2982515 Clinton May 1961 A
2983281 Bynum May 1961 A
3049082 Barry Aug 1962 A
3053500 Atkinson Sep 1962 A
3063467 Roberts, Jr. Nov 1962 A
3224817 Carter Dec 1965 A
3276390 Bloudoff Oct 1966 A
3277837 Pangburn Oct 1966 A
3288475 Benoit Nov 1966 A
3459363 Miller Aug 1969 A
3474808 Elliott Oct 1969 A
3483885 Leathers Dec 1969 A
3489098 Roth Jan 1970 A
3489170 Leman Jan 1970 A
3512787 Kennedy May 1970 A
3590387 Landis Jun 1971 A
3640501 Walton Feb 1972 A
3809508 Uchiyama May 1974 A
3907307 Maurer Sep 1975 A
3931755 Hatridge Jan 1976 A
4044834 Perkins Aug 1977 A
4076212 Leman Feb 1978 A
4184814 Parker Jan 1980 A
4219204 Pippert Aug 1980 A
4277229 Pacht Jul 1981 A
4331741 Wilson May 1982 A
4395050 Wirz Jul 1983 A
4398731 Gorman Aug 1983 A
4440404 Roach Apr 1984 A
4508133 Hamid Apr 1985 A
4518359 Yao-Psong May 1985 A
4527806 Ungchusri Jul 1985 A
4565297 Korner Jan 1986 A
4662392 Vadasz May 1987 A
4754950 Tada Jul 1988 A
4763876 Oda Aug 1988 A
4770206 Sjoberg Sep 1988 A
4807890 Gorman Feb 1989 A
4811758 Piper Mar 1989 A
4861241 Gamboa Aug 1989 A
4872395 Bennitt et al. Oct 1989 A
4919719 Abe Apr 1990 A
4951707 Johnson Aug 1990 A
5020490 Seko Jun 1991 A
5052435 Crudup Oct 1991 A
5061159 Pryor Oct 1991 A
5062450 Bailey Nov 1991 A
5080713 Ishibashi Jan 1992 A
5088521 Johnson Feb 1992 A
5127807 Eslinger Jul 1992 A
5131666 Hutchens Jul 1992 A
5135238 Wells Aug 1992 A
5149107 Maringer Sep 1992 A
5201491 Domangue Apr 1993 A
5209495 Palmour May 1993 A
5249600 Blume Oct 1993 A
5267736 Pietsch Dec 1993 A
5273570 Sato Dec 1993 A
5314659 Hidaka May 1994 A
5478048 Salesky Dec 1995 A
5533245 Stanton Jul 1996 A
5540570 Schuller Jul 1996 A
5572920 Kennedy Nov 1996 A
5626345 Wallace May 1997 A
5636688 Bassinger Jun 1997 A
5674449 Liang Oct 1997 A
5834664 Aonuma Nov 1998 A
5859376 Ishibashi Jan 1999 A
5895517 Kawamura Apr 1999 A
5949003 Aoki Sep 1999 A
6139599 Takahashi Oct 2000 A
6200688 Liang Mar 2001 B1
6209445 Roberts, Jr Apr 2001 B1
6328312 Schmitz Dec 2001 B1
6340377 Kawata Jan 2002 B1
6382940 Blume May 2002 B1
6436338 Qiao Aug 2002 B1
6446939 Hoppe Sep 2002 B1
6460620 LaFleur Oct 2002 B1
6464749 Kawase Oct 2002 B1
6482275 Qiao Nov 2002 B1
6485678 Liang Nov 2002 B1
6544012 Blume Apr 2003 B1
6571684 Nov et al. Jun 2003 B1
6623259 Blume Sep 2003 B1
6634236 Mars Oct 2003 B2
6641112 Antoff Nov 2003 B2
6695007 Vicars Feb 2004 B2
6702905 Qiao Mar 2004 B1
6880802 Hara Apr 2005 B2
6910871 Blume Jun 2005 B1
6916444 Liang Jul 2005 B1
6951165 Kuhn Oct 2005 B2
6951579 Koyama Oct 2005 B2
6955181 Blume Oct 2005 B1
6959916 Chigasaki Nov 2005 B2
7000632 McIntire Feb 2006 B2
7036824 Kunz May 2006 B2
7144440 Ando Dec 2006 B2
7168440 Blume Jan 2007 B1
7186097 Blume Mar 2007 B1
7222837 Blume May 2007 B1
7290560 Orr Nov 2007 B2
7296591 Moe Nov 2007 B2
7335002 Vicars Feb 2008 B2
7341435 Vicars Mar 2008 B2
7398955 Weingarten Jul 2008 B2
7506574 Jensen Mar 2009 B2
7513483 Blume Apr 2009 B1
7513759 Blume Apr 2009 B1
7611590 Liang Nov 2009 B2
7681589 Schwegman Mar 2010 B2
7682471 Levin Mar 2010 B2
7726026 Blume Jun 2010 B1
7748310 Kennedy Jul 2010 B2
7754142 Liang Jul 2010 B2
7754143 Qiao Jul 2010 B2
7757396 Sawada Jul 2010 B2
7789133 McGuire Sep 2010 B2
7793913 Hara Sep 2010 B2
7828053 McGuire Nov 2010 B2
7845413 Shampine Dec 2010 B2
7861738 Erbes Jan 2011 B2
7866346 Walters Jan 2011 B1
7891374 Vicars Feb 2011 B2
7954510 Schwegman Jun 2011 B2
7992635 Cherewyk Aug 2011 B2
8069923 Blanco Dec 2011 B2
8075661 Chen Dec 2011 B2
8083506 Maki Dec 2011 B2
8100407 Stanton Jan 2012 B2
8141849 Blume Mar 2012 B1
8147227 Blume Apr 2012 B1
8181970 Smith May 2012 B2
8261771 Witkowski Sep 2012 B2
8287256 Shafer Oct 2012 B2
8291927 Johnson Oct 2012 B2
8317498 Gambier Nov 2012 B2
8375980 Higashiyama Feb 2013 B2
8376723 Kugelev Feb 2013 B2
8402880 Patel Mar 2013 B2
8430075 Qiao Apr 2013 B2
D687125 Hawes Jul 2013 S
8479700 Qiao Jul 2013 B2
8511218 Cordes Aug 2013 B2
8522667 Clemens Sep 2013 B2
8528585 McGuire Sep 2013 B2
8534691 Schaffer Sep 2013 B2
8613886 Qiao Dec 2013 B2
8662864 Bayyouk Mar 2014 B2
8662865 Bayyouk Mar 2014 B2
8668470 Bayyouk Mar 2014 B2
8707853 Dille Apr 2014 B1
8733313 Sato May 2014 B2
8784081 Blume Jul 2014 B1
8828312 Yao Sep 2014 B2
8870554 Kent Oct 2014 B2
8893806 Williamson Nov 2014 B2
8894392 Blume Nov 2014 B1
8915722 Blume Dec 2014 B1
8940110 Qiao Jan 2015 B2
8978695 Witkowkski Mar 2015 B2
8998593 Vicars Apr 2015 B2
9010412 Mcguire Apr 2015 B2
9103448 Nitkowski Aug 2015 B2
9150945 Bei Oct 2015 B2
9157136 Chou Oct 2015 B2
9157468 Dille Oct 2015 B2
9206910 Kahn Dec 2015 B2
D748228 Bayyouk Jan 2016 S
9260933 Artherholt Feb 2016 B2
9261195 Toynbee Feb 2016 B2
9273543 Baca Mar 2016 B2
9284631 Radon Mar 2016 B2
9284953 Blume Mar 2016 B2
9285040 Forrest Mar 2016 B2
9291274 Blume Mar 2016 B1
9322243 Baca Apr 2016 B2
9334547 Qiao May 2016 B2
9340856 Otobe May 2016 B2
9359921 Hashimoto Jun 2016 B2
9365913 Imaizumi Jun 2016 B2
9371919 Forrest Jun 2016 B2
9376930 Kim Jun 2016 B2
9377019 Blume Jun 2016 B1
9382940 Lee Jul 2016 B2
9416887 Blume Aug 2016 B2
9435454 Blume Sep 2016 B2
9441776 Bryne Sep 2016 B2
9458743 Qiao Oct 2016 B2
9464730 Bihlet Oct 2016 B2
9500195 Blume Nov 2016 B2
9506382 Yeager Nov 2016 B2
9528508 Thomeer Dec 2016 B2
9528631 McCarty Dec 2016 B2
9534473 Morris Jan 2017 B2
9534691 Miller Jan 2017 B2
9556761 Koyama Jan 2017 B2
9568138 Arizpe Feb 2017 B2
9605767 Chhabra Mar 2017 B2
9631739 Belshan Apr 2017 B2
D787029 Bayyouk May 2017 S
9638075 Qiao May 2017 B2
9638337 Witkowski May 2017 B2
9650882 Zhang May 2017 B2
9651067 Beschorner May 2017 B2
9689364 Mack Jun 2017 B2
9695812 Dille Jul 2017 B2
9732746 Chandrasekaran Aug 2017 B2
9732880 Haines Aug 2017 B2
9745968 Kotapish Aug 2017 B2
9784262 Bayyouk Oct 2017 B2
9822894 Bayyouk et al. Nov 2017 B2
9845801 Shek Dec 2017 B1
9857807 Baca Jan 2018 B2
9915250 Brasche Mar 2018 B2
9920615 Zhang Mar 2018 B2
9927036 Dille Mar 2018 B2
9945362 Skurdalsvold Apr 2018 B2
9945375 Zhang Apr 2018 B2
9989044 Bayyouk Jun 2018 B2
10029540 Seeger Jul 2018 B2
10041490 Jahnke Aug 2018 B1
10082137 Graham Sep 2018 B2
10094478 Iijima Oct 2018 B2
10113679 Shuck Oct 2018 B2
10184470 Barnett, Jr. Jan 2019 B2
10190197 Baker Jan 2019 B2
10197172 Fuller Feb 2019 B2
10215172 Wood Feb 2019 B2
10221848 Bayyouk Mar 2019 B2
10240594 Barnhouse, Jr. Mar 2019 B2
10240597 Bayyouk Mar 2019 B2
10247182 Zhang Apr 2019 B2
10247184 Chunn Apr 2019 B2
10273954 Brown Apr 2019 B2
10288178 Nowell May 2019 B2
10316832 Byrne Jun 2019 B2
10330097 Skurdalsvold Jun 2019 B2
10344757 Stark Jul 2019 B1
10364487 Park Jul 2019 B2
D856498 Bayyouk Aug 2019 S
10378535 Mahmood Aug 2019 B2
10378538 Blume Aug 2019 B2
10393113 Wagner Aug 2019 B2
10400764 Wagner Sep 2019 B2
10415348 Zhang Sep 2019 B2
10428406 Yao Oct 2019 B2
10428949 Miller Oct 2019 B2
10436193 Jahnke Oct 2019 B1
10443456 Hoeg Oct 2019 B2
10465680 Guerra Nov 2019 B1
10472702 Yeh Nov 2019 B2
10487528 Pozybill Nov 2019 B2
10519070 Sanders Dec 2019 B2
10519950 Foster Dec 2019 B2
10526862 Witkowski Jan 2020 B2
10527036 Blume Jan 2020 B2
10557446 Stecklein Feb 2020 B2
10557576 Witkowski Feb 2020 B2
10557580 Mendyk Feb 2020 B2
10563494 Graham Feb 2020 B2
10563649 Zhang Feb 2020 B2
10570491 Hong Feb 2020 B2
10576538 Kato Mar 2020 B2
10577580 Abbas Mar 2020 B2
10577850 Ozkan Mar 2020 B2
10591070 Nowell Mar 2020 B2
10605374 Takaki Mar 2020 B2
10626856 Coldren Apr 2020 B2
10633925 Panda Apr 2020 B2
10634260 Said Apr 2020 B2
10640854 Hu May 2020 B2
10655623 Blume May 2020 B2
10663071 Bayyouk May 2020 B2
10670013 Foster Jun 2020 B2
10670153 Filipow Jun 2020 B2
10670176 Byrne Jun 2020 B2
10677109 Qiao Jun 2020 B2
10677240 Graham Jun 2020 B2
10677365 Said Jun 2020 B2
10711754 Nelson Jul 2020 B2
10711778 Buckley Jul 2020 B2
10718441 Myers Jul 2020 B2
10731523 Qu Aug 2020 B2
10731643 DeLeon Aug 2020 B2
10738928 Arizpe Aug 2020 B2
10753490 Fuller Aug 2020 B2
10753495 Bayyouk Aug 2020 B2
10767520 Hattiangadi Sep 2020 B1
10771567 Sundaresan Sep 2020 B2
10774828 Smith Sep 2020 B1
10781803 Kumar Sep 2020 B2
10787725 Fujieda Sep 2020 B2
10801627 Warbey Oct 2020 B2
10808488 Witkowski Oct 2020 B2
10815988 Buckley Oct 2020 B2
10830360 Frank Nov 2020 B2
10851775 Stark Dec 2020 B2
10865325 Nakao Dec 2020 B2
10907738 Nowell Feb 2021 B2
10914171 Foster Feb 2021 B2
10934899 Hattiangadi Mar 2021 B2
10941765 Nowell Mar 2021 B2
10941866 Nowell Mar 2021 B2
10954938 Stark Mar 2021 B2
10961607 Oshima Mar 2021 B2
10962001 Nowell Mar 2021 B2
D916240 Nowell Apr 2021 S
10968717 Tran Apr 2021 B2
10988834 Lee Apr 2021 B2
10989321 Hattiangadi Apr 2021 B2
10995738 Blume May 2021 B2
11028662 Rhodes Jun 2021 B2
11041570 Buckley Jun 2021 B1
11078903 Nowell Aug 2021 B2
11104981 Chen Aug 2021 B2
11105185 Spencer Aug 2021 B2
11105327 Hurst Aug 2021 B2
11105328 Bryne Aug 2021 B2
11105428 Warbey Aug 2021 B2
11111915 Bayyouk Sep 2021 B2
11131397 Yar Sep 2021 B2
D933104 Ellisor Oct 2021 S
D933105 Ellisor Oct 2021 S
D933106 Mullins Oct 2021 S
D933107 Mullins Oct 2021 S
11149514 Witkowski Oct 2021 B2
11162859 Lei Nov 2021 B2
11181101 Byrne Nov 2021 B2
11181108 Brooks Nov 2021 B2
11231111 Hurst Jan 2022 B2
11242849 Smith Feb 2022 B1
11353117 Smith Jun 2022 B1
11384756 Smith Jul 2022 B1
11391374 Ellisor Jul 2022 B1
11421679 Mullins Aug 2022 B1
11421680 Smith Aug 2022 B1
11434900 Alex Sep 2022 B1
11473686 Bayyouk Oct 2022 B2
11566713 Poremski Jan 2023 B2
D980876 Smith Mar 2023 S
D986928 Smith et al. May 2023 S
D997992 Smith et al. Sep 2023 S
11761441 Alex et al. Sep 2023 B1
11846356 Ellisor Dec 2023 B1
11920684 Xu et al. Mar 2024 B1
20020084004 Takahashi Jul 2002 A1
20020124961 Porter Sep 2002 A1
20020159914 Yeh Oct 2002 A1
20030205864 Dietle Nov 2003 A1
20030233910 Jeong Dec 2003 A1
20040170507 Vicars Sep 2004 A1
20040194576 Ando Oct 2004 A1
20040234404 Vicars Nov 2004 A1
20040255410 Schonewille Dec 2004 A1
20040258557 Shun Dec 2004 A1
20050095156 Wolters May 2005 A1
20050200081 Stanton Sep 2005 A1
20050226754 Orr Oct 2005 A1
20060002806 Baxter Jan 2006 A1
20060027779 McGuire Feb 2006 A1
20060045782 Kretzinger Mar 2006 A1
20070086910 Liang Apr 2007 A1
20070154342 Tu Jul 2007 A1
20070273105 Stanton Nov 2007 A1
20070295411 Schwegman Dec 2007 A1
20080031769 Yeh Feb 2008 A1
20080052014 Toyosada Feb 2008 A1
20080092384 Schaake Apr 2008 A1
20080240949 Tackett et al. Oct 2008 A1
20080279706 Gambier Nov 2008 A1
20090041611 Sathian Feb 2009 A1
20090278069 Blanco Nov 2009 A1
20090261575 Bull Dec 2009 A1
20100230628 Stefina Sep 2010 A1
20100272597 Qiao Dec 2010 A1
20110079302 Hawes Apr 2011 A1
20110142701 Small Jun 2011 A1
20110189040 Vicars Aug 2011 A1
20110255993 Ochoa Oct 2011 A1
20120141308 Saini Jun 2012 A1
20120163969 Ongole Jun 2012 A1
20120259593 El-Zein Oct 2012 A1
20120304821 Ando Dec 2012 A1
20130020521 Byrne Jan 2013 A1
20130037739 Millard Feb 2013 A1
20130202457 Bayyouk Aug 2013 A1
20130202458 Byrne Aug 2013 A1
20130319220 Luharuka Dec 2013 A1
20140083541 Chandrasekaran Mar 2014 A1
20140083547 Hwang Mar 2014 A1
20140196883 Artherholt Jul 2014 A1
20140260954 Young Sep 2014 A1
20140286805 Dyer Sep 2014 A1
20140322034 Bayyouk Oct 2014 A1
20140322050 Marette et al. Oct 2014 A1
20140348677 Moeller Nov 2014 A1
20150127308 Thomas, Jr. et al. May 2015 A1
20150132157 Whaley May 2015 A1
20150144826 Bayyouk May 2015 A1
20150147194 Foote May 2015 A1
20150219096 Jain Aug 2015 A1
20150300332 Kotapish Oct 2015 A1
20150368775 Baker Dec 2015 A1
20160201169 Vecchio Jul 2016 A1
20160215588 Belshan Jul 2016 A1
20160238156 Hubenschmidt Aug 2016 A1
20160245280 Todorov Aug 2016 A1
20160319626 Dille Nov 2016 A1
20160319805 Dille Nov 2016 A1
20170067459 Bayyouk Mar 2017 A1
20170089334 Jahnke Mar 2017 A1
20170089470 Filipow et al. Mar 2017 A1
20170089473 Nowell Mar 2017 A1
20170097107 Hotz Apr 2017 A1
20170159655 Morreale Jun 2017 A1
20170218951 Graham Aug 2017 A1
20170218993 Freed Aug 2017 A1
20170297149 Shinohara Oct 2017 A1
20170298932 Wagner Oct 2017 A1
20170314097 Hong Nov 2017 A1
20170342776 Bullock Nov 2017 A1
20170342976 Reddy Nov 2017 A1
20180017173 Nowell Jan 2018 A1
20180058431 Blume Mar 2018 A1
20180073653 Bayyouk Mar 2018 A1
20180202434 Barnhouse, Jr Jul 2018 A1
20180298894 Wagner Oct 2018 A1
20180312946 Gigliotti, Jr Nov 2018 A1
20180320258 Stewart Nov 2018 A1
20180340245 Kernion Nov 2018 A1
20180354081 Kalyani Dec 2018 A1
20190011051 Yeung Jan 2019 A1
20190017503 Foster Jan 2019 A1
20190024198 Hong Jan 2019 A1
20190024225 Tang Jan 2019 A1
20190032685 Foster Jan 2019 A1
20190032720 Bayyouk Jan 2019 A1
20190047049 Fujieda Feb 2019 A1
20190049052 Shuck Feb 2019 A1
20190063427 Nowell Feb 2019 A1
20190071755 Lee Mar 2019 A1
20190072088 DeLeon Mar 2019 A1
20190072089 Buckley Mar 2019 A1
20190085806 Meibgeier Mar 2019 A1
20190085978 Chase Mar 2019 A1
20190101109 Cortes Apr 2019 A1
20190107226 Bayyouk Apr 2019 A1
20190120389 Foster Apr 2019 A1
20190136842 Nowell May 2019 A1
20190145400 Graham May 2019 A1
20190145568 Nick May 2019 A1
20190154033 Brooks May 2019 A1
20190170137 Chase Jun 2019 A1
20190170138 Bayyouk Jun 2019 A1
20190194786 Chuang Jun 2019 A1
20190226058 Fujieda Jul 2019 A1
20190063430 Byrne Aug 2019 A1
20190242373 Wernig Aug 2019 A1
20190247957 Stribling Aug 2019 A1
20190264683 Smith Aug 2019 A1
20190292633 Porret Sep 2019 A1
20190301314 Kamo Oct 2019 A1
20190301447 Skurdalsvold Oct 2019 A1
20190316685 Wang Oct 2019 A1
20190360483 Nowell Nov 2019 A1
20190376508 Wagner Dec 2019 A1
20200056272 Hong Feb 2020 A1
20200063899 Witkowkski Feb 2020 A1
20200070034 Sukup et al. Mar 2020 A1
20200080660 Dyer Mar 2020 A1
20200080661 Mullins Mar 2020 A1
20200157663 Yang May 2020 A1
20200158123 Chen May 2020 A1
20200173317 Keating Jun 2020 A1
20200023245 Blume Jul 2020 A1
20200208776 Bayyouk Jul 2020 A1
20200217424 Rasmussen Jul 2020 A1
20200240531 Nowell Jul 2020 A1
20200256149 Witkowski Aug 2020 A1
20200284253 Foster Sep 2020 A1
20200284365 Bayyouk Sep 2020 A1
20200290118 Chen Sep 2020 A1
20200291731 Haiderer Sep 2020 A1
20200300240 Nowell Sep 2020 A1
20200308683 Xue Oct 2020 A1
20200347843 Mullins Nov 2020 A1
20200355182 DeLeon Nov 2020 A1
20200362970 Hurst Nov 2020 A1
20200392613 Won Dec 2020 A1
20200393054 Fuller Dec 2020 A1
20200399979 Webster Dec 2020 A1
20200400003 Webster Dec 2020 A1
20200400130 Poehls Dec 2020 A1
20200400132 Kumar Dec 2020 A1
20200400140 Bayyouk Dec 2020 A1
20200400234 Mullins et al. Dec 2020 A1
20200400242 Spencer Dec 2020 A1
20210010113 Qiao Jan 2021 A1
20210010470 Blume Jan 2021 A1
20210017830 Witkowski Jan 2021 A1
20210017982 Bayyouk Jan 2021 A1
20210017983 Myers Jan 2021 A1
20210040836 Baskin Feb 2021 A1
20210054486 Kim Feb 2021 A1
20210102630 Nowell Apr 2021 A1
20210108734 Nowell Apr 2021 A1
20210130936 Wu May 2021 A1
20210148471 Murugesan May 2021 A1
20210180156 Kim Jun 2021 A1
20210190053 Wagner Jun 2021 A1
20210190223 Bayyouk Jun 2021 A1
20210197524 Maroli Jul 2021 A1
20210215071 Oikawa Jul 2021 A1
20210215154 Nowell Jul 2021 A1
20210230987 Tanner Jul 2021 A1
20210239111 Zitting Aug 2021 A1
20210246537 Maroli Aug 2021 A1
20210260704 Hu Aug 2021 A1
20210270261 Zhang Sep 2021 A1
20210285551 Renollett Sep 2021 A1
20210310484 Myers Oct 2021 A1
20210381504 Wagner Dec 2021 A1
20210381615 Riedel Dec 2021 A1
20210388832 Byrne Dec 2021 A1
20220026326 Wang Jan 2022 A1
20220034402 Kiani Feb 2022 A1
20220349472 Ellisor Nov 2022 A1
20220403839 Mullins Dec 2022 A1
20230407864 Alex et al. Dec 2023 A1
20240117882 Ellisor Apr 2024 A1
Foreign Referenced Citations (4)
Number Date Country
201149099 Nov 2008 CN
102748483 Oct 2012 CN
102410194 Apr 2021 CN
0 414 955 Mar 1991 EP
Non-Patent Literature Citations (150)
Entry
U.S. Appl. No. 16/814,267, 194 pages.
U.S. Appl. No. 17/120, 121, 110 pages.
U.S. Appl. No. 62/234,483, 45 pages.
U.S. Appl. No. 62/315,343, 41 pages.
U.S. Appl. No. 62/318,542, 44 pages.
U.S. Appl. No. 62/346,915, 41 pages.
U.S. Appl. No. 62/379,462, 24 pages.
“Flush Free Sealing Benefits,” Oct. 3, 2011, http://empoweringpumps.com/flush-free-sealing-benefits/, accessed May 9, 2020, 5 pages.
Gardner Denver, Well Servicing Pump Model GD-3000—Operating and Service Manual, Apr. 2011, 44 pages.
Gardner Denver, Well Servicing Pump Model GD-1000Q—Fluid End Parts List, Sep. 2011, 24 pages.
Gardner Denver, Well Servicing Pump Model HD-2250—Operating and Service Manual, Jan. 2005, 44 pages.
Gardner Denver, GD 2500Q HDF Frac & Well Service Pump, 2 pages.
Cutting Tool Engineering, “Groove milling,” Aug. 1, 2012, https://www.ctemag.cojm/news/articles/groove-milling, accessed May 13, 2020, 11 pages.
VargusUSA, “Groovex Innovative Grooving Solutions—Groove Milling, ” Dec. 12, 2011, http://www.youtube.com/watch?v=vrFxHJUXjvk, 68 pages.
Kerr Pumps, Kerr KA-3500B/KA-3500BCB Plunger Pump Parts and Service Manual, 41 pages.
Kerr Pumps, Kerr KD-1250B/KD-1250BCB Plunger Pump Service Manual, 38 pages.
Kerr Pumps, Kerr KJ-2250B and KJ-2250BCB Plunger Pump Service Manual, 38 pages.
Kerr Pumps, Kerr KM-3250B / KM-3250BCB Plunger Pump Service Manual, 35 pages.
Kerr Pumps, Kerr KP-3300B / KP-3300BCB Plunger Pump Service Manual, 41 pages.
Kerr Pumps, Kerr KT-3350B/BCB KT-3400BCB Plunger Pump Service Manual, 46 pages.
Kerr Pumps, Kerr triplex pump km3250bcb 10,000 psi @ 5.1 gmp, Feb. 2, 2021, http://imged.com/kerr-triplex-pump-km3250bcb-10-000-psi-5-1-gmp-8234739.html, 2 pages.
Lex Machina, 77 Federal district court cases for Alan D Albright of W.D. Tex., http://law.lexmachina.com/court/txwd/judge/5198506/cases?status=open&filed_on-from=2020-02-19&filed_on-to=2020-04-19&pending-, 7 pages.
Lex Machina, Motion Metrics Report for 834 orders issued by District Judge Alan D Albright (ADA) in 1,603 cases from the Search for federal district court cases before Judge Alan D Albright, https://law.lexmachina.com/motions/motion_metrics?cases_key=yyix9Y8-k2k, generated on Sep. 23, 2020, 1 page.
Lex Machina, 6:20-cv-00200-ADA, Kerr Machine Co. v. Vulcan Industrial Holdings, LLC Docket Entries, https://law.lexmachina.com/cases/2004206451#docket-entries, 6 pages.
Jonathan Maes, “Machining Square Inside Corners: Conquer the Nightmare!,” accessed Sep. 8, 2020, https://makeitfrommetal.com/machining-square-inside-corners-the-night . . . , 22 pages.
Ross Mackay, “Process Engineering: Properly seal that pump,” May 17, 2005, https://www.chemicalprocessing.com/articles/2005/465, 11 pages.
MSI Fluid End Components, https://www.scribd.com/document/421304589/Fluid-End, 1 page.
MSI Dixie Iron Works, Ltd., MSI QI-1000 Technical Manual for 1000 HP Quintuplex MSI QI-1000 Pump, Feb. 21, 2004, 90 pages.
MSI, Product Listing and Pricing, accessed Mar. 8, 2016, 19 pages.
National Oilwell Varco, 267Q-6M Quinuplex Plunger Pump: Parts List, Jul. 21, 2008, 13 pages.
Oil and Gas Well Servicing, Audit Procedures for Oil and Gas Well Servicing, May 2010, Texas Comptroller of Public Accounts, Audit Division, 68 pages.
Tony Atkins and Marcel Escudier, Oxford Dictionary of Mechanical Engineering, Oxford University Press, 2013, 10 pages.
Parker Hannifin Corporation and Autoclave Engineers, Technical Information, 2016, 16 pages.
Girdhar, Moniz and Mackay, “Chapter 5.4 Centrifugal pump design,” Plant and Process Engineering 360, 2010, pp. 519-536.
Parker Hannifin Corporation, PolyPak Seals for Hydraulic Applications Catalog EPS 5370_PolyPak, 2015, 38 pages.
Paresh Girdhar and Octo Moniz, “Practical Centrifugal Pumps—Design. Operation and Maintenance,” Newnes, 2005, 33 pages.
Reinhard Preiss, “Stress concentration factors of flat end to cylindrical shell connection with a fillet or stress relief groove subjected to internal pressure,” 1997, Int. J. Pres. Ves. & Piping, vol. 73, pp. 183-190.
Caterpillar, WS255 Quintuplex Well Stimulation Pump, 2 pages.
Gardner Denver Pumps, Redline Series Brochure, 3 pages.
Eaton Aerospace Group, Resilient Metallic Seals, TF100-35D, Oct. 2013, 60 pages.
Scott McKeown, “District Court Trial Dates Tend to Slip After PTAB Discretionary Denials—Patents Post-Grant,” Jul. 24, 2020, Ropes & Gray, accessed Sep. 23, 2020, 3 pages.
Ricky Smith and R. Keith Mobley, “Rules of Thumb for Maintenance and Reliability Engineers—Chapter 14: Packing and Seals,” Elsevier, 2008, pp. 239-250.
Schlumberger, Jet Manual 02—Reciprocating Pumps, Aug. 7, 2015, 63 pages.
Schlumberger, Treating Equipment Manual: Fluid Ends, Section 10, Apr. 2000, 87 pages.
SPM Oil & Gas, SPM QEM 3000 Frac Pump, 2021, 4 pages.
Supplemental Declaration of Steven M. Tipton, Ph.D., P.E.—Case PGR2020-00065, U.S. Pat. No. 10,591,070, Mar. 2, 2021, 35 pages.
Servagroup, TPD 600 Triplex Pump Brochure, Mar. 24, 2011, 2 pages.
Utex Industries, Inc., Well Service Products Catalog, Jun. 2017, 51 pages.
Utex Industries, Inc., Well Service Packing—Packing Assemblies Complete & Replacement, May 2013, 40 pages.
Vargus Ltd., Groove Milling High Precision Tools for Groove Milling, Dec. 2012, pp. 2-22.
International Search Report and Written Opinion for international application No. PCT/US2023/066143, mailed Aug. 28, 2023.
Karolczuk et al., “Application of the Gaussian Process for Fatigue Life Prediction Under Multiaxial Loading”, Mechanical Systems and Signal Processing 167 (2022), Nov. 14, 2021.
Carraro et al. “A Damage Based Model for Crack Initiation in Unidirectional Composites Under Multiaxial Cyclic Loading”, Composite Science and Technology 99 (2014), 154-163, May 16, 2014.
Albinmousa et al., “Cyclic Axial and Cyclic Torsional Behaviour of Extruded AZ31B Magnesium Alloy”, International Journal of Fatigue 33 (2011), 1403-1416, 2011.
Horstemeyer et al., “Universal Material Constants For Multistage Fatigue (MSF) Modeling of the Process-Structure-Property (PSP) Relations of A000, 2000, 5000, and 7000 Series Aluminum Alloys”, Integrating Materials and Manufacturing Innovation, vol. 9 (2020), 157-180, Jun. 22, 2020.
Guan et al., “Model Selection, Updating, and Averaging for Probabilistic Fatigue Damage Prognosis”, Journal of Structural Safety, Mar. 11, 2011.
Frick et al., “Orientation-Independent Pseudoelasticity in Small-Scale NITI Compression Pillars”, Scripta Materialia 59(12), 7-10, 2008.
Naghipour et al., “Fatigue Analysis of Notched Laminates: a Time-Efficient Macro-Mechanical Approach”, Ohio Aerospace Institute, Cleveland, 2016.
Declaration of Duncan Hall from Internet Archive/Wayback Machine, Feb. 3, 2021, Kerr Plunger Pump Manuals, 20 pages.
Michael Agnes, Editor, Webster's New World College Dictionary, Fourth Edition, 1999, 5 pages.
Weir SPM Oil & Gas, Grooveless Fluid End, 2008, 1 page.
Weir SPM Oil & Gas, Weir SPM General Catalog, 2009, 40 pages.
Weir SPM Oil & Gas, Well Service Pump Reference Guide, 2008, 55 pages.
Intellectual Ventures I LLC v VMWare, Inc., Case No. 1:19-CV-01075-ADA, Document 91 (W.D. Tex Jun. 3, 2020), Defendant VMWare, Inc.'s Stipulation of Invalidity Contentions for U.S. Pat. No. 7,949,752, Jun. 3, 2020, 5 pages.
Vulcan Industrial Holding, LLC et al. v. Kerr Machine Co. Case No. 4:21-cv-433, Document 1, Complaint for Declaratory Judgment of Patent Non-Infringement, Feb. 9, 2021, 17 pages.
Trilogy Enterprises, Inc., v. Trilogy Education Services, LLC, Case. No. 6:19-cv-199-ADA-JCM, Document 35, Fifth Amended Scheduling Order, Sep. 8, 2020, 4 pages.
Dr. Corneliu Bolbocean v Baylor University, Case No. 6:19-CV-00465-ADA-JCM, Document 34, Scheduling Order, Apr. 6, 2020, 4 pages.
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044-ADA, Document 4, Plaintiff's Amended Complaint for Patent Infringement and Jury Demand, Jan. 19, 2021, 30 pages.
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044, Document 1, Plaintiff's Original Complaint for Patent Infringement and Jury Demand, Jan. 19, 2021, 47 pages.
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044-ADA, Document 10, Plaintiff's Second Amended Complaint for Patent Infringement and Jury Demand, Feb. 1, 2021, 88 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, Cizion, LLC, Case No. W-20- CV-00200-ADA-24, Order Setting Trial Date, Jun. 14, 2020, 1 page.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, Cizion, LLC, Case No. W-20- CV-00200-ADA-29, Order Setting Trial Date, Aug. 2, 2020, 1 page.
Kerr Machine Co., v. Vulcan Industrial Holdings, LLC, Case. No. 6:20-CV-00200-ADA, Affidavit of Service, Apr. 7, 2020, 1 page.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Plaintiff's First Amended Complaint for Patent Infringement and Jury Demand, Jun. 4, 2020, 11 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 26, Defendant Cizion, LLC d/b/a Vulcan Industrial Manufacturing, LLC's Motion to Dismiss or Transfer, Jul. 22, 2020, 10 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Defendants' Opposed Motion to Stay Litigation Pending the Outcome of the Pending Post-Grant Review Proceeding Before the Patent Trial and Appeal Board, Jul. 31, 2020, 14 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Case No. 6:20-CV-00200-ADA, Plaintiff's Preliminary Infringement Contentions, May 22, 2020, 50 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Defendants' Preliminary Invalidity Contentions, Aug. 13, 2020, 29 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 34, Scheduling Order, Aug. 11, 2020, 3 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 38, Plaintiff's Second Amended Complaint for Patent Infringement and Jury Demand, Sep. 25, 2020, 11 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 5, Standing Order regarding Scheduled Hearings In Civil Cases in Light of Chief Judge Garcia's 24 Amended Order, Mar. 24, 2020, 4 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Civil Docket for Case No. 6:20-cv-00200-ADA, accessed Sep. 11, 2020, 7 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 54, Claim Construction Order, Dec. 3, 2020, 3 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Docket Entry, Aug. 2, 2020, 1 page.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Case No. 6:20-CV-00200, Document 1, Plaintiff's Original Complaint for Patent Infringement and Jury Demand, Mar. 19, 2020, 39 pages.
Adriana del Rocio Barberena-Rovira, et al., v Kuiper Dairy, LLC, et al., Case No. 6:20-CV-00250-ADA-JCM, Document 20, Scheduling Order, Jul. 22, 2020, 4 pages.
Acquanlan Deonshay Harris v. Cenlar, FSB, Case No. 6:20-CV-00271-ADA-JCM, Document 13, Scheduling Order, Aug. 20, 2020, 4 pages.
Senior Living Properties, LLC c. Ironshore Speciality, Insurance Company, Case No. 6:20-CV-00282-ADA-JCM, Document 12, Scheduling Order, Jul. 7, 2020, 4 pages.
Dionne Bracken, Individually and as Next Friend of A.M.B., v Michael D. Ashcraft and Envirovac Waste Transport Systems, Inc., Case No. 6:20-CV-00308-ADA-JCM, Document 17, Scheduling Order, Jul. 28, 2020, 4 pages.
Kendra Coufal v. Roger Lee Thomas and Apple Logistics, Inc., Case No. 6:20-CV-00356-ADA-JCM, Document 12, Scheduling Order, Jul. 28, 2020, 4 pages.
Tipton International, Inc., v. Vetbizcorp, LLC and Samuel Cody, Case No. 6:20-CV-00554-ADA-JCM, Document 8, Scheduling Order, Aug. 20, 2020, 4 pages.
Dynaenergetics GmbH & Co. KG and Dynaenergetics US, Inc., v. Hunting Titan, Ltd.; Hunting Titan, Inc.; and Hunting Energy Services, Inc., Case No. H-17-3784, Order, Sep. 4, 2020, 2 pages.
Slip Opinion, In re Sand Revolution LLC, Case No. 2020-00145 (Fed. Cir. Sep. 28, 2020), 3 pages.
In re Vulcan Industrial Holdings, LLC, Case No. 2020-00151 (Fed. Cir. Sep. 29, 2020), Petition for Writ of Mandamus, 43 pages.
Densys Ltd., v. 3Shape Trios A/S and 3Shape A/S, Case No. WA:19-CV-00680-ADA, Document 27, Scheduling Order, Apr. 8, 2020, 4 pages.
Kerr Machine Co. vs. Vulcan Industrial Holdings, LLC, Case No. WA:20-CV-00200-ADA, Order Setting Markman Hearing, May 29, 2020, 1 page.
Sur-Lock Liner Retention System—Product Brochure (p. 16) (Year: 2017).
Sur-Lock Liner Retention System—Video (https://premiumoilfield.com/performance-enhancements/sur-lock/sur-lock-iner-retention-system.html) (https://www.youtube.com/watch?v=6NZGeD5NkF8) (Year: 2017).
U.S. Appl. No. 17/241,680 titled “Fluid End and Center Feed Suction Manifold” filed Apr. 27, 2021.
Flowserve, “Dynamic Balance Plug Valve and Double DB Plug Valve: Installation, Operation and Maintenance,” 2011, https://www.flowserve.com/sites/default/files/2016-07/NVENIM2005-00_0.pdf, 36 pages.
Weir Oil & Gas, “SPM Well Service Pumps & Flow Control Products TWS600S Fluid End Operation Instruction and Service Manual,” Feb. 27, 2017, https://www.global.weir/assets/files/oil%20and%20gas%20ebrochures/manuals/tws600s-fluid-end-2p121260.pdf, 41 pages.
White Star Pump Co., “Maintenance Manual: Triplex Pump WS-1300/1600,” 2005, http://www.whitestarpump.com/ES/docs/user_t.pdf, 45 pages.
KerrPumps, “Super Stainless Steel Better Than The Best,” http://kerrpumps.com/superstainless?gclid=EAlalQobChMlg470482q6wlVilTICh2XPA-qEAAYASAAEgKrxPD_BwE, 2013, last accessed: Aug. 21, 2020, 6 bages.
KerrPumps, “Frac One Pumps—Fluid End—Fracing,” http://kerrpumps.com/fracone, 2013, last accessed: Aug. 21, 2020, 3 pages.
Kerrpumps, “KerrPumps—Frac Pump & Mud Pump Fluid End—Fluid End Pump,” http://kerrpumps.com/fluidends, 2013, last accessed: Aug. 21, 2020, 6 pages.
Vulcan Industrial, “Vulcan,” http://www.vulcanindustrial.com/, 2019, last accessed: Aug. 21, 2020, 3 pages.
Vulcan Industrial, “Vulcan,” http://www.vulcanindustrial.com/fluid-ends/, 2019, last accessed: Aug. 21, 2020, 3 pages.
Covert Manufacturing, Inc., “Fluid End Block: Covert Manufacturing”, (site visited Jul. 30, 2021), covertmfg.com, URL: <http://www.covertmfg.com/our-capabilities/fluid-end-block/> (Year: 2021).
Kerr Pumps, “the most advanced fluid ends”, (site visited Aug. 5, 2021), Kerrpumps.com, URL: <http://kerrpumps.com/fluidends> (Year: 2021).
Shandong Baorun, 2250 Triplex Plunger Pump Fluid End Exchangeable with Spm, (site visited Aug. 5, 2021), made-in-china.com, URL: <https://sdbaorun.en.made-in-china.com/product/wNixIDXYrshL/China-2250-Triplex-Plunger-Pump-Fluid-End-Exchangeable-with-Spm.html> (Year: 2021).
John Miller, “The Reciprocating Pump, Theory, Design and Use,” 1995, 2nd Edition, Krieger Publishing Company, Malabar, Florida, 1 page.
“QIH-1000 HP Quintuplex,” Dixie Iron Works, 2017, https://web.archive.org/web/20171031221150/http:/www.diwmsi.com/pumping/qi-1000/.
Technical Manual MSI Hybrid Well Service Pump Triplex and Quintuplex Models, Dixie Iron Works, Mar. 12, 2019, 88 pages.
https://www.diwmsi.com/pumping/qi-1000/.
Carpenter, “CarTech Ferrium C61 Data Sheet,” 2015, 2 pages.
The American Heritage Dictionary, Second College Edition, 1982, 6 pages.
Matthew Bultman, “Judge in West Texas Patent Hot Spot Issues Revised Guidelines,” Sep. 23, 2020, Bloomberg Law News, 3 pages.
David L. Taylor, “Machine Trades Blueprint Reading: Second Edition,” 2005, 3 pages.
Blume, U.S. Pat. No. 6,544,012, issued Apr. 8, 2003, Fig. 12A.
Caterpillar, “Cat Fluid Ends For Well Stimulation Pumps,” 2015, 2 pages.
Claim Chart for U.S. Pat. No. 6,544,012, 23 pages.
Claim Chart for U.S. Pat. No. 7, 186,097, 22 pages.
Claim Chart for U.S. Pat. No. 7,845,413, 8 pages.
Claim Chart for U.S. Pat. No. 9,534,472, 8 pages.
Claim Chart for U.S. Pat. Pub. No. 2013/0319220, 17 pages.
Claim Chart for U.S. Pat. Pub. No. 2014/0348677, 10 pages.
Claim Chart for U.S. Pat. Pub. No. 2015/0132157, 23 pages.
Claim Chart for “GD-3000,” 9 pages.
Claim Chart for “NOV-267Q,” 14 pages.
Collins English Dictionary, “annular,” https://www.collinsdictionary.com/us/dictionary/english/annular, 2021, 4 pages.
Collins English Dictionary, “circumference,” https://www.collinsdictionary.com/us/dictionary/english/circumference, 2021, 7 pages.
Collins English Dictionary, “plug,” https://www.collinsdictionary.com/us/dictionary/english/plug, 2021, 17 pages.
Collins English Dictionary, “profile,” https://www.collinsdictionary.com/us/dictionary/english/profile, 2021, 10 pages.
Collins English Dictionary, “sleeve,” “therethrough,” “through,” “tube,” and “tubular,” 8 pages.
Collins English Dictionary, “space,” https://www.collinsdictionary.com/us/dictionary/english/space, 2021, 13 pages.
Collins English Dictionary, “stairstep,” https://www.collinsdictionary.com/us/dictionary/english/stairstep, 2021, 3 pages.
Congressional Record—Extensions of Remarks, Apr. 18, 2007, pp. E773-E775.
Congressional Record, Mar. 7, 2011, 31 pages.
“Declaration of Steven M. Tipton, Ph.D., P.E., Submitted with Patent Owner's Preliminary Response,” Sep. 11, 2020, 155 pages.
“Declaration of William D. Marscher, P.E.—U.S. Pat. No. 10,914,171,” Feb. 11, 2021, 308 pages.
“Declaration of William D. Marscher, P.E.—U.S. Pat. No. 10,591,070,” May 25, 2020, 209 pages.
Email dated Sep. 22, 2020 in PGR2020-00065, 3 pages.
Email dated Sep. 25, 2020 in Kerr Machine v Vulcan Industrial Holdings, 1 page.
U.S. Pat. No. 10,288,178, 353 pages.
U.S. Pat. No. 10,519,950, 142 pages.
U.S. Pat. No. 10,591,070, 168 pages.
U.S. Appl. No. 16/722,139, 104 pages.
U.S. Appl. No. 13/773,271, 250 pages.
U.S. Appl. No. 15/719,124, 183 pages.
International Search Report and Written Opinion for international application No. PCT/US2023/073458, mailed Feb. 1, 2024.
Related Publications (1)
Number Date Country
20220390055 A1 Dec 2022 US
Continuation in Parts (1)
Number Date Country
Parent 16916593 Jun 2020 US
Child 17890975 US