The present invention relates to packing cushion materials disposed between a packed article and a packing box to buffer shocks applied from the outside to thereby protect the packed article when electronic appliances such as audio apparatus, television receiver and speaker apparatus and other articles are housed and packed within packing boxes, and particularly to a packing cushion material formed by pulp molding and which includes contact surfaces for supporting a packed article by a wide area to thereby protect the packed article from shocks applied to the packing box.
Foam polystyrene molded materials molded by foam polystyrene have been available as packing materials for packing electronic appliances such as audio apparatus and television receiver and foods such as vegetables, fruits and fish. Because the foam polystyrene molded materials are light in weight and are relatively high in strength, a large amount of foam polystyrene molded materials have been used as cushion materials and packing containers. Although the foam polystyrene molded materials are excellent materials as cushion materials and packing containers as described above, there have occurred various problems when they are wasted after they had been used.
For example, when foam polystyrene is burned up, it is burned up to produce intense heat which as a result damages an incinerator. Moreover, when foam polystyrene is directly buried into soils for disposal, since foam polystyrene cannot be decomposed it does not transform into soil. There arises a problem that foam polystyrene still remains in the soils.
From a viewpoint of protecting environments from being polluted and from a standpoint of how to effectively utilize natural resources, as substitutes for foam polystyrene, there have recently been developed cushion materials and packing containers formed by pulp molding using wasted papers such as newspapers and magazines as main raw materials. As a packing cushion material using such pulp mold, there is proposed a packing pad molded body that is disclosed in FIGS. 2 and 3 of Japanese laid-open patent application No. 11-278551, for example. FIGS. 2 and 3 of the official gazette of the above patent application are referred to as
As shown in
A projection edge portion 10 includes a holding portion 9 that can inwardly bend to hold an end edge 8 of the lighting apparatus main body 2 at its tip end and projects from the contact portion 7 at its portion near the bending portion 5. At the same time, a recess portion 13 for supporting a supporting portion 12 of the lighting apparatus main body 2 at its end edge is provided on the other surface 11, and a holding groove 16 that holds a projection rib edge 14 of the lighting apparatus main body 2 is formed on the other surface. Besides, an engagement portion 16 is formed on the opposing surface of the bending portion 5 in order to engage the opposing surface when they are brought in close contact with each other. Reference numeral 17 denotes a reinforcement rib provided on the other surface 11.
According to this packing pad molded body 1, after the packing pad molded bodies are located at the corners of the packing box 4, the shade 3 is held on the packing pad molded bodies and then held and fixed by the projection edge portion 10 formed on one surface 6. Consequently, within the packing box 4, the shade 3 can be prevented from being rickety and shocks applied to the lighting apparatus within the packing box can be buffered, thereby making it possible to prevent the lighting apparatus from being damaged.
However, in this conventional packing cushion material, there arises a problem that performances needed by this kind of cushion materials cannot be satisfied satisfactorily. Specifically, packing cushion materials are generally examined by a vibration test for testing how much vibrations are buffered and transmitted to the packed article as external input and a drop test for testing how much impact strength are buffered and transmitted to the packed article as external input when the packed article is dropped. Manufacturers of packing cushion materials usually judge the results of the tests according to their own standards and use their products that can satisfy their own standards.
In this case, since a conventional packing cushion material has the structure in which the contact portion 7 is provided on one surface 6 which the side surface of the shade 3 contacts and the reinforcement rib 17 is provided on the other surface 11, in order for the packing cushion material to have sufficient cushion function against the drop test, the contact portion 7 and the reinforcement rib 17 have to increase their rigidity so that the packing cushion material becomes able to sufficiently absorb shocks applied when the packed article is dropped.
When, however, the rigidity of the contact portion 7 and the reinforcement rib 17 is increased, linear protrusion portions of the contact portion 7 and the reinforcement rib 17 support the shade 3 and the lighting apparatus main body 2 and thereby the shade and the lighting apparatus main body come into linear contact with each other. As a result, in the drop test, when the surfaces of the shade 3 and the lighting apparatus main body 2 are coated with paint, there arises a problem that paint tends to easily peel off due to shocks from the contact portion 7 and the reinforcement rib 17.
In the case of the vibration test, when the contact portion 7 and the reinforcement rib 17 are large in rigidity, the contact portion 7 and the reinforcement rib 17 that form the linear contact rub against the surfaces of the shade 3 and the lighting apparatus main body 2, the paints on the shade 3 and the lighting apparatus main body 2 will be damaged easily. Although the receiving surfaces of the contact portion 7 and the reinforcement rib 17 have to increase in space to receive the shade 3 and the lighting apparatus main body 2 with wider areas in order to protect the paint from being damaged, sufficiently large reception surfaces could not be maintained.
Therefore, in order to obtain a sufficiently large cushion capability by using the conventional cushion material made by pulp mold while maintaining their wide areas in contact with the lighting apparatus main body 2 and the shade 3, the thickness of the pulp mold has to increase and the length of the cushion portion has to increase. As a consequence, the cushion material is caused to increase its weight and is also caused to become large in size so that not only the amount of pulp mold to be used increases but also the whole of the packing form becomes large in size inevitably.
In view of the aforementioned problems encountered by the prior art, it is an object of the present invention to provide a packing cushion material which can be molded by pulp mold of a relatively small amount. Although this packing cushion material is small, this packing cushion material can demonstrate a large buffering capability and can protect packed articles softly and can prevent paint from peeling off from the packed article and can prevent the packed article from being damaged.
According to the present invention, there is provided a packing cushion material formed by pulp mold and a plurality of packing cushion materials are located around a packed article within a packing box to buffer external force applied to the packed article to thereby protect the packed article. This packing cushion material is characterized by upper and lower cushion portions contacting with the packed article from the lower direction or the upper direction to support the packed article from the lower direction or located over the packed article from the upper direction to receive force acting from the upper and lower directions and side cushion portions contacting with the packed article from the lateral directions to receive force acting from the lateral direction, wherein the side cushion portions comprise protrusion portions protruding in the upper and lower directions and including contact surfaces expanded in the upper and lower directions to surface-contact the packed article and reinforcement portions formed at the rear sides of the protrusion portions and having concave and convex portions.
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Packing cushion materials according to the present invention are produced by pulp molding using pulps including waste papers such as papers of newspapers, corrugated cardboards or magazines and are generally referred to as pulp mold molded assemblies. A manufacturing process of packing cushion materials uses a material supply tank for supplying pulp materials, a male die for attaching pulp materials by sucking pulp materials supplied to this tank at a fixed pressure and a female die for supplying pulp molds into a drying furnace after it receives pulp molds from the male die. Then, a molding machine laminates pulp materials up to a predetermined thickness on a net-like molding surface by its sucking force. Thus, there can be manufactured packing cushion materials that are shaped like shells on the whole.
Packing cushion materials according to the present invention can be manufactured by a method other than this method. For example, the packing cushion materials according to the present invention can be manufactured by a molding metal mold for manufacturing pulp molds concerning packing cushion materials and a compression molding apparatus for compressing pulp materials within this metal mold to mold the pulp materials into predetermined shapes.
The four top cushion materials T1 to T4 are respectively attached to four corners of the top portions of a packed item that is an object to be packed when in use. To this end, the four top cushion materials T1 to T4 are collectively located on one side of the longitudinal direction R corresponding to the positions for use in such a manner that their front surfaces may oppose to each other.
Similarly, the four bottom cushion materials B1 to B4 are respectively attached to the four corners of the bottom portions of a packed item that is an object to be packed when in use. To this end, the four bottom cushion materials B1 to B4 are collectively located on the other side of the longitudinal direction R corresponding to the positions for use in such a manner that their front surfaces may oppose to each other.
As described above, in certain specific portions (top portions and bottom portions of packed article in this embodiment) of the packed article, the four top cushion materials T1 to T4 for use in top portions and the four bottom cushion materials B1 to B4 for use in bottom portions are collectively disposed as pairs and integrally molded as described above, whereby combinations of cushion materials comprising respective pairs can be made clear to users. Therefore, the portions at which the respective cushion materials T1 to T4 and B1 to B4 can be used can be made clear to users in advance so that the cushion materials T1 to T4 and B1 to B4 can be prevented from being attached incorrectly.
Further, since the eight packing cushion materials T1 to T4 and B1 to B4 of respective pairs are disposed in the same states as in the states in which they are in use, upon packing, the layouts of the respective cushion materials T1 to T4 and B1 to B4 need not be considered and these cushion materials can be used while their places are specified mechanically. Accordingly, there can be removed a risk that the respective cushion materials T1 to T4 and B1 to B4 will be located at incorrect places.
Further, since the eight packing cushion materials T1 to T4 and B1 to B4 have identification marks (e.g. T1 to T4 and B1 to B4) attached thereto, places in which respective cushion materials are in use can become clear based upon the identification marks. Therefore, the users can put the respective cushion materials at the designated places with ease rapidly and workability in the packing process can improve.
The eight packing cushion materials T1 to T4 and B1 to B4 are separated, as shown by hatches in
Further, although the eight packing cushion materials T1 to T4 and B1 to B4 are different in shapes when they are seen in detail, as shown in
Similarly, the four bottom cushion materials B1 to B4 comprise lower cushion materials 27 showing other specific examples of upper and lower cushion portions that contact the lower surface of a cube-like packed article to upwardly support the packed article after they are attached to the lower corner portions of the packed article and which receive external force acting from the underside and first and second side cushion portions 28, 29 that contact with the side surfaces of the lower corner portions of the packed article to receive external force acting from the side direction. The lower cushion portions 27 and the first and second side cushion portions 28, 29 comprise combinations of proper concave and convex portions and can change in shape such that they may compress themselves against external force acting from the underside or the side direction in response to the magnitude of external force to absorb or buffer external force.
Next, arrangements of the typical packing cushion materials T4, T3 and B2 of the above-mentioned packing cushion materials T1 to T4 and B1 to B4 will be described in detail with reference to
The fourth packing cushion material T4 comprises an upper cushion portion 24 including a top surface 24a that contacts with the upper surface of the packed article, a first side cushion portion 25 continuing to one side of this upper cushion portion 24 and which includes a protrusion portion 31 and a second side cushion portion 26 disposed at the position rotated by 90 degrees in the clockwise direction relative to the first side cushion portion 26 and which continues to the other side of the upper cushion portion 24. The top surface 24a of the upper cushion portion 24 may be shaped freely so long as it has a flat surface that can contact with the upper surface of the packed article. Further, the upper cushion portion 24 includes a plurality of leg portions 32 downwardly projecting on the inside of the top surface 24a and the lid of the packing box contacts with tips of these leg portions 32.
The protrusion portion 31 of the first side cushion portion 25 erects on one side of the upper cushion portion 24 and the surface of the side that contacts with the packed article forms a contact surface 30 comprising a flat surface so that it can contact with the side surface of the packed article in a wide range. The protrusion portion 31 has a reinforcement portion 33 formed at its rear side and the reinforcement portion 33 includes a recess portion 34 which shows a first specific example of concave and convex portions. This recess portion 34 comprises the protrusion portion 31 and a cylindrical thick portion 35 formed on the rear side of the protrusion portion as shown in FIG. 9A.
Further, the protrusion portion 31 has at its rear side a reinforcement rib 36 that is formed by slightly bulging out its root portion. A transformation area 37 shown hatched in
On the other hand, since the protrusion portion 31 which serves as the inside of the transformation area 37 is formed as a wall whose shape is difficult to collapse, the protrusion portion 31 can receive the packed article stably and it is possible to prevent external force from being directly transmitted to the packed article. In addition, since the area of the contact surface 30 that contacts with the packed article is large, vibrations transmitted to the packed article can be attenuated effectively. As a result, paints can be prevented from being peeled off from the surface of the packed article and the surface of the packed article can be prevented from being scratched.
The second side cushion portion 26 includes a rib portion 38 and a convex portion 39 that can position the packed article. The rib portion 38 and the convex portion 39 are set to be low so that their contact surfaces can contact with the lower portion of the packed article. Thus, the packed article can be reliably supported at the predetermined position.
The third packing cushion material T3 shown in
The protrusion portion 31 of the first side cushion portion 25 erects on one side of the upper cushion portion 24 and the surface of the front side that contacts with the packed article forms a contact surface 30 of a flat surface so that it can contact with the side surface of the packed article in a wide range as shown in FIG. 9B and so on. The protrusion portion 31 has a reinforcement portion 22 formed on the rear side thereof, and the reinforcement portion 33 has the recess portion 34 which shows the first specific example of concave and convex portions. A cylindrical thick portion 35 is provided on the rear side of the protrusion portion 31 to form this recess portion 34 as shown in FIG. 9A.
Further, as shown in
The second packing cushion material B2 comprises a lower cushion portion 27 including a placement surface 27a on which a packed article is placed, a first side cushion portion 28 continuing to one side of this lower cushion portion 27 and which includes a protrusion portion 41 and a second side cushion portion 29 located at the position that is rotated by 90 degrees in the clockwise direction relative to the first side cushion portion 28 in FIG. 7 and which continues to the other side of the lower cushion portion 27. The placement surface 27a of the lower cushion portion 27 can be shaped freely so long as it is a flat surface that can contact with the lower surface of the packed article. Further, the lower cushion portion 27 includes a plurality of leg portions 42 which downwardly increase their thicknesses inside the placement surface 27a, and the bottom surface of the packing box contacts with the tips of these leg portion 42.
The protrusion portion 41 of the first side cushion portion 28 erects on one side of the lower cushion portion 27, and the surface of the front side that contacts with the packed article forms a contact surface 40 of a curved surface that can contact with the side surface of the packed article in a wide range as shown in FIG. 6. This protrusion portion 41 has a reinforcement portion 43 formed on the rear side thereof. The reinforcement portion 43 includes a recess portion 44 which shows a specific example of concave and convex portions similarly to the fourth packing cushion material T4 and the like. This recess portion 44 comprises a cylindrical thick portion 45 formed on the rear side of the protrusion 41 as shown in FIG. 9D.
Further, the protrusion portion 41 has a reinforcement rib 46 formed on the rear side thereof by bulging out the top portion to the root portion. A transformation area 47 shown by hatching in
On the other hand, since the protrusion portion 41 serving as the inside of the transformation area 47 is formed as a wall whose shape is difficult to collapse, this protrusion portion 41 can support the packed article with high stability and it is possible to prevent external force from being directly transmitted to the packed article. In addition, since the contact surface 40 has a large area which contacts with the packed article, vibrations transmitted to the packed article can be attenuated effectively. Thus, the paints can be prevented from being peeled off from the surface of the packed article and the surface of the packed article can be prevented from being scratched.
The second side cushion portion 29 includes a semi-cylindrical regulating portion 48 for positioning a packed article. This regulating portion 48 is set to be low so that its contact surface may contact with the lower portion of the packed article. Thus, the packed article can be securely supported at the predetermined position.
The eight packing cushion materials T1 to T4 and B1 to B4 having the above arrangements can be used as shown in
Articles whose outward appearance shapes are cube-like shapes, such as audio apparatus, television receivers, speaker apparatus, video tape recorders, CD players and DVD players are suitable as the packed article 61. The present invention, however, can be applied to packing of electronic appliances and household utensils having various outward appearance shapes other than the cube-like shape and packing of various articles. Reference numeral 62 denotes an accessory available in relation to the packed article 61.
As is clear from
When several packing boxes 60 thus packed are stacked in order to keep them in a suitable storage place such as a warehouse, although the weights of the packing boxes 60 in the upper layers are applied to the packing boxes 60 in the lower layers, the weights are applied to the packed article 61 through the four top cushion materials T1 to T4 and the four bottom cushion materials B1 to B4.
In that case, when vibration loads are applied to the packing box 60, for example, since the contact surfaces 30, 40 provided on the protrusion portions 31, 41 are brought in contact with the side surfaces of the packed article 61, the contact surfaces 30, 40 can receive such vibration loads and can disperse these vibration loads throughout the wide contact surfaces. Therefore, it is possible to prevent the side surfaces of the packed article 61 and the contact surfaces 30, 40 from strongly rubbing against each other. Consequently, the occurrence of trouble such as when the paint are peeled off from the packed article 61 or the packed article is scratched can be suppressed or prevented. In addition, since the protrusion portions 31, 41 have the reinforcement portions 33, 43 formed on the rear sides, buffering function can be demonstrated sufficiently. Thus, even though shocks are applied to the packing box in an accident such as when the packing box is dropped unintentionally, such shocks can be buffered and the packed article 61 can be protected effectively.
As described above, the present invention is not limited to the above-mentioned embodiments. For example, while the four top cushion materials and the four bottom cushion materials are provided and are used to support the packed article from the upper and lower directions as described above, it is sufficient that at least two top cushion materials and two bottom cushion materials may be provided. It is also needless to say that two or three cushion materials can be formed as a set or that more than five cushion materials can be formed as a set. Moreover, the materials of packing boxes need not of course be limited to the above-mentioned corrugated cardboards.
As described above, the present invention can be variously modified without departing from the gist of the present invention.
Industrial Applicability
According to the packing cushion material of the present application, the packing cushion material can be molded by pulp mold of a relatively small amount. Although this packing cushion material is small in size, this packing cushion material can demonstrate a high buffering capability, can protect packed articles softly and can prevent the paints from being peeled off from the packed article and can prevent the packed article from being scratched.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP02/02358 | 3/13/2002 | WO | 00 | 4/14/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/07244 | 9/19/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2863595 | Emery | Dec 1958 | A |
4483444 | Gardner | Nov 1984 | A |
4838427 | Hurley | Jun 1989 | A |
4860894 | Koenig | Aug 1989 | A |
5154297 | Farley | Oct 1992 | A |
5678692 | Gratz | Oct 1997 | A |
5715940 | Son | Feb 1998 | A |
5769233 | Fredriks | Jun 1998 | A |
RE37253 | Moren et al. | Jul 2001 | E |
6340087 | Bridges et al. | Jan 2002 | B1 |
6382422 | Bocek | May 2002 | B1 |
6405873 | Koike | Jun 2002 | B2 |
6629608 | Hurley et al. | Oct 2003 | B2 |
6820743 | Hurley et al. | Nov 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20030165659 A1 | Sep 2003 | US |