This is the U.S. national phase of PCT/IB2013/061297, filed Dec. 23, 2013, which claims the benefit of Italian Patent Application No. BO2012A000703, filed Dec. 21, 2012.
The present invention relates to a packing method and to a packing machine for producing slide-open package of tobacco articles with a hinged lid.
The rigid packages of cigarettes with a hinged lid are currently the most widespread cigarette packages in the market as they are of simple construction, easy and practical to use and offer good mechanical protection to the cigarettes contained within.
Besides the aforementioned rigid packages of cigarettes with a hinged lid, packages of cigarettes have been proposed with rigid slide-open (or sliding) covers comprising two containers inserted one inside the other in a separable way. In other words, a package of cigarettes with rigid slide-opening comprises an inner container, which is adapted to accommodate a wrapped group of cigarettes in a wrapping sheet of metalized paper and is housed within an outer container so as to be able to slide with respect to the outer container itself between a closed configuration, wherein the inner container is inserted inside the outer container, and an open configuration, wherein the inner container is extracted from the outer container.
Also proposed was a rigid slide-open package of cigarettes and with a hinged lid, wherein the inner container (or, alternatively, the outer container) is provided with a hinged lid to rotate between a closed position and an open position of an open top end of the inner container. The lid has a connecting tab that at one end is integral with the lid and at the opposite end is integral with the outer container (or, alternatively, to the inner container) to control “automatically” (i.e. without the user having to touch the lid) the rotation of the lid by sliding the inner container with respect to the outer container.
In particular, in a rigid package of cigarettes of the slide opening type and with a hinged lid the connecting tab which “automatically” controls the rotation of the lid has a top end that is glued to a top or rear wall of the lid and a bottom end that is integral with a rear wall of the outer container (i.e. a seamless extension of the rear wall of the outer container).
It was observed that the known current mode used for producing the packages of cigarettes of the slide-opening type and with a hinged lid does not allow to achieve high productivity (i.e. a high number of packages of cigarettes produced per unit of time), especially if it is necessary to maintain a high quality standard. Consequently, the known packing machines used for producing packages of cigarette of the slide-open type and with a hinged lid are excessively slow and suitable to produce only-limited batches for special series.
Additionally, but not less important, the known packing machines used for producing packages of cigarettes of the slide-opening type and with a hinged lid are not “flexible”, i.e. it is very complicated to modify a packing machine which produces a certain type of slide-opening cigarette package (with or without a hinged lid) to produce another type of slide-opening cigarette package (with or without a hinged lid).
The patent application US2011041463A1 describes a cigarette packing machine for producing a rigid package with hinged lid. The packing machine is provided with a first packing unit, which is adapted to fold a first blank about a group of cigarettes to form an outer container provided with a hinged lid, and a second packing unit, which is adapted to fold a second blank about the outer container to form a tubular slider arranged about the outer container to slide axially with respect to the outer container itself; the tubular slider is provided with a transmission member, which has a first end integral with the lid, a second end opposite to the first end and integral with the slider, and an intermediate portion which is deformable and has a “U” fold arranged between the outer container and the slider.
In patent application US2011041463A1, the transmission member is folded upon itself and is gummed (in correspondence of the first end that is destined to be glued to the lid) before coupling the second blank to the outer container; then, in a transfer station, the second blank provided with a transmission member folded and gummed is coupled to the outer container so as to rest the first end of the transmission to a rear wall of the lid of the outer container.
Purpose of the present invention is to provide a packing machine and a packing method for producing a package of tobacco articles of the type with a hinged lid, which machine and packing method are free from the drawbacks described above and, in particular, are simple and economical to produce.
According to the present invention a packing method and a packing machine for producing a package of tobacco articles of the slide-opening type and with hinged lid, as claimed in the appended claims are provided.
The present invention will now be described with reference to the accompanying drawings, which illustrate a non-limiting embodiment, wherein:
In
The package 1 of cigarettes shown in
The inner container 3 is parallelepiped-shaped with rectangular cross section, is cup-shaped and has an open upper end 5. The inner container 3 comprises a lid 6, which is cup-shaped and is hinged to the inner container 3 along a hinge 7 to rotate, with respect to the inner container 3 itself, between an open position (shown in
As shown more clearly in
The lid 6 is cup-shaped and has a top wall 12 (which, when the lid 6 is in the closed position, is opposite and parallel to the bottom wall 8 of the inner container 3), a rear wall 13 which is connected with the rear wall 10 of the inner container 3 by way of the hinge 7, and two lateral walls 14 parallel one to the other. It is important to note that the lateral walls 14 of the lid 6 are arranged inside the lateral walls 11 of the inner container 3 as is clearly illustrated in
As illustrated in
In the embodiment illustrated in the attached figures, all the transverse edges are straight, the rear longitudinal edges (i.e. arranged on opposite sides of the rear walls 10 and 18) are straight, and the front longitudinal edges (i.e. arranged on opposite sides of the front walls 9 and 17) are rounded. According to an alternative embodiment not illustrated, the front longitudinal edges are beveled instead of being rounded, or all edges (therefore including the front longitudinal edges) are straight.
As illustrated in
In the embodiment illustrated in the attached figures, the outer container 4 has a through window 21 that is formed astride the front wall 17, of a lateral wall 19 and of the rear wall 18 and through which an underlying lateral wall 11 of the inner container 3 is accessible to allow the application of a thrust to the inner container 3 in order to move the inner container 3 between the closed configuration and the open configuration.
As illustrated in
The containers 3 and 4 of the package 1 of cigarettes shown in
With reference to
The panel 9′ has two wings 11′, which form an outer portion of the lateral walls 11 of the inner container 3, are arranged on opposite sides of the panel 9′, and are connected to the panel 9′ by longitudinal fold lines 26. Between the panel 9′ and each wing 11′ a number of longitudinal fold lines 26 that define a corresponding longitudinal front edge of a rounded shape are present. The panel 10′ has two wings 11″, which form an inner portion of the lateral walls 11 of the inner container 3, are arranged on opposite sides of the panel 10′, and are connected to the panel 10′ by longitudinal fold lines 26. The panel 13′ has two wings 14′ which form the lateral walls 14 of the lid 6, are arranged on opposite sides of the panel 13′, and are connected to the panel 13′ by longitudinal fold lines 26.
Each wing 11″ has a tab 28 which is connected to the wing 11′ by a transverse fold line 27, is folded by 90° with respect to the wing 11″, and is glued to an inner surface of the panel 8′. Each wing 14′ has a tab 29 that is connected to the wing 14′ by a transverse fold line 27, is folded by 90° with respect to the wing 14′, and is glued to an inner surface of the panel 12′.
With reference to
The panel 17′ has two wings 19′, which form an outer portion of the lateral walls 19 of the outer container 4, are arranged on opposite sides of the panel 17′, and are connected to the panel 17′ by longitudinal fold lines 30. Between the panel 17′ and each wing 19′ a number of longitudinal fold lines 30 that define a corresponding longitudinal front edge of rounded shape are present. The panel 18′ has two wings 19″, which form an inner portion of the lateral walls 19 of the outer container 4, are arranged on opposite sides of the panel 18′, and are connected to the panel 18′ by longitudinal fold lines 30.
Each wing 19″ has a tab 32 which is connected to the wing 19′ by a transverse fold line 31, is folded by 90° with respect to the wing 19″, and is glued to an inner surface of the panel 15′.
In a wing 19′ and in a corresponding wing 19″ through “U” shaped openings are formed that are intended to form the window 21; in correspondence of said through-openings two respective reinforcing tabs 33 are arranged that are folded about a corresponding longitudinal fold line 30 by 180°, and respectively onto the panel 17′ and onto the panel 18′ to be glued respectively to the inside of the panel 17′ and of the panel 18′.
In
The packing machine 34 comprises a packing unit 35 that produces the wrapped groups 2 of cigarettes, a subsequent packing unit 36 that produces the inner containers 3 by folding the inner blanks 24 about corresponding wrapped groups 2 of cigarettes received by the packing unit 35, a packing unit 37 that produces the outer containers 4 by folding the outer blanks 25 about corresponding inner containers 3 received by the packing unit 36, and a transfer unit 38 which receives in input the inner containers 3 from the packing unit 36 in correspondence to an input station 39 and feeds in output the inner containers 3 to the packing unit 37 in correspondence to an output station 40.
As illustrated in
In correspondence to the input station S1, a hopper (not shown) is provided, which houses a stack of inner blanks 24 and cyclically feeds the inner blanks 24 from a bottom outlet towards the packing pockets 42 of the packing conveyor 41; in particular, each inner blank 24 arranged in correspondence to the bottom outlet of the hopper is picked up by a suction gripping head that moves vertically and is supported to an underlying packing pocket 42 of the packing conveyor 41 that stops and waits in the input station S1 in alignment with the bottom outlet.
It is important to note that the packing conveyor 41 feeds each inner blank 24 along the packing path P1 always transversely, i.e. always with the transverse fold lines 27 parallel to the feed direction; in other words, the packing conveyor 41 does not ever vary the orientation of each inner blank 24 with respect to the feed direction, and then in all the points of the packing path P1 each inner blank 24 has always its transverse fold lines 27 parallel to the feed direction (and thus its own longitudinal fold lines 26 perpendicular to the feed direction). Always maintaining a constant orientation of each inner blank 24 along the packing path P1 allows to simplify both the folding operations, and the structure of the packing conveyor 41.
According to a preferred embodiment shown in
As illustrated in
Between the work station S8 and the work station S10 a folding device 44 is provided having fixed folding profiles (i.e. folding helixes that are devoid of movable parts and perform the folding operation while the inner blank 24 moves in the packing path P1 and thus exploiting the feeding movement of the inner blank 24); the folding device 44 folds the tabs 29 by 90°, with respect to the wings 14′, about a corresponding transverse fold line 27 in one direction and then in the opposite direction so that at the end of the folding device 44 the blank 24 is flat again. The folding device 44 performs two opposite folding operations (i.e. that cancel each other) having a flex function (i.e. weakening in order to considerably reduce the residual spring back force) the inner blank 24 along the corresponding transverse fold line 27. Therefore, the function of the folding device 44 is not performing an actual folding of the inner blank 24, but to prepare the inner blank 24 for the subsequent folding operations (described below).
The above-described flexing of the inner blank 24 along the transverse fold line 27 which divides the panel 12′ with respect to the panel 13′ and the tabs 29 from the wings 14′ is very useful to allow the proper formation of the lid 6 described in the following; i.e., without this flexing of the inner blank 24 the formation of the lid 6 described in the following can become problematic, and then determine a significant increase of defective inner containers 3 (due to a malformation of the lid 6) that must be discarded.
In the work station S11 a folding device 45 is provided having fixed folding profiles (i.e. folding helixes that are devoid of movable parts and perform the folding operation while the inner blank 24 moves in the packing path P1 and thus exploiting the feeding movement of the inner blank 24); the folding device 45 folds the panel 12″ by 90°, with respect to the panel 12′ and about a corresponding transverse fold line 27.
In the work station S13 a gumming device 46 (typically provided with nozzles that spray gumming glue) is provided which deposits glue points 47 (illustrated in
In the work station S14 a folding device 48 is provided having movable parts (i.e. parts that move to perform the folding operation while the inner blank 24 is stopped waiting in the work station S14); the folding device 48 folds the tabs 29 by 90°, with respect to the wings 14′ and about a corresponding transverse fold line 27, folds of the wings 14′ by 90°, with respect to the panel 13′ and about corresponding longitudinal fold lines 26, folds the panel 12′ by 90°, with respect to the panel 13′ and about a corresponding transverse fold line 27 (bringing the panel 12′ onto the tabs 29 to which is glued by the effect of the glue 47).
Between the work station S14 and the work station S17 a folding device 54 is provided having movable parts (i.e. parts that move to perform the folding operation while the inner blank 24 moves along the packing path P1 through the work station from S14 to S17); the folding device 54 folds by further 90° (for a total of 180°) the panel 12″ with respect to the panel 12′ and about a corresponding transverse fold line 27 (bringing the panel 12″ onto the panel 12′), and folds the panel 13″ by 90° with respect to the panel 12′ and about a corresponding transverse fold line 27 (bringing the panel 13″ onto the panel 13′ to which is glued by the effect of the glue 47).
As illustrated in
As illustrated in
The folding device 48 comprises two twin folding bodies 49 that are stably mounted at the work station S14 as the corresponding articulated pentalateral elements are hinged to a fixed frame of the packing machine 34. Instead, the folding device 54 comprises six folding members 56 (and of course the six corresponding pads 57) which are mounted on an end pulley of the packing conveyor 41 to rotate integrally with the end pulley, about a center axis A3 of rotation perpendicular to the packing path P1. In this way, each folding member 56 (together with the corresponding pad 57) engages an inner blank 24 in the work station S14 and accompanies the inner blank 24 itself for a certain segment of the packing path P1 until the work station S17.
In use, when the inner blank 24 stops at the work station S14, the two folding bodies 49 are arranged below the inner blank and are then moved from the bottom upwards along the vertical work direction D1 with a continuous movement so that initially the top members 50 of the two folding bodies 49 fold the tabs 29 by 90°, with respect to the wings 14′ and about corresponding transverse fold line 27, then the intermediate members 51 of the two folding bodies 49 fold the wings 14′ by 90°, with respect to the panel 13′ and about corresponding longitudinal fold lines 26, and finally the bottom members 52 of the two folding bodies 49 fold the panel 12′ with respect to the panel 13′ and about a corresponding transverse fold line 27 (bringing the panel 12′ onto the tabs 29 to which is glued by the effect of the glue 47). It is important to note that the members 50, 51 and 52 of the two folding bodies 49 are arranged at different heights along the vertical work direction D1 and therefore their action is staggered over time as the two folding bodies 49 are raising from the bottom upwards along the vertical work direction D1.
Initially, when the inner blank 24 stops at the work station S14, the contrast member 53, rotating about the axis A1 of rotation, rests on the panel 10′, on the panel 13′ and on the panel 12′ so that their own lateral appendixes 55 rest on the wings 14′; in this way, the lateral appendixes 55 provide a contrast for the folding of the tabs 29 carried out by the top members 50 of the two folding bodies 49. Once the folding of the tabs 29 is finished, the contrast member 53, rotating about the axis A1 of rotation, moves slightly backwards setting free the wings 14′ (i.e. removing the lateral appendixes 55 from the wings 14′) to allow the subsequent folding of the wings 14′ performed by the intermediate members 51 of the two folding bodies 49; in this step the contrast member 53 is still resting on the panel 13′ to provide a contrast for both the folding of the wings 14′ performed by the intermediate members 51 of the two folding bodies 49 and both for the subsequent folding of the panel 12′ with respect to the panel 13′ performed by the bottom members 52 of the two folding bodies 49. Once the folding of the panel 12′ with respect to panel 13′ performed by the bottom members 52 of the two folding bodies 49 is finished, the contrast member 53, rotating about the axis A1 of rotation, moves away from the inner blank 24.
While the contrast member 53 moves away from the inner blank 24, the folding member 56, rotating about the axis A2 of rotation, rests on, the inner blank 24 further determining the simultaneous folding of the panel 12″ by 90°, with respect to the panel 12′ (bringing the panel 12″ onto the panel 12′) and the folding of the panel 13″ by 90°, with respect to the panel 12″ (bringing the panel 13″ onto the panel 13′ to which is glued by the effect of the glue 47). In the final position, the folding member 56 rests on the panel 13″ (which is superposed to the panel 13′) and clamps, together with the underlying pad 57, the panels 13″ and 13′. In other words, in the final position, the two panels 13″ and 13′ are clamped (i.e. compressed) between the folding member 56 and the underlying pad 57. This clamping is not confined in the work station S14, but continues through the work stations S15 and S16 to finish only in the work station S17; in this way an optimal gluing between the two panels 13″ and 13′ by the glue 47 can be ensured.
As illustrated in
At the input station S20, an inner blank 24 partially pre-folded and coming from the packing conveyor 41 is fed into a packing pocket 59 causing a further folding of the inner blank 24 itself. In correspondence to a feed station S21 arranged between the input station S20 and the output station S22, a wrapped group 2 of cigarettes is fed inside a packing pocket 59 to be coupled to the previously fed inner blank 24; in particular in the feed station S21 a rear wall of the wrapped group 2 of cigarettes rests on the panel 10′ of the inner blank 24. At the output station S22, the inner container 3 (formed by folding the inner blank 24 about the wrapped group 2 of cigarettes) is extracted from the packing pocket 59 and proceeds towards the packing unit 37.
As illustrated in
Between the feed station S21 and the output station S22 a folding device 96 is arranged, which folds the panel 9′ by 90°, with respect to the panel 8′, and about a corresponding transverse fold line 27. The folding of the inner blank 24 is completed in the output station S22 simultaneously with the extraction of the inner container 3 from the packing pocket 59: during the extraction of the inner container 3 from the packing pocket 59 a folding device 62 folds the wings 11′ by 90°, with respect to the panel 9′, onto the wings 11″ and about corresponding longitudinal fold lines 26 completing the formation of the lateral walls 11 of the inner container 3; preferably, a gumming device (not shown) is arranged immediately upstream from the folding device 62 for depositing glue between the wings 11′ and 11″ immediately before folding the wings 11′. Downstream from the output station S22 a drying conveyor (shown schematically in
According to a preferred embodiment shown in
According to a preferred embodiment illustrated in the attached figures, the packing conveyor 58 is constituted by a rotating wheel which rotates by steps about a central axis of rotation 65 arranged horizontally. Consequently, the packing path P2 that extends from the input station S20 to the output station S22 has a circular shape.
As illustrated in
According to a preferred embodiment, one inner blank 24 at a time is fed to the packing conveyor 41 in the input station S1 of the packing path P1, and the transfer conveyor 66 transfers two inner blanks 24 at a time from the packing conveyor 41 to the packing conveyor 58; in this embodiment, the packing conveyor 58 at each step treats two inner blanks 24 at a time. According to an alternative embodiment not illustrated, two inner blanks 24 at a time are fed to the packing conveyor 41 in the input station S1 of the packing path P1.
As illustrated in
At the input station S23, a hopper (not shown) is provided, which houses a stack of outer blanks 25 and cyclically feeds the outer blanks 25 from a bottom outlet towards the packing pockets 69 of the packing conveyor 68; in particular, each outer blank 25 arranged at the bottom outlet of the hopper is picked up by a suction gripping head that moves vertically and rests on an underlying packing pocket 69 of the packing conveyor 68 that is stopped waiting in the input station S23 in alignment with the bottom output.
It is important to note that the packing conveyor 68 advances each outer blank 25 along the packing path P3 always transversely, or always with the transverse fold lines 31 parallel to the feed direction, in other words, the packing conveyor 68 does not ever vary the orientation of each outer blank 25 with respect to the feed direction and therefore in all the points of the packing path P3 each outer blank 25 always has its transverse fold lines 31 parallel to the feed direction (and thus their own longitudinal fold lines 30 perpendicular to the feed direction). Always maintaining a constant orientation of each outer blank 25 along the packing path P3 allows to simplify both the folding operations and the structure of the packing conveyor 68.
According to a preferred embodiment shown in
As illustrated in
Between the work station S24 and the work station S26 a folding device 72 is provided having fixed folding profiles (i.e. folding helixes that are devoid of movable parts and perform the folding operation while the outer blank 25 moves in the packing path P3 and thus exploiting the feeding movement of the outer blank 25); the folding device 72 folds the panel 17″ by 180°, with respect to the panel 17′, about a corresponding transverse fold line 31, and onto the panel 17′ itself (to which is glued by the effect of the glue 71), and the folding device 72 folds the panel 18″ by 180°, with respect to the panel 18′, about a corresponding transverse fold line 31, and onto the panel 18′ itself (to which is glued by the effect of the glue 71). Furthermore, the folding device 72 folds the bottom portion 23 of the connecting tab 20 by 180°, with respect to panel 18′, about a corresponding transverse fold line 31 in one direction and then in the opposite direction so that at the end of the folding device 72 the bottom portion 23 of the connecting tab 20 is again coplanar with the panel 18′. The folding device 72 performs two opposite folding operations (i.e. that cancel each other) on the bottom portion 23 of the connecting tab 20 having a flex function (or weakening to considerably reduce the residual spring back force) the outer blank 25 along the corresponding transverse fold line 31. Therefore, the function of the folding device 72 is not performing an actual folding of the bottom portion 23 of the connecting tab 20, but preparing the bottom portion 23 of the connecting tab 20 to the successive folding operations (described below).
Between the work station S27 and the work station S29 a folding device 73 is provided having fixed folding profiles (i.e. folding helixes that are devoid of movable parts and perform the folding operation while the outer blank 25 moves in the packing path P3 and thus exploiting the feeding movement of the outer blank 25); the folding device 73 folds the top portion 22 by 90°, of the connecting tab 20, about a corresponding transverse fold line 31, with respect to the bottom portion 23 of the connecting tab 20 in one direction and then in the opposite direction so that at the end of the folding device 73 the top portion 22 of the connecting tab 20 is again coplanar with the bottom portion 23 of the connecting tab 20. The folding device 73 performs two opposite folding operations (i.e. that cancel each other) having a flex function (or weakening to considerably reduce the residual spring back force) the top portion 22 of the connecting tab 20 along the corresponding transverse fold line 31. Therefore, the function of the folding device 73 is not to perform an effective folding of the top portion 22 of the connecting tab 20, but to prepare the top portion 22 of the connecting tab 20 to the successive folding operations (described below).
In the work station S30 a gumming device 74 (typically provided with gumming nozzles that spray glue) is provided which deposits glue points 75 (illustrated in
In the work station S31 a folding device 76 is provided having movable parts (i.e. parts that move to perform the folding operation while the outer blank 25 is stopped waiting in the work station S31); the folding device 76 folds the reinforcing′ tabs 33 by 90°, with respect to the corresponding panels 17′ and 18′ and about a corresponding longitudinal fold line 30.
In the work station S32 a folding device 77 is provided having fixed folding profiles (i.e. folding helixes that are devoid of movable parts and perform the folding operation while the outer blank 25 moves in the packing path P3 and thus exploiting the feeding movement of the outer blank 25); the folding device 77 folds the reinforcing tabs 33 by further 90°, with respect to the corresponding panels 17′ and 18′ and about a corresponding longitudinal fold line 30 so as to rest the reinforcing tabs 33 onto the corresponding panels 17′ and 18′ (to which the reinforcing tabs 33 are glued by the effect of the glue 75).
In the work station S34 a gumming device 78 is provided (typically provided with a gumming nozzle that sprays the glue) which deposits a strip, of glue 79 (shown in
As illustrated in
At the input station S38, an outer blank 25 partially pre-folded and coming from the packing conveyor 68 is fed into a packing pocket 81 causing a further folding of the outer blank 25 itself. At a feed station S39 arranged between the input station S38 and the output station S40, an inner container 3 is fed into a packing pocket 81 to be coupled to the outer blank 25 previously fed; in particular, in the feed station S39 the rear wall 10 of the container 3 rests on the panel 18′ of the outer blank 25. At the output station S40, the outer container 4 (formed by folding the outer blank 25 about the inner container 3) is extracted from the packing pocket 81 and proceeds towards the outlet of the packing unit 37 (i.e., towards the outlet of the packing machine 34).
As illustrated in
Between the feed station S39 and the output station S40 a folding device 83 is arranged, which folds the connecting tab 20 of the outer blank 25 upon itself, giving the connecting tab 20 itself a “V” shape (schematically illustrated in
As shown in
When a packing pocket 81 carrying an outer blank 25 and a respective inner container 3 arrives in correspondence of the folding device 83, the actuator member 86 is moved towards the inner container 3 so as to come in contact with the front wall 9 of the inner container 3 itself. When the actuator member 86 has come in contact with the front wall 9 of the inner container 3 the suction through the suction head 87 is activated so as to establish a mechanical constraint (generated by the suction force) between the suction head 87 and the front wall 9 of the inner container 3.
Once the suction through the suction head 87 is activated, the actuator member 86 moves to move along with itself the inner container 3 with respect to the outer blank 25, and then determine the folding of the connecting tab 20; as mentioned previously, the actuator member 86 is movable in two directions perpendicular one with respect to the other to perform the rotation of the bottom portion 23 of the connecting tab 20 by 180°, with respect to the panel 18′ and about a corresponding transverse fold line 31; in this way, the connecting tab 20 is folded without applying any mechanical tension to the connecting tab 20 and therefore avoiding any kind of breakage or undesirable deformation of the mechanical connection between the top portion 22 of the connecting tab 20 and the rear wall 13 of the lid 6 determined by the glue 79. In other words, the force that is transmitted through the connecting tab 20 during the displacement of the inner container 3 (i.e. during the folding of the connecting tab 20 itself) is very low if not zero (due to the pre-flexing performed by the folding device 72 on the bottom portion 23 of the connecting tab 20) and therefore the displacement of the inner container 3 can be performed very quickly without any risk of damaging, even in a slight way, the gluing between the connecting tab 20 and the rear wall 13 of the lid 6.
According to a preferred, embodiment illustrated in the attached figures, the packing conveyor 80 is constituted by a rotating wheel which rotates by steps about a horizontally arranged central axis of rotation 88. Consequently, the packing path P4 that extends from the input station S38 to the output station S40 has a circular shape.
As illustrated in
According to a preferred embodiment, an outer blank 25 at a time is fed to the packing conveyor 68 in the input station S23 of the packing path P3, and the transfer conveyor 89 transfers two outer blanks 25 at a time from the packing conveyor 68 to the packing conveyor 80; in this embodiment, the packing conveyor 80 treats at each step two outer blanks at a time. According to an alternative embodiment not illustrated, two outer blanks 25 at a time are fed to the packing conveyor 68 in the input station S23 of the packing path P3.
The packing method and the corresponding packing machine 34 described above have many advantages, as they allow to produce the slide-open packages 1 with a hinged lid with high productivity (i.e. with a high number of packages 1 of cigarettes produced per unit of time) while maintaining a high quality standard. This result is obtained thanks to the conformation of the packing units 36 that by completing the formation of the lid 6 in the packing conveyor 41 (i.e. before coupling the inner blank 24 to the wrapped group 2 of cigarettes) allows to form the lid 6 in a simple and effective way and simultaneously allows to greatly simplify the folding of the inner blank 24 about the wrapped group 2 of cigarettes. In particular, the formation of the lid 6 is easier (and therefore simple and fast) along a straight packing path (as, indeed, is the packing path P1 of the packing conveyor 41), while the folding of the inner blank 24 about the wrapped group 2 of cigarettes is easier (and therefore simple and fast) along a circular packing path (as, indeed, is the packing path P2 of the packing conveyor 58). So, thanks to the conformation of the packing units 36 all the folding operations can be performed in the most favorable situation, and therefore can be performed quickly (i.e. with a high productivity of the packing process) while ensuring a high quality standard.
Additionally, but not less important, the packing method and the corresponding packing machine 34 described above are extremely “flexible”, i.e. allow to vary quickly and simply the type of slide-open packages 1 of cigarettes that are produced (with the hinged lid 6 comprised in the inner blank or comprised in the outer blank 25 or without a hinged lid). Among other things, the high flexibility is provided by the fact that in each packing unit 36 or 37 there is a first packing conveyor 41 or 68 wherein a preliminary folding of the inner blank 24 or outer blank 25 is performed and a second packing conveyor 58 or 80 wherein the preliminary folding of the inner blank 24 or outer blank 25 is completed; in fact, thanks to the presence of the first packing conveyor 41 or 68 it is relatively simple to perform the preliminary folding of the inner blank 24 or outer blank 25 to form a lid, and once the lid is formed the final folding of the inner blank 24 or outer blank 25 is “conventional” (i.e. analogous to the folding of a standard blank) and therefore devoid of particular complications.
It is important to observe that the two packing units 36 and 37 are very similar to each other: both packing units 36 and 37 have the same structure that comprises a first packing conveyor (the packing conveyors 41 and 68) consisting in a conveyor belt and intended to produce a preliminary folding of the blank, a second packing conveyor (the packing conveyors 58 and 80) consisting in a wheel and intended to fold the blank (already partially folded) about the content, and a transfer conveyor (the transfer conveyors 66 and 89) that connects the two packing conveyors. Furthermore, the two second packing conveyors (the packing conveyors 58 and 80) of the two packing units 36 and 37 perform almost all the packing operations in the same way and in the same areas. Finally, the two packing units 36 and 37 can share between one another a large number of components, i.e. the same identical component is frequently present in both packing units 36 and 37 (in particular, the two packing units 36 and 37 can have in common at least 70-80% of the components); in this way, it is possible to break down in a very significant way the production, assembly and maintenance cost of the packing machine 34.
Finally, it is important to observe that the connecting tab 20 remains always fully extended until the feed station S39, wherein the inner container 3 is coupled to the outer blank 25 by resting the rear wall 13 of the lid 6 of the inner container 3 to the gummed portion 22 of the connecting tab 20 while the connecting tab 20 is fully extended; in fact, the connecting tab 20 is folded upon itself only successively by moving by means of the folding device 83, the inner container 3 with respect to the outer blank 25 and towards a position corresponding to a fully closed position of the package 1. In this way, the outer blank 25 is more easily conveyable towards the feed station S39, since along the path towards the feed station S39 the outer blank 25 is devoid of folded parts and not locked in the folded configuration by points of glue; in other words, the pre-folded shape of the outer blank 25 which is conveyed to the feed station S39 is stable, and then the conveyance of the outer blank 25 towards the feed station S39 can take place without special precautions. This condition is particularly advantageous in the packing unit 37 described above, wherein the conveying path of the outer blank 25 towards the feed station S39 is particularly long and has a complex shape (i.e., with several changes of direction).
Number | Date | Country | Kind |
---|---|---|---|
BO2012A0703 | Dec 2012 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/061297 | 12/23/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/097279 | 6/26/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3048320 | Hovland et al. | Aug 1962 | A |
3933299 | Shimada et al. | Jan 1976 | A |
3979047 | Focke et al. | Sep 1976 | A |
4056047 | Grimm | Nov 1977 | A |
4188024 | Seragnoli | Feb 1980 | A |
4392338 | Fox | Jul 1983 | A |
4487596 | Livens et al. | Dec 1984 | A |
4646960 | Challand | Mar 1987 | A |
5133170 | Lewis et al. | Jul 1992 | A |
5193328 | Boriani et al. | Mar 1993 | A |
20110041463 | Squarzoni et al. | Feb 2011 | A1 |
20140305080 | Squarzoni | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2802073 | Dec 2011 | CA |
0900646 | Mar 1999 | EP |
2125573 | Dec 2009 | EP |
2311632 | Apr 2011 | EP |
06156452 | Jun 1994 | JP |
WO-2013068951 | May 2013 | WO |
Entry |
---|
International Search Report and Written Opinion, International Application No. PCT/IB2013/061297, dated Apr. 7, 2014, 7 pages. |
International Preliminary Report on Patentability, International Application No. PCT/IB2013/061297, dated Nov. 27, 2014, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20150336695 A1 | Nov 2015 | US |