Packing seal assembly

Information

  • Patent Grant
  • 11946465
  • Patent Number
    11,946,465
  • Date Filed
    Wednesday, August 10, 2022
    a year ago
  • Date Issued
    Tuesday, April 2, 2024
    a month ago
Abstract
A fluid end assembly comprising a plurality of fluid end sections positioned in a side-by-side relationship. Each fluid end section comprises a housing having a bore formed therein for housing a reciprocating plunger. Fluid is prevented from leaking around the plunger by a packing seal assembly. The packing seal assembly comprises one and only one packing seal.
Description
SUMMARY

The present invention is directed to a fluid end comprising a housing having a longitudinal axis and opposed front and rear surfaces joined by an outer intermediate surface, and a bore formed within the housing and interconnecting the front and rear surfaces. The bore extends along the longitudinal axis of the housing. The housing further comprises a retainer attached to the rear surface of the housing by a plurality of fasteners, a reciprocating plunger disposed within the bore and the retainer, and one and only one packing seal installed within the housing and engaged an outer surface of the plunger.


The present invention is also directed to an apparatus comprising a packing seal assembly. The packing seal assembly is configured to be installed within a housing having a horizontal bore formed therein. The packing seal assembly comprises one and only one packing seal configured to surround and engage an outer surface of a reciprocating plunger. The one and only one packing seal has opposed front and rear surfaces joined by inner and outer surfaces and comprising an energizing component. The energizing component is installed within the seal and is configured to expand the inner and outer intermediate surfaces during operation. The packing seal assembly further comprises a wear ring surrounding the one and only one packing seal, and an annular component installed within the housing and comprising a projecting portion, the projecting portion engaging the energizing component.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of one embodiment of a high pressure pump.



FIG. 2 is a cross-sectional view of the fluid end assembly shown in FIG. 1, taken along line A-A, but a different embodiment of a fluid end housing is shown.



FIG. 3 is the cross-sectional view of the fluid end assembly shown in FIG. 2, but the plunger has been removed.



FIG. 3A is the cross-sectional view of the fluid end assembly shown in FIG. 3, but the cross-section is taken along a different axis.



FIG. 4 is an enlarged view of area B shown in FIG. 3.



FIG. 5 is a front perspective view of the packing seal shown in FIGS. 2-4 and 18-20.



FIG. 6 is a rear perspective view of the packing seal shown in FIG. 5.



FIG. 7 is a rear elevational view of the packing seal shown in FIG. 5.



FIG. 8 is a cross-sectional view of the packing seal shown in FIG. 7, taken along line C-C.



FIG. 9 is an enlarged view of area D shown in FIG. 8.



FIG. 10 is a front perspective view of the support element shown in FIGS. 2-4 and 18-20.



FIG. 11 is a rear perspective view of the support element shown in FIG. 10.



FIG. 12 is a side elevational view of the support element shown in FIG. 10.



FIG. 13 is a cross-sectional view of the support element shown in FIG. 12, taken along line E-E.



FIG. 14 is an enlarged view of area F shown in FIG. 13.



FIG. 15 is a front perspective view of the support element shown in FIG. 10 engaged with the packing seal shown in FIG. 5.



FIG. 16 is a cross-sectional view of the support element and packing seal shown in FIG. 15, taken along line G-G.



FIG. 17 is an enlarged view of area H shown in FIG. 15.



FIG. 18 is a front perspective and partially exploded view of one of the fluid end sections shown in FIG. 1.



FIG. 19 is a rear perspective and partially exploded view of the fluid end section shown in FIG. 18.



FIG. 20 is the rear perspective and partially exploded view of the fluid end section shown in FIG. 19, but fewer components are shown exploded.



FIG. 21 is a front perspective view of the rear retainer shown in FIGS. 2-4 and 18-20.



FIG. 22 is a rear perspective view of the rear retainer shown in FIG. 21.



FIG. 23 is a front elevational view of the rear retainer shown in FIG. 21.



FIG. 24 is a cross-sectional view of the rear retainer shown in FIG. 23, taken along line I-I.



FIG. 25 is a front perspective view of the metal ring shown in FIGS. 2-4 and 18-20.



FIG. 26 is a rear perspective view of the metal ring shown in FIG. 25.



FIG. 27 is a rear elevational view of the metal ring shown in FIG. 25.



FIG. 28 is a cross-sectional view of the metal ring shown in FIG. 27, taken along line J-J.



FIG. 29 is a front perspective view of the packing nut shown in FIGS. 2-4 and 18-20.



FIG. 30 is a rear perspective view of the packing nut shown in FIG. 29.



FIG. 31 is a front elevational view of the packing nut shown in FIG. 29.



FIG. 32 is a cross-sectional view of the packing nut shown in FIG. 31, taken along line 32.



FIG. 33 is a cross-sectional and enlarged view of another embodiment of a packing seal assembly.





DETAILED DESCRIPTION

High pressure reciprocating pumps typically comprise a power end assembly attached to a fluid end assembly. Fluid end assemblies are typically used in oil and gas operations to deliver highly pressurized corrosive and/or abrasive fluids to piping leading to the wellbore. Fluid end assemblies are attached to power ends typically run by engines. The power end comprises a crankshaft configured to reciprocate a plurality of plungers within the fluid end assembly to pump fluid throughout the fluid end.


Fluid may be pumped throughout the fluid end assembly at pressures that range from 5,000-15,000 pounds per square inch (psi). However, the pressure may reach up to 22,500 psi. Power ends typically have a power output of at least 2,250 horsepower during hydraulic fracturing operations. A single fluid end typically delivers a fluid volume of about 185-690 gallons per minute or 4-16 barrels per minute during a fracking operation. When a plurality of fluid ends are used together, the fluid ends collectively deliver about 4,200 gallons per minute or 100 barrels per minute to the wellbore. The present invention improves the performance and life of the various components included in the fluid end assembly.


Turning now to FIG. 1, one embodiment of a high pressure pump 10 is shown. The pump 10 comprises a fluid end assembly 12 joined to a power end assembly 14. The power end assembly 14 is described in more detail in U.S. patent application Ser. No. 17/884,691, authored by Keith, et al., and filed on Aug. 10, 2022, the entire contents of which are incorporated herein by reference. In alternative embodiments, the fluid end assembly 12 may be attached to other power end designs known in the art.


Continuing with FIG. 1, the fluid end assembly 12 comprises a plurality of individual fluid ends, or fluid end sections 16 positioned in a side-by-side relationship. Each fluid end section 16 is attached to the power end assembly 14 using a plurality of stay rods 18.


Turning to FIGS. 18-20, each fluid end section 16 comprises a housing 20 having a longitudinal axis 22 and opposed front and rear surfaces 24 and 26 joined by an outer intermediate surface 28 and a horizontal bore 30 formed therein, as shown in FIG. 19. The horizontal bore 30 interconnects the front and rear surfaces 24 and 26 of the housing 20. The housing 20 comprises multiple pieces joined together by the stay rods 18, as shown in FIG. 1.


Turning to FIGS. 2-3A, another embodiment of a housing 20A is shown. Like the housing 20, the housing 20A comprises a longitudinal axis 22 and opposed front and rear surfaces 24 and 26 joined by an outer intermediate surface 28 and a horizontal bore 30 formed therein. In contrast to the housing 20, the housing 20A comprises multiple sections joined together by fasteners 32. In alternative embodiments, the housing 20 or 20A may be of single-piece construction.


Continuing with FIGS. 2-3A, fluid enters the housing 20A through upper and lower suction bores 34 and 36. Fluid exits the housing 20A through upper and lower discharge bores 38 and 4o. Fluid is routed throughout the housing 20A by a fluid routing plug 42 and suction and discharge valves 44 and 46. Movement of the valves 44 and 46 is guided by a suction valve guide 48 and a discharge plug 5o. The front surface 24 of the housing 20A is sealed by a front retainer 52.


Continuing with FIG. 2, a reciprocating plunger 54 is installed within the horizontal bore 30 and projects from the rear surface 26 of the housing 20A. As the plunger 54 retracts from the housing 20A, fluid is pulled from the suction bores 34 and 36 into the horizontal bore 3o. As the plunger 54 extends into the housing 20A, the plunger 54 forces fluid towards the discharge bores 38 and 4o. While not specifically shown herein, the housing 20, shown in FIGS. 1 and 18-20, uses the same inner components as the housing 20A and operates in the same manner as the housing 20A. The construction of the housing 20 and 20A and their above mentioned inner components are described in more detail in U.S. patent application Ser. No. 17/844,712, authored by Thomas et al., and filed on Aug. 10, 2022, the entire contents of which are incorporated herein by reference.


In traditional fluid ends, fluid is prevented from leaking from the rear surface of the housing by a plunger packing installed within the housing and surrounding the plunger. The plunger packing comprises a plurality of packing seals stacked on top of one another. A tight seal is created by compressing the plurality of stacked seals together longitudinally. During operation, the packing seals require continuous maintenance to make sure they are adequately compressed and sealing against the plunger. Over time, the components of the plunger packing wear against the walls of the housing, causing erosion and eventual failure of the housing.


Continuing with FIGS. 2-4, and 18-20, the present application discloses a packing seal assembly 60 that comprises one and only one packing seal 62. By using one and only packing seal 62, a much smaller surface area of the housing 20A or 20 is subject to potential wear from the seal 62. Further, the single packing seal 62 is much easier to install than a plurality of packing seals used with a traditional plunger packing. As will be described in more detail herein, only one packing seal 62 is needed because the packing seal 62 comprises an energizing component 66. The energizing component 66 expands the packing seal 62 during operation, ensuring a tight seal against an outer surface of the plunger 54.


Turning to FIGS. 5-9, traditional packing seals are solid and comprise only an elastomeric body. The packing seal 62 comprises the energizing component 66 installed within an elastomeric body 63. The body 63 is annular and has opposed front and rear surfaces 68 and 70 joined by inner and outer intermediate surfaces 72 and 74. The energizing component 66 is installed within the front surface 68 of the packing seal 62 and is configured to expand radially when compressed longitudinally. Such expansion causes the inner intermediate surface 72 of the packing seal 62 to tightly seal against the outer surface of the plunger 54, and the outer intermediate surface 74 to tightly seal against the walls of the housing 20A or 20 or another component installed therein, as shown for example in FIG. 2.


Continuing with FIGS. 2-4, 18, and 19, one example of another component installed within the housing 20A or 20 is a wear ring 64. The wear ring 64 is shown installed within the housing 20A and surrounding the packing seal 62 in FIGS. 2-4. The wear ring 64 is positioned between the walls of the housing 20A or 20 and the packing seal 62 and is configured to protect the walls of the housing 20A or 20 from wear from the packing seal 62 during operation. The wear ring 64 is annular and is a made of a harder and more wear resistant material than the housing 20A or 20. For example, if the housing 20A or 20 is made of steel, the wear ring 64 may be made of tungsten carbide. Another example of another component installed within the housing 20A or 20 may be a stuffing box or sleeve known in the art. The stuffing box or sleeve may be installed within the housing 20A or 20 and the packing seal 62 installed within the stuffing box or sleeve.


Continuing with FIG. 9, the energizing component 66 comprises a plurality of stacked metal pieces 80 having a V-shaped cross-section that function as a spring. Specifically, the packing seal 62 is known in the art as a multi-contact V-nested spring seal. In alternative embodiments, the energizing component may comprise other components known in the art that expand radially when compressed longitudinally. In further alternative embodiments, the energizing component may comprise one or more coiled springs configured to expand the seal regardless of any longitudinal compression.


Continuing with FIG. 9, the inner and outer surfaces 72 and 74 of the packing seal 62 comprise a plurality of seal lips 82. The seal lips 82 help effectuate sealing during operation. As the seal lips 82 wear over time, the energizing component 66 expands, pushing the lips 82 tighter against the plunger 54 and the wear ring 64.


With reference to FIGS. 10-17, the packing seal assembly 60 further comprises a support element 86. The support element 86 comprises an annular base 88 joined to an annular protrusion 9o. The base 88 comprises opposed front and rear surfaces 92 and 94 joined by a tapered outer surface 96 and a cylindrical inner surface 98. The protrusion 90 projects from the rear surface 94 and has a tapered outer surface 100, as shown in FIG. 14. The rear surface 94 of the support element 86 is configured to engage the front surface 68 of the packing seal 62 such that the protrusion 90 projects into the energizing component 66, as shown in FIG. 17. In operation, the protrusion 90 helps keep the energizing component 66 expanded so as to maintain a tight seal against the plunger 54. However, the packing seal assembly 60 may be used without the support element 86, if desired.


Turning back to FIGS. 3 and 4, the horizontal bore 30 comprises a counterbore 84 that opens on the rear surface 26 of the housing 20A. The counterbore 84 joins a uniform diameter section 102 of the horizontal bore 30 by a tapered surface 104, as shown in FIG. 4. The support element 86 is installed within the housing 20A such that the tapered outer surface 96 engages the tapered surface 104 of the housing 20A. The packing seal 62 and the wear ring 64 are installed within the counterbore 84 such that the wear ring 64 engages the walls of the counterbore 84 and the packing seal 62 engages the support element 86. When the components are installed within the housing 20A, the rear surface 70 of the packing seal 62 and a rear surface 106 of the wear ring 64 are flush with the rear surface 26 of the housing 20A. The housing 20 also comprises the counterbore 84 for receiving the support element 86, the wear ring 64 and the packing seal 62, as shown in FIG. 19.


With reference to FIGS. 2-4, 18, and 19, the packing seal 62 and wear ring 64 are held within the housing 20 or 20A by a rear retainer 108 having a metal ring 110 and a packing nut 112 installed therein. The rear retainer 108 is attached to the rear surface 26 of the housing 20 or 20A using a plurality of fasteners 114, as shown in FIGS. 3A, 18 and 19.


With reference to FIGS. 21-24, the rear retainer 108 comprises opposed front and rear surfaces 116 and 118 joined by an outer intermediate surface 120 and a central passage 122 formed therein. A plurality of passages 124 are formed in the rear retainer 108. Each passage 124 interconnects the front and rear surfaces 116 and 118. The retainer 108 is positioned on the rear surface 26 of the housing 20 or 20A such that the passages 124 align with a plurality of threaded openings 126 formed in the rear surface 26 of the housing 20 and 20A, as shown in FIGS. 3A and 19.


With reference to FIGS. 3A and 18-20, a fastener 114 is received within each pair of aligned openings and passages 126 and 124. When installed therein, a threaded end 128 of each fastener 114 is positioned within a counterbore 130 formed in each passage 124 adjacent the rear surface 118 of the retainer 108, as shown in FIGS. 3A, and 24. A threaded nut 132 is installed on each threaded end 128 and turned until the retainer 108 is held firmly against the rear surface 26 of the housing 20 or 20A. The nuts 132 are each fully disposed within each counterbore 130, such that no nut projects from the rear surface 118 of the retainer 108, as shown in FIGS. 3A and 20. In alternative embodiments, the passages 122 may not include the counterbore 130 and the nuts 132 may instead engage the rear surface 118 of the retainer 108.


Turning back to FIG. 24, the central passage 122 of the rear retainer 108 comprises a first section 134 joined to a second section 136. The first section 134 opens on the front surface 116 of the rear retainer 108, and the second section 136 opens on the rear surface 118 of the rear retainer 108. One or more lube ports 138 are also formed in the retainer 108. The lube port 138 interconnects the outer intermediate surface 120 and the first section 134 of the central passage 122, as shown in FIG. 4.


Continuing with FIGS. 4 and 24, internal threads 140 are formed in the walls of the second section 136 for receiving the packing nut 112. The walls surrounding the first section 134 of the central passage 122 are flat and configured to receive the metal ring 110. When the retainer 108 is attached to the housing 20, the central passage 122 aligns with the counterbore 84 formed in the housing 20A or 20, exposing the wear ring 64 and packing seal 62, as shown in FIG. 4.


With reference to FIGS. 25-28, the metal ring no comprises opposed front and rear surfaces 142 and 144 joined by inner and outer surfaces 146 and 148. A plurality of passages 150 are formed in the metal ring no that interconnect the inner and outer surfaces 146 and 148. The passages 150 open into an annular channel 152 formed in the outer surface 148 of the metal ring 110.


Continuing with FIG. 4, when the metal ring 110 is installed within the central passage 122, the front surface 142 of the metal ring 110 engages the rear surface 70 of the packing seal 62 and the rear surface 106 of the wear ring 64, and the outer surface 148 engages the first section 134 of the central passage 122. The lube port 138 formed in the retainer 108 aligns with the annular channel 152. During operation, lubricant is supplied to the fluid end section 16 through the lube port 138. Lubricant passes through the lube port 138 and into the annular channel 152 and eventually through the passages 150. Lubricant flowing through the passages 150 contacts and lubricates an outer surface of the reciprocating plunger 54.


With reference to FIGS. 2-4, 18-20, and 29-32, the metal ring 110 is held within the retainer 108 by the packing nut 112. The packing nut 112 comprises opposed front and rear surfaces 154 and 156 joined by an outer intermediate surface 158 and a central passage 160 formed therein. The intermediate surface 158 comprises a threaded section 162 joined to a flange 164. The threaded section 162 is configured to mate with the internal threads 140 formed in the second section 136 of the central passage 122 of the rear retainer 108, as shown in FIG. 4.


Continuing with FIGS. 4 and 32, a plurality of openings 166 are formed in the flange 164 of the packing nut 112. Each opening 166 interconnects the outer intermediate surface 158 and the central passage 160. The openings 166 are configured to receive a tool used to turn the packing nut 112 within the retainer 108. The packing nut 112 is turned within the central passage 122 until the front surface 154 of the packing nut 112 tightly engages the rear surface 144 of the metal ring 110 and the flange 164 abuts the rear surface 118 of the retainer 108, as shown in FIG. 4. When tightly engaged, the front surface 142 of the metal ring 110 likewise tightly engages the rear surface 70 of the packing seal 62 and the rear surface 106 of the wear ring 64, thereby retaining the packing seal 62 and wear ring 64 within the housing 20 or 20A.


Continuing with FIGS. 2, 4, and 32, a first groove 170 is formed within the walls of the central passage 160 of the packing nut 112 for housing a first seal 172, as shown in FIG. 2. The first seal 172 engages an outer surface of the plunger 54 and prevents fluid from leaking between the components, as shown in FIG. 2. A second groove 174 is formed in a front surface 176 of the flange 164 of the packing nut 112 for housing a second seal 178, as shown in FIG. 4. When the flange 164 abuts the rear surface 118 of the retainer 108, the second seal 178 engages the rear surface 118 of the retainer 108. The second seal 178 provides friction between the retainer 108 and the packing nut 112 to help prevent the packing nut 112 from backing out of the retainer 108 during operation.


Similarly, a groove 180 is formed in the rear surface 144 of the metal ring 110 for housing a seal 182, as shown in FIGS. 4 and 28. The seal 182 prevents fluid from leaking between the metal ring 110 and packing nut 112 during operation. The seal 182 further provides friction between the metal ring no and the packing nut 112 to help prevent the packing nut 112 from backing off during operation.


Turning to FIG. 33, another embodiment of a support element 184 and housing 186 are shown. The housing 186 is identical to the housing 20A, but it does not include the tapered surface 104, shown in FIG. 4. Instead, the walls surrounding a horizontal bore 188 of the housing 186 comprise a first counterbore 190 joined to a uniform diameter section 192 by a second counterbore 194. The support element 184 is identical to the support element 86, but a base 196 of the element 184 has a rectangular shaped outer surface 198 configured to be installed within the second counterbore 194 formed in the housing 186. Additionally, a protrusion 200 projecting from the base 196 of the support element 184 has a generally rectangular or uniform diameter outer surface 202, instead of the tapered outer surface 100, shown in FIG. 14. The support element 184 functions in the same manner as the support element 86.


The packing seal assembly 60 disclosed herein may be used with other embodiments of fluid end sections not specifically disclosed herein. For example, the packing seal assembly 60 may be used with the fluid end sections disclosed in U.S. patent application Ser. No. 17/884,712, previously incorporated herein by reference, and U.S. patent application Ser. No. 17/550,552, authored by Thomas et al., the entire contents of which are incorporated herein by reference. Alternatively, the packing seal assembly 60 may be used with traditional block fluid ends known in the art, such as those disclosed in U.S. Pat. No. 10,941,765, issued to Nowell et al., the entire contents of which are incorporated herein by reference. In further embodiments, the packing seal assembly 60 may be used with other embodiments of retaining systems, such as those disclosed in U.S. patent Ser. No. 17/685,936, authored by Foster et al., the entire contents of which are incorporated herein by reference.


The various features and alternative details of construction of the apparatuses described herein for the practice of the present technology will readily occur to the skilled artisan in view of the foregoing discussion, and it is to be understood that even though numerous characteristics and advantages of various embodiments of the present technology have been set forth in the foregoing description, together with details of the structure and function of various embodiments of the technology, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present technology to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. A fluid end, comprising: a housing having a longitudinal axis and opposed front and rear surfaces joined by an outer intermediate surface; a bore formed within the housing and interconnecting the front and rear surfaces, the bore extending along the longitudinal axis of the housing; a retainer attached to the rear surface of the housing by a first plurality of fasteners; a reciprocating plunger disposed within the bore and the retainer; one and only one packing seal installed within the housing and engaging an outer surface of the plunger; the housing comprises a first section joined to a second section by a second plurality of fasteners.
  • 2. The fluid end of claim 1, further comprising: a wear ring installed within the housing and surrounding the one and only one packing seal.
  • 3. The fluid end of claim 1, in which the retainer comprises a threaded inner surface, the fluid end further comprising: a packing nut installed within the retainer and engaging the one and only one seal.
  • 4. The fluid end of claim 1, further comprising: a metal ring installed within the retainer and interposed between the one and only one packing seal and the packing nut, the metal ring comprising one or more lube passages.
  • 5. The fluid end of claim 1, in which the one and only one packing seal has opposed first and second surfaces joined by inner and outer intermediate surfaces, and comprises: an energizing component installed within the seal and configured to expand the inner and outer intermediate surfaces during operation.
  • 6. The fluid end of claim 5, in which the energizing component comprises a spring.
  • 7. The fluid end of claim 5, further comprising: an annular component installed within the housing and comprising a projecting portion, the projecting portion engaging the energizing component.
  • 8. The fluid end of claim 7, in which the projecting portion has a tapered outer surface.
  • 9. The fluid end of claim 1, in which no threads are formed in the housing that surround and face the plunger.
  • 10. The fluid end of claim 7, in which the annular component abuts an annular shoulder formed in the housing and surrounding the horizontal bore.
  • 11. A fluid end assembly, comprising: a plurality of the fluid ends of claim 1; in which each of the fluid ends is formed as an individual fluid end section; and in which the plurality of fluid end sections are positioned in a side-by-side relationship; andan intake manifold in fluid communication with each of the plurality of fluid end sections.
  • 12. The fluid end section of claim 1, in which the first section comprises at least one discharge bore, and the second section comprises the one and only one packing seal.
  • 13. The fluid end of claim 12, in which the first section comprises a plurality of openings, each opening configured to receive a stay rod, each stay rod configured to attach to a power end.
US Referenced Citations (224)
Number Name Date Kind
677137 Leavitt Jun 1901 A
1316539 Ford Sep 1919 A
1317294 Hildebrand Sep 1919 A
1662725 Toney, Jr. Mar 1928 A
1822682 Weiger Sep 1931 A
1836498 Gustav Dec 1931 A
2495880 Volpin Jan 1950 A
2545506 Walsh Mar 1951 A
2713522 Petch Jul 1955 A
2756960 Church Jul 1956 A
2771846 Horton et al. Nov 1956 A
2783810 Wrigley Mar 1957 A
2828696 Wright Apr 1958 A
2856857 Saalfrank Oct 1958 A
2957422 Loeber Oct 1960 A
3005412 Camp Oct 1961 A
3053500 Atkinson Sep 1962 A
3146724 Cornelsen Sep 1964 A
3152787 Timmons Oct 1964 A
3173648 McGuire et al. Mar 1965 A
3179121 Bredtschneider et al. Apr 1965 A
3244424 Cope Apr 1966 A
3257952 McCormick Jun 1966 A
3301197 Dodson Jan 1967 A
3309013 Bauer Mar 1967 A
3373695 Yohpe Mar 1968 A
3427988 Redman et al. Feb 1969 A
3463527 Baker Aug 1969 A
3474808 Elliott Oct 1969 A
3508849 Weber Apr 1970 A
3589387 Raymond Jun 1971 A
3679332 Yohpe Jul 1972 A
3702624 Fries Nov 1972 A
3746483 Hindel et al. Jul 1973 A
3756229 Ollivier Sep 1973 A
3776558 Maurer et al. Dec 1973 A
3887305 Ito Jun 1975 A
4047850 Berthelot Sep 1977 A
4170214 Gill et al. Oct 1979 A
4174194 Hammelmann Nov 1979 A
4277229 Pacht Jul 1981 A
4363463 Moon, Jr. Dec 1982 A
4388050 Schuller Jun 1983 A
4467703 Redwine et al. Aug 1984 A
4470771 Hall et al. Sep 1984 A
4494415 Elliston Jan 1985 A
4518329 Weaver May 1985 A
4520837 Cole et al. Jun 1985 A
4616983 Hanafi Oct 1986 A
4768933 Stachowiak Sep 1988 A
4771801 Crump et al. Sep 1988 A
4773833 Wilkinson et al. Sep 1988 A
4778347 Mize Oct 1988 A
4861241 Gamboa et al. Aug 1989 A
4878815 Stachowiak Nov 1989 A
4891241 Hashimoto et al. Jan 1990 A
4948349 Koiwa Aug 1990 A
4984970 Eickmann Jan 1991 A
5059101 Valavaara Oct 1991 A
5061159 Pryor Oct 1991 A
5073096 King et al. Dec 1991 A
5088521 Johnson Feb 1992 A
5127807 Eslinger Jul 1992 A
5145340 Allard Sep 1992 A
5207242 Daghe et al. May 1993 A
5226445 Surjaatmadja Jul 1993 A
5230363 Winn, Jr. et al. Jul 1993 A
5253987 Harrison Oct 1993 A
5299921 Ritcher Apr 1994 A
5302087 Pacht Apr 1994 A
5362215 King Nov 1994 A
5370148 Shafer Dec 1994 A
5507219 Stogner Apr 1996 A
5524902 Cornette Jun 1996 A
5605449 Reed Feb 1997 A
5636975 Tiffany et al. Jun 1997 A
D383053 Schrader et al. Sep 1997 S
5799953 Henderson Sep 1998 A
5848880 Helmig Dec 1998 A
6164318 Dixon Dec 2000 A
6167959 Bassinger et al. Jan 2001 B1
6231323 Jezek May 2001 B1
6257626 Campau Jul 2001 B1
6382940 Blume May 2002 B1
6419459 Sibbing Jul 2002 B1
6544012 Blume Apr 2003 B1
6641112 Antoff et al. Nov 2003 B2
6910871 Blume Jun 2005 B1
7140211 Tremblay Nov 2006 B2
7168440 Blume Jan 2007 B1
7186097 Blume Mar 2007 B1
7290560 Orr et al. Nov 2007 B2
7296591 Moe et al. Nov 2007 B2
7335002 Vicars Feb 2008 B2
7506574 Jensen Mar 2009 B2
7513483 Blume Apr 2009 B1
7513759 Blume Apr 2009 B1
7591450 Blume Sep 2009 B1
D616966 Angell Jun 2010 S
7789133 McGuire Sep 2010 B2
7828053 McGuire et al. Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
D631142 Angell Jan 2011 S
7866346 Walters Jan 2011 B1
7963502 Lovell et al. Jun 2011 B2
8083504 Williams et al. Dec 2011 B2
8100407 Stanton et al. Jan 2012 B2
8141849 Blume Mar 2012 B1
8240634 Jarchau et al. Aug 2012 B2
8317498 Gambier et al. Nov 2012 B2
8360094 Steinbock et al. Jan 2013 B2
8365754 Riley et al. Feb 2013 B2
8528462 Pacht Sep 2013 B2
8701546 Pacht Apr 2014 B2
9010412 McGuire Apr 2015 B2
D731035 Lo Cicero Jun 2015 S
D737497 Burgess et al. Aug 2015 S
9188121 Dille Nov 2015 B1
D748228 Bayyouk et al. Jan 2016 S
9260933 Artherholt et al. Feb 2016 B2
9291274 Blume Mar 2016 B1
9328745 Bartlok et al. May 2016 B2
9371919 Forrest et al. Jun 2016 B2
9416887 Blume Aug 2016 B2
9435454 Blume Sep 2016 B2
9470226 Johnson et al. Oct 2016 B2
9534473 Morris et al. Jan 2017 B2
9631739 Belshan et al. Apr 2017 B2
D787029 Bayyouk et al. May 2017 S
9670922 Pacht Jun 2017 B2
9732746 Chandrasekaran et al. Aug 2017 B2
9791082 Baxter et al. Oct 2017 B2
9822894 Bayyouk et al. Nov 2017 B2
D806241 Swinney et al. Dec 2017 S
10184470 Barnett, Jr. Jan 2019 B2
10221847 Dyer Mar 2019 B2
10240597 Bayyouk et al. Mar 2019 B2
10352321 Byrne et al. Jul 2019 B2
10393113 Wagner Aug 2019 B2
10677380 Surjaatmadja et al. Jun 2020 B1
10711778 Buckley Jul 2020 B2
10760567 Salih et al. Sep 2020 B2
10767773 Lee Sep 2020 B2
10871227 Belshan et al. Dec 2020 B1
11162479 Thomas Nov 2021 B2
11261863 Beisel et al. Mar 2022 B2
11391374 Ellisor Jul 2022 B1
20020166588 Dean Nov 2002 A1
20040170507 Vicars Sep 2004 A1
20040234404 Vicars Nov 2004 A1
20060002806 Baxter et al. Jan 2006 A1
20060027779 McGuire et al. Feb 2006 A1
20080006089 Adnan et al. Jan 2008 A1
20080008605 Bauer et al. Jan 2008 A1
20080093361 Kennedy et al. Apr 2008 A1
20080181798 Folk Jul 2008 A1
20080279705 Wago et al. Nov 2008 A1
20080279706 Gambier et al. Nov 2008 A1
20090194717 Jarchau et al. Aug 2009 A1
20100129249 Bianchi et al. May 2010 A1
20100243255 Luharuka et al. Sep 2010 A1
20110079302 Hawes Apr 2011 A1
20110173814 Patel Jul 2011 A1
20110189040 Vicars Aug 2011 A1
20110206546 Vicars Aug 2011 A1
20110206547 Kim et al. Aug 2011 A1
20110236238 Cordes et al. Sep 2011 A1
20120063936 Baxter et al. Mar 2012 A1
20120141308 Saini et al. Jun 2012 A1
20120187321 Small Jul 2012 A1
20120272764 Pendleton Nov 2012 A1
20130020521 Byrne Jan 2013 A1
20130045123 Roman et al. Feb 2013 A1
20130105175 Mailand et al. May 2013 A1
20130112074 Small May 2013 A1
20130202458 Byrne et al. Aug 2013 A1
20130263932 Baxter et al. Oct 2013 A1
20130319220 Luharuka Dec 2013 A1
20140127062 Buckley et al. May 2014 A1
20140196570 Small et al. Jul 2014 A1
20140196883 Artherholt et al. Jul 2014 A1
20140348677 Moeller et al. Nov 2014 A1
20150071803 Huang Mar 2015 A1
20150084335 Farrell et al. Mar 2015 A1
20150132152 Lazzara May 2015 A1
20150132157 Whaley et al. May 2015 A1
20150144826 Bayyouk et al. May 2015 A1
20150147194 Foote May 2015 A1
20150159647 Dille Jun 2015 A1
20150211641 Pacht Jul 2015 A1
20150219096 Jain et al. Aug 2015 A1
20150300332 Kotapish et al. Oct 2015 A1
20160025082 Bryne et al. Jan 2016 A1
20160123313 Simmons May 2016 A1
20160160848 Toppings et al. Jun 2016 A1
20160281699 Gnessin et al. Sep 2016 A1
20160369792 Wagner Dec 2016 A1
20170002947 Bayyouk et al. Jan 2017 A1
20170089473 Nowell et al. Mar 2017 A1
20170204852 Barnett, Jr. Jul 2017 A1
20170211565 Morreale Jul 2017 A1
20170218951 Graham et al. Aug 2017 A1
20180017173 Nowell et al. Jan 2018 A1
20180045187 Nagel et al. Feb 2018 A1
20180058447 Foster Mar 2018 A1
20180313456 Bayyouk et al. Nov 2018 A1
20190011051 Yeung Jan 2019 A1
20190017503 Foster Jan 2019 A1
20190032685 Foster Jan 2019 A1
20190049052 Shuck Feb 2019 A1
20190063427 Nowell et al. Feb 2019 A1
20190120389 Foster et al. Apr 2019 A1
20190128104 Graham et al. May 2019 A1
20190136842 Nowell et al. May 2019 A1
20190145391 Davids May 2019 A1
20190178243 Nowell Jun 2019 A1
20190277279 Byrne et al. Sep 2019 A1
20190277341 Byrne et al. Sep 2019 A1
20190368619 Barnett et al. Dec 2019 A1
20200182240 Nowell Jun 2020 A1
20200191146 Rinaldi et al. Jun 2020 A1
20200232455 Blume Jul 2020 A1
20200347843 Mullins Nov 2020 A1
20200362678 Lesko Nov 2020 A1
Foreign Referenced Citations (6)
Number Date Country
207974953 Oct 2018 CN
2494140 May 2017 EP
2014144113 Sep 2014 WO
2017096488 Jun 2017 WO
2017139348 Aug 2017 WO
2018197458 Nov 2018 WO
Non-Patent Literature Citations (1)
Entry
Bolt Science, The Use of Two Nuts to Prevent Self Loosening, Jan. 9, 2015, https://www.boltscience.com/pages/twonuts.htm (Year: 2015).
Related Publications (1)
Number Date Country
20230047066 A1 Feb 2023 US
Provisional Applications (8)
Number Date Country
63312541 Feb 2022 US
63310269 Feb 2022 US
63304070 Jan 2022 US
63301524 Jan 2022 US
63246099 Sep 2021 US
63240889 Sep 2021 US
63235251 Aug 2021 US
63233241 Aug 2021 US