Paint container lid for a semi-automated automotive paint dispensing system

Information

  • Patent Grant
  • 6095373
  • Patent Number
    6,095,373
  • Date Filed
    Tuesday, November 10, 1998
    26 years ago
  • Date Issued
    Tuesday, August 1, 2000
    24 years ago
Abstract
A lid member for an original container of a liquid paint component. The lid member is usable with a system for dispensing the paint component from its original container into a paint receptacle according to a paint formula to form a liquid paint mixture. The lid member includes a base portion that is adapted to releasably engage an open top of the paint component container. The base portion has a pour spout through which the paint component can be dispensed and a movable cover element. The cover element is movable between a closed state, wherein the cover element covers the pour spout and the liquid paint component is prevented from being dispensed, and an opened state, wherein the pour spout is uncovered and the paint component can be dispensed from its original container and into the paint receptacle. An operating arrangement on the cover element is releasably engagable by an operating device of the dispensing system that moves the cover element between its closed and opened states. An alignment mechanism on the lid member aligns the paint component, while a latching arrangement of the lid member releasably secures the paint component container to the dispensing system.
Description

TECHNICAL FIELD
This invention relates to mixing paint components, such as colorants, tints and pearls, to create automotive paint formulas. In particular, the present invention is a paint container lid that can be secured to an original paint component container, allowing the container to be used with a semi-automated system for dispensing paint components according to a desired paint formula.
BACKGROUND OF THE INVENTION
In the automotive body repair industry, paint vendors provide auto body repair businesses, such as body shops and jobbers, with their paint formulas. Generally, these paint formulas are a composition (i.e., mixture) of paint components, such as colorants, tints, pearls, metallics, binders and/or balancers, that, once mixed, produce the desired color of paint to be applied to a repaired vehicle. The paint formulas of the paint vendors are formulated to match the colors that have been applied to vehicles by new car manufacturers over the years. In addition, these paint formulas include variants, to match the color fading of paint that can occur to a vehicle over years of service. Moreover, the palettes of paint formulas of the paint vendors also have custom colors (i.e., unconventional colors not typically used by vehicle manufacturers) that may be used to produce special finishes for custom or show cars. Hence, paint vendors provide body shops and jobbers with literally thousands of paint formulas for producing the vast spectrum of colors needed in the automotive body repair industry.
In the past, paint vendors would provide the body shops and jobbers with microfiche containing their paint formulas. Today the paint formulas are stored in computer memory. To determine the particular paint formula for a particular vehicle repair/paint job, a system operator, such as an employee of the body shop or jobber, first obtains the color code from the vehicle. This color code is typically part of the vehicle's identification number. In the case of an unconventional color, to be used to produce a custom paint finish, the code for a particular color is obtained from a catalog. This color code is then entered into the microprocessor of the computer, which accesses the computer memory, and displays, via a monitor, the paint vendor's paint formula which matches the identified vehicle color code.
The paint formulas are displayed according to the weight of the different paint components for mixing specific quantities of the paint formula, and the order in which the displayed paint components are to be mixed. Typically, paint formula mixing quantities are listed in quart, half gallon and gallon sizes, while the weight of the particular paint components needed to mix the desired quantity of paint, are listed in grams to a precision of a tenth of a gram. Generally, the paint components comprising tints, colorants, pearls and/or metallics are mixed first, while the paint components comprising binders and/or balancers are added last. Depending on the desired color, the paint formula can require just a few paint components, or over a dozen paint components, that must be mixed with a great degree of precision, to achieve a perfect color match.
Once the system operator determines that the correct desired paint formula is displayed on the computer monitor, the operator places a paint receptacle on a weigh cell that is linked to the microprocessor of the computer. Generally, a receptacle larger than the quantity of paint formula to be mixed is used to accommodate any excess paint inadvertently mixed by the operator. With the receptacle on the weigh cell, the weigh cell is zeroed by the operator, to make ready for the process of adding paint components to the receptacle to mix the desired color paint formula. Generally, the various paint components (of which there are dozens) are stored in containers kept within a rack. The rack has a mechanism that periodically stirs the paint components within the containers, so that the various paint components are ready to be dispensed as part of the paint formula mixing process. Typically, these containers are the original quart and gallon sized metal containers within which the paint components are shipped to the body shop or jobber. The original covers of these containers are replaced by specialized paint container lids that include stirring paddles that work with the stirring mechanism of the rack. These specialized paint container lids also have pour spouts that allow the paint components of the containers to be dispensed (i.e., poured out) into the receptacle atop the weigh cell. The pour spout of the specialized paint container lid is covered by a cover element that helps to protect the paint component within the container from contaminants. The cover element for the pour spout is movable between a closed state and an opened state. In the closed state of the cover element, the liquid paint component is prevented from being poured from its container through the pour spout. In the opened state of the cover element, the paint component can be poured from its container through the pour spout by tipping (i.e., tilting) the container.
To reproduce the desired paint formula, the system operator begins by identifying the first listed paint component of the paint formula to be mixed. The operator then pours, by hand, the paint component into the weigh cell supported paint receptacle, until the weight of the paint component dispensed (i.e., poured) into the receptacle matches what is displayed on the computer monitor. The operator continues along on this course (i.e., hand pouring the paint components from their containers), until the correct weight of all paint components, needed to mix the desired color paint formula, have been added to the paint receptacle atop the weigh cell.
Although the above described system for mixing paint components (according to a paint formula), using the original containers of the liquid paint components and the above described specialized container lids, allows a skilled system operator to dispense the needed paint components to adequately recreate paint colors needed for repair/paint jobs, there are some disadvantages to this system. For example, to mix a desired paint formula requires that the paint components be added to the paint receptacle, atop the weigh cell, with a great degree of accuracy. This accuracy, as stated earlier, is typically to a precision of 0.1 grams. For even a highly skilled operator this great degree of precision is difficult to obtain when hand pouring the paint components needed to mix the desired paint formula. It is especially difficult when many paint components must be poured into the paint receptacle in order to duplicate the paint formula.
The most common error on the part of the system operator of the body shop or jobber is over pouring which is due primarily to the manual labor intensive nature of the paint component dispensing process. Over pouring occurs when the weight of the paint component added to the receptacle atop the weigh cell, exceeds the weight of the component shown on the computer display for the desired paint formula. When this happens, the microprocessor of the computer recalculates the weights of the other paint components that need to be added to the receptacle to compensate for the over poured component. This recalculation is done automatically by the microprocessor since the weigh cell is linked to the computer. Based upon this recalculation, the system operator then needs to re-pour the other paint components to offset the over poured component of the paint formula.
While this re-pouring task may not be difficult when the paint formula only has a few paint components, the re-pouring task is particularly time consuming when there is a great number of components in the paint formula. Specifically, if an over pouring error is made in the last paint component of a series of ten components of a paint formula, then all of the previous nine components may have to be re-poured to compensate. This re-pouring task may be further complicated if another error is made during the re-pouring of the paint components, as this further error may require that some components be re-poured two or three times until the paint formula is finally accurately reproduced. Hence, over pouring errors can be costly to a body shop or jobber because of the additional man hours needed to mix the paint formula.
Not only are over pouring errors expensive because of the additional man hours needed to reproduce the paint formula, over pouring errors are also costly in the amount of additional paint formula that is mixed because of the errors. Automotive paint can cost in excess of $100.00 per quart. An over pouring error of just one pint may translate into an additional cost of $50.00 that a body shop or jobber may have to absorb, unless this additional paint cost can be justified to an automobile collision insurance carrier. Moreover, this additional paint, if not used in the repair/paint job, becomes a hazardous waste that must be disposed of properly, thereby adding still more costs that are attributable to paint component over pouring errors.
There is a need for an improved system for mixing paint components according to a paint formula. In particular, there is a need for paint container lid members, that can be used with the original containers of the paint components, and are compatible with a system for dispensing paint components according to a paint formula that substantially eliminates system operator errors, specifically over pouring errors, that can be costly to a body shop or jobber. The paint container lid members together with the paint component dispensing system should be easy to use, so as not to require a highly skilled operator, and should make better use of an operator's time to allow an operator to mix a greater number of paint formulas during a work day. In addition, the paint component lid members and the paint component dispensing system should comply with all regulations and laws governing the handling and mixing of paint components for the duplication of automotive paint formulas.
SUMMARY OF THE INVENTION
The present invention is a lid member for an original container of a pourable component, such as a liquid paint component. The lid member is usable with a system for dispensing the paint component from its original container into a paint receptacle according to a paint formula to form a liquid paint mixture. The lid member includes a base portion that is adapted to releasably engage an open top of the paint component container. The base portion has a pour spout through which the paint component can be dispensed and a movable cover element. A mechanism for securing the cover element to the base portion allows the cover element to move between a closed state, wherein the cover element covers the pour spout and the liquid paint component is prevented from being dispensed from its original container, and an opened state, wherein the pour spout is uncovered and the paint component can be dispensed from its original container, through the pour spout, and into the paint receptacle. An operating arrangement on the cover element is releasably engagable by an operating device of the dispensing system that moves the cover element between its closed and opened states according to the paint formula to form the liquid paint mixture.
An alignment mechanism, defined by first and second alignment rods on the base portion of the lid member, is releasably engagable by a first engaging mechanism of the paint component dispensing system for aligning the original container on the dispensing system so that the operating device is in engagement with the operating arrangement on the cover element. A latching arrangement, defined by a pair of spaced latch lugs on the base portion of the lid member, is releasably engagable by a second engaging mechanism of the paint component dispensing system for securing the original container on the dispensing system so that the operating device can move the cover element between its closed and opened states.
This lid member can be used with the original container of a liquid paint component. In addition, this lid member is compatible with a semi-automated system for dispensing liquid paint components from their original containers that virtually eliminates system operator errors, in particular over pouring errors, that can be costly to a body shop or jobber. The lid member and the semi-automated dispensing system are easy to use, and do not require a highly skilled operator, since operator interface with the lid members and the dispensing system is substantially limited to identifying the desired paint formula, and loading and unloading the proper containers of the liquid paint components to and from the dispensing apparatus using the aligning mechanism and latching arrangement of the lid member.
The operating arrangement of the cover element of the lid member is releasably engagable with the operating device of the dispensing system which acts to move the cover element between its closed and opened states. This lid member/dispensing system interface automatically dispenses (i.e., pours) the liquid paint components from their containers, thereby ensuring a highly accurate, precision liquid paint component pour. This highly accurate liquid paint component pour substantially limits the additional cost of the added paint components attributable to over pouring errors. In addition, the lid members of the present invention together with the paint dispensing system makes efficient use of the operator's time, since the operator is free to perform other duties instead of manually pouring the proper amounts of the liquid paint components from their containers. This efficiency gain allows the operator to mix a greater number of paint formulas during a work day. Lastly, the paint component lid members, of the present invention, together with the semi-automated dispensing system complies with all regulations and laws (such as being explosion protected) governing the safe handling and mixing of liquid paint components for the duplication of automotive paint formulas.





BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the present invention and are incorporated in and constitute a part of this specification. The drawings illustrate the embodiments of the present invention and together with the description serve to explain the principals of the invention. Other embodiments of the present invention and many of the intended advantages of the present invention will be readily appreciated as the same become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof, and wherein:
FIG. 1 is a perspective view illustrating a dispensing and control apparatus of a semi-automated system for dispensing liquid paint components from their original containers using lid members in accordance with the present invention.
FIG. 2 is an enlarged perspective view better illustrating the dispensing apparatus of the dispensing system of FIG. 1.
FIG. 3 is a side elevational view of a quart size original paint container and lid member, in accordance with the present invention, for holding a liquid paint component.
FIG. 4 is top elevational view of the lid member of FIG. 3 in accordance with the present invention.
FIG. 5 is partial side elevational view with some parts omitted for clarity of the dispensing apparatus of FIGS. 1 and 2, illustrating a quart size original container/lid member of a paint component being loaded into/unloaded from the dispensing apparatus.
FIG. 6 is partial side elevational view with some parts omitted for clarity similar to FIG. 5, illustrating the quart size original container/lid member ready for dispensing of the liquid paint component.
FIG. 7 is partial side elevational view with some parts omitted for clarity similar to FIG. 6, illustrating the liquid paint component being dispensed from its quart size original container/lid member.
FIG. 8 is partial side elevational view with some parts omitted for clarity similar to FIG. 6, illustrating a gallon size original container/lid member ready for dispensing of a liquid paint component.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A semi-automated dispensing system 10 for dispensing liquid paint components from their original containers 16A and 16B using paint container lid members 20A and 20B, in accordance with the present invention is illustrated generally in FIGS. 1, 2 and 8. The dispensing system 10 generally comprises a dispensing apparatus 12 for dispensing a liquid paint component 14 from its original container 16A and 16B, and a control apparatus 18 for controlling the dispensing apparatus 12. FIGS. 1, 3-7 show the quart size original container 16A having a lid member 20A in accordance with the present invention, while FIG. 8 illustrates the gallon size original container 16B having a lid member 20B in accordance with the present invention. The containers 16A and 16B (without the lid members 20A and 20B) are typical metal vessels within which liquid paint components 14, such as tints, colorants, pearls, metallics, binders and balancers (used to mix automotive paint according to a paint formula) are shipped from a liquid paint component manufacturer to customers, such as body shops and jobbers. Beyond their size differences, the quart size and gallon size containers 16A and 16B and lid members 20A and 20B are substantially identical, therefore only the quart size original container 16A and lid member 20A, in accordance with the present invention, will be described with particularity.
As seen best in FIGS. 3 and 4, the original container 16A is cylindrical shaped having an open top 22A defined by a circumferential lip 24A. The lid member 20A includes a base portion 26A adapted to engage and seal the open top 22A of the container 16A to protect the liquid paint component 14 within the container 16A. The base portion 26A of the lid member 20A includes a pair of spaced, pivotable cam lock mechanisms 28A that are used to releasably secure the lid member 20A to the original container 16A. Each of the cam lock mechanisms 28A is defined by a cam element 30A connected to a cam actuator 32A by way of a post member 34A. Pivotally moving the cam actuators 32A by hand, as represented by double headed arrow 36, moves the cam elements 30A into and out of engagement with the lip 24A to secure and release the lid member 20A from the original container 16A.
The lid member 20A further includes a handle 38A, for easy handling of the original container 16A when the lid member 20A is secured thereto, and a liquid paint component pour spout 40A. The pour spout 40A is covered by a linearly movable, as represented by double headed directional arrow 42, cover element 44A. The cover element 44A is linearly movable between a closed state (shown in solid lines in FIG. 3) and an opened state (shown in dashed lines in FIG. 3). In the closed state of the cover element 44A, the liquid paint component 14 is prevented from being poured (i.e., dispensed) from the original container 16A through the pour spout 40A. In the opened state of the cover element 44A, the liquid paint component 14 can be poured from the original container 16A through the pour spout 40A by tilting the container 16A using the handle 38A.
As seen in FIG. 3, the cover element 44A is movable between its closed and opened states via a thumb actuator 46A that is pivotally secured to the base portion 26A by way of a pivot pin 48A. The thumb actuator 46A is pivotally movable as shown by double headed directional arrow 47. As seen best in FIG. 4, the thumb actuator 46A is connected to the cover element 44A via a wire loop 50A. The wire loop 50A includes end edges 52A (FIG. 4) the purpose of which will become clear below. When the thumb actuator 46A is positioned as shown in solid lines in FIG. 3, the cover element 44A is in its closed state. The thumb actuator 46A is biased to this normal position by a spring element 54A (FIG. 3) that acts between the base portion 26A and the thumb actuator 46A. When the thumb actuator 46A positioned as shown in dashed lines in FIG. 3, the cover element 44A is in its opened state. The cover element 44A is moved, from its closed state to its opened state, through the connecting wire loop 50A by pivoting the thumb actuator 46A about the pivot pin 48A against the bias of the spring element 54A. The cover element 44A is allowed to return to its closed state from the opened state by simply releasing the thumb actuator 46A.
As seen best in FIG. 4, the lid member 20A further includes first and second spaced alignment rods 56A and 58A, respectively, positioned at a first portion of the lid member 20A at the pour spout 40A adjacent to the cover element 44A. As seen in FIGS. 3 and 4, the first and second alignment rods 56A and 58A are parallel to one another and are positioned so as to define a plane 60 that is parallel to an upper surface 62A of the circumferential lip 24A of the original container 16A. The first alignment rod 56A is longer than and has a diameter greater than the second alignment rod 58A. Free ends of the first and second alignment rods 56A and 58A define first and second pairs of registration lugs 64A and 66A, respectively, the purpose of which will become clear below. The first and second alignment rods 56A and 58A are mounted to the lid member 20A by first drilling holes for the alignment rods 56A and 58A at the pour spout 40A. The first and second alignment rods 56A and 58A are then press fit into the drilled holes.
As seen best in FIG. 3, the lid member 20A further includes a stirring device 68A for stirring the liquid paint component 14 within the original container 16A. The stirring device 68A includes a plurality of paddles 70A connected to a paddle actuator 72A by way of a shaft member 74A. Rotating the paddle actuator 72A, as represented by double headed directional arrow 76 (FIG. 4), causes rotation of the paddles 70A and stirring of the liquid paint component 14. The paddle actuator 72A is driven (i.e., rotated) by a stirring mechanism (not shown) that is part of a storage rack (not shown) for various original containers 16A of liquid paint components 14.
Lastly, as seen best in FIG. 4, the base portion 26A of the lid member 20A includes a pair of spaced latch lugs 78A positioned at a second portion of the lid member 20A to either side of the thumb actuator 46A. The purpose of these latch lugs 78A will become clear below.
As seen best in FIGS. 1 and 2, the dispensing apparatus 12 of the dispensing system 10 includes a support frame 80 defined by a main support structure 82 and an ancillary support structure 84. The main support structure 82 has an upper portion 86 that is rigidly fixed to a lower portion 88. The ancillary support structure 84 is linearly movable, as represented by double headed directional arrow 90, relative to the upper portion 86 of the main support structure 82 via a slide mechanism 92. As seen best in FIG.5, in one preferred embodiment, the slide mechanism 92 includes a channel member 94 on the upper portion 86 of the main support structure 82 that slidably receives a T-shaped slide member 96 on the ancillary support structure 24. However, the slide mechanism 92 can comprise other shaped slide components as long as the components permit linear movement of the ancillary support structure 84 relative to the main support structure 82 along directional arrow 90.
As seen best in FIGS. 2 and 5, the dispensing apparatus 12 further includes a receiving mechanism 98 for releasably engaging the original container 16A, 16B of the liquid paint component 14. The receiving mechanism 98 is defined by first and second engaging mechanisms 100 and 102, respectively.
As seen best in FIG. 2, the first engaging mechanism 100 includes first and second spaced arms 104a and 104b rigidly mounted to the upper portion 86 of the main support structure 82. A bight member 108 rigidly connects together the first and second arms 104a and 104b near their free ends 110a and 110b. The free ends 110a and 110b of the first and second spaced arms 104a and 104b include first registration notches 111a and 111b, and second registration notches 112a and 112b. The first registration notches 111a and 111b are adapted to releasably receive (i.e., engage) the registration lugs 64A of the first alignment rod 56A for the lid member 20A. The second registration notches 112a and 112b are adapted to releasably receive (i.e., engage) the registration lugs 66A of the second alignment rod 58A for the lid member 20A. The first registration notches 111a and 111b are of a different size than the second registration notches 112a and 112b. This ensures that first registration notches 111a and 111b and the second registration notches 112a and 112b receive the correct sized alignment rod 56A and 58A, respectively. As seen in FIG. 5, interengagement of the registration lugs 64A and 66A of the alignment rods 56A and 58A with the registration notches 111a, 111b, 112a, 112b, mounts (i.e., secures) and aligns a first portion of the container 16A and lid member 20A combination to the receiving mechanism 98 of the dispensing apparatus 12.
The second engaging mechanism 102 includes first and second spaced L-shaped arms 114a and 114b pivotally mounted to the ancillary support structure 84 via a pivot pin 116. A handle member 118 rigidly connects together the first and second L-shaped arms 114a and 114b at their first ends 120a and 120b. Second ends 122a and 122b of the first and second L-shaped arms 114a and 114b include latching notches 124a and 124b. The latching notches 124a and 124b are adapted to releasably receive (i.e., engage) the latch lugs 78A of the lid member 20A for the original container 16A. The L-shaped arms 114a and 114b of the second engaging mechanism 102 are pivotally movable as a unit, as represented by double headed arrow 125, between an unlatched state, wherein the original container 16A of the liquid paint component 14 can be engaged with and disengaged from the first and second engaging mechanisms 100 and 102 (shown in FIG. 5); and a latched state, wherein the original container 16A is securely held between the first and second engaging mechanisms 100 and 102 (shown in FIG. 6). A tension spring element 126 is coupled between a mounting peg 128 of the ancillary support structure 84 and a mounting peg 129 of an extension arm 130 on the L-shaped arm 114a. The tension spring element 126 biases the L-shaped arms 114a and 114b defining the second engaging mechanism 102 to the latched state against the stop member 132.
As seen best in FIGS. 2 and 5, the dispensing apparatus 12 of the dispensing system 10 further includes dispensing mechanism 140 mounted to the ancillary support structure 84 for moving the cover element 44A of the lid member 20A between its closed and open states. The dispensing mechanism 140 includes downwardly extending, first and second arms 142a and 142b that define an operating device 141 linearly movable, as a unit, as represented by double headed directional arrow 143 (FIG. 2), relative to the ancillary support structure 84. A bight member 144 rigidly connects together the first and second arms 142a and 142b near their free ends 146a and 146b. The free ends 146a and 146b, of the first and second arms 142a and 142b, include wire loop notches 148a and 148b adapted to releasably engage the end edges 52A of the wire loop 50A on the lid member 20A (see FIG. 6).
As seen in FIG. 7, with the loop notches 148a and 148b of the operating device 141 engaged with the end edges 52A of the wire loop 50A (which is connected to the cover element 44A), a transit mechanism 150 of the dispensing mechanism 140 can move the operating device 141 between a first position and a second position. In the first position of the operating device 141 (FIG. 6), the cover element 44A of the lid member 20A is in its closed state which prevents the liquid paint component 14 from being dispensed from the original container 16A. In the second position of the operating device 141 (FIG. 7), the cover element 44A is in its opened state which allows the liquid paint component 14 to be dispensed (i.e., poured) from the original container 16A into a paint receptacle 152 (FIG. 1).
As set forth previously, the ancillary support structure 84 is linearly movable, as represented by the double headed directional arrow 90, relative to the upper portion 86 of the main support structure 82 via the slide mechanism 92. This allows the receiving mechanism 98 (defined by the first and second engaging mechanisms 100 and 102) and the dispensing mechanism 140 to accommodate quart size original containers 16A (FIGS. 5-7) and gallon size original containers 16B (FIG. 8). As seen in FIGS. 2 and 5-8, the ancillary support structure 84 includes latch lever member 145 that is pivotally movable about a pivot pin 147 between a latched position and an unlatched position. The latch lever member 145 is biased to the latched position via a tension spring 149 extending between the lever member 145 and the ancillary support structure 84. The latch lever arm 145 rides in a latch slot 151 in the upper portion 86 of the main support structure 82. The latch slot 151 includes a quart size or primary latch notch 153 and a gallon size or secondary latch notch 155. In operation, to move the ancillary support structure 84 from its primary (i.e., quart) position to its secondary (i.e., gallon) position, all a system operator need do is pivot the lever member 145 about the pivot pin 147 against the bias of the spring 149 from the quart size latch notch 153 to the latch slot 151. The operator then moves the ancillary support structure 84 upward using the lever member 145. This causes the second engaging mechanism 102 and the dispensing mechanism 140 to move away from the first engaging mechanism 100, allowing more space so as to accommodate the gallon size original container 16B. Once the latch lever member 145 reaches the top of the latch slot 151 the operator then moves the lever member 145 into the gallon size latch notch 155 and the dispensing apparatus is ready to accommodate a gallon size container 16B. To re-accommodate quart size containers 16A this procedure is simply reversed.
As seen best in FIGS. 5-7, the transit mechanism 150 of the dispensing mechanism 140 includes a piston member 154 linearly movable, along directional arrow 143 (FIG. 2), relative to a cylinder member 156. Opposite ends 153a and 153b of the first and second arms 142a and 142b (defining the operating device 141) are rigidly coupled to the piston member 154 via a shaft member 157 that extends through a longitudinal slot 158 of the cylinder member 156. Therefore movement of the piston member 154 within the cylinder member 156 causes the operating device 141 to move between its first and second positions. Tension spring elements 160a and 160b are coupled between the shaft member 157 and a mounting member 162 on the ancillary support structure 84. The tension springs 160a, 160b bias the operating device 141 to its first position (also known as the primary position of the piston member 154).
As seen in FIG. 1, a drive mechanism 170 of the transit mechanism 150 moves the piston member 154 relative to the cylinder member 156. The drive mechanism 170 includes a piston member 172 linearly movable, along double headed directional arrow 173, relative to a cylinder member 174 mounted to a frame 176 via bracket structure 177. A drive motor, such as a stepper motor 178, is also mounted to the frame 176. The drive motor 178 includes a drive screw 179 that is telescopically received within a drive tube 180 that is secured at one end to the piston member 172. The drive tube 180 is slidably received within a bearing 181 of the frame 176 to allow movement of the drive tube 180, and the piston member 172 therewith, relative to the frame 176, drive motor 178 and cylinder member 174. An opposite end of the drive tube 180 includes a drive nut 183 that threadably receives the drive screw 179 of the stepper motor 178. Operation of the stepper motor 178 turns the drive screw 179 within the drive nut 183. This in turn moves the drive tube 180 and therewith the piston member 172 within the cylinder member 174 along directional arrow 173. A fluid reservoir 182 containing a hydraulic fluid 184 is in fluid communication with the cylinder member 174. A fluid line 188 couples the fluid reservoir 182 to the cylinder member 156. In operation, movement of the piston member 172, via the stepper motor 178, forces hydraulic fluid 184 to move to and from the cylinder member 174 and the fluid reservoir 182 through the line 188 then into and out of the cylinder member 156 to move the piston member 154. Movement of the piston member 154, via the above described hydraulic fluid pressure, in turn moves the operating device 141 which in turn moves the cover element 44A of the lid member 20A between its opened and closed states.
As seen in FIG. 1, the control apparatus 18 of the dispensing system 10 includes a weigh cell 190 for supporting the paint receptacle 152 and a control module 192. The weigh cell 190 determines the weight of the liquid paint component dispensed (i.e., poured) from the original container 16A into the paint receptacle 152. The control module 192 includes a display monitor device 194 having a display 195, a microprocessor device 196, a data storage device 198 and a user interface device, such as a keyboard 200. The keyboard 200 is coupled to the microprocessor device 196 via a communication line 202. The microprocessor device 196 and the data storage device 198 are linked through a communication line 204. The microprocessor device 196 is linked to the stepper motor 178 and to a sensor 205 for monitoring the position of the drive screw 179 through the communication line 206. The microprocessor device 196 is linked to the display monitor device 194 through communication line 208 and is further linked to the weigh cell 190 via communication line 210. Since the control module 192 (i.e., microprocessor device 196) is linked to the stepper motor 178 and the sensor 205, the control module 192 can control operation of the stepper motor 178, and thereby movement of the piston members 172 and 154, and hence movement of the cover element 44A to dispense the liquid paint component 14 from the original container 16A. In addition, since the control module 192 is further linked to the weigh cell 190, the control module 192 can control the amount (i.e., the weight) of the liquid paint component 14 dispensed from its original container 16A to the paint receptacle 152 (atop the weigh cell 190) based upon data (i.e., information) obtained from the weigh cell 190. Moreover, since the control module 192 (i.e., the data storage device 198) stores the paint formulas, the control module 192 can determine which liquid paint components 14 and the weights of these components needed to duplicate a particular paint formula and can control the dispensing mechanism 140 in accordance therewith.
As seen in FIG. 1, the control module 192 and the drive mechanism 170 are positioned in another room such that the communication line 210 and the fluid line 188 pass through a wall 212 so as to provide explosion protection for the dispensing system 10.
In operation, to mix a particular paint formula, the operator of the semi-automated dispensing system 10 first accesses the control module 192 through the keyboard 100 to call up the desired paint formula using the microprocessor device 196 the data storage device 198. The paint formula (i.e., the liquid paint components 14) is then displayed on the display 195 of the display monitor device 194. The operator then loads the first container 16A, 16B of the needed liquid paint components into the dispensing apparatus 12.
As seen in FIG. 5, to mount (i.e., load) an original container 16A of a liquid paint component 14 to the receiving mechanism 98 of the dispensing apparatus 12, the operator of the dispensing system 10 first needs to pivot the second engaging mechanism 102 (defined by the L-shaped arms 114a, 114b) clockwise (as viewed in FIG. 5) from its normal latched state to its unlatched state, against the handle/stop member 134 mounted to the ancillary support structure 84. The operator, while gripping both the handle member 118 and the handle/stop member 134 to hold the second engaging mechanism 102 in its unlatched state (against the bias of the spring element 126), then engages the registration lugs 64A of the first alignment rod 56A for the lid member 20A with the first registration notches 111a, 111b of the first engaging mechanism 100 (FIG. 5). Next, while still holding the second engaging mechanism 102 in its unlatched state, the operator pivots the container 16A and lid member 20A combination clockwise (as viewed in FIG. 5) until the registration lugs 66A of the second alignment rod 58A are fully seated in the second registration notches 112a, 112b of the first engaging mechanism 100; and the end edges 52A of the wire loop 50A are fully seated in the wire loop notches 148a, 148b of the operating device 141. With the registration lugs 64A and 66A now fully seated in the registration notches 111a, 111b, 112a, 112b, and the end edges 52A fully seated in the loop notches 148a, 148b, the operator pivots the second engaging mechanism 102 counter-clockwise to its latched state, so that the latching notches 124a and 124b engage the latch lugs 78A of the lid member 20A securing the original container 16A lid member 20A combination to the receiving mechanism 98 the dispensing apparatus 12. To remove the container 16A for the dispensing apparatus 12, this above described process is simply reversed.
The operator then starts the dispensing process using the keyboard 200 of the control module 192. Since the control module 192 (i.e., microprocessor device 196) is linked to the stepper motor 178 and the sensor 205, the control module 192 controls operation of the stepper motor 178, and thereby movement of the piston members 154 and 172, and hence movement of the cover element 44A to dispense (i.e., pour) the liquid paint component 14 from the original container 16A into the paint receptacle 152. The shape of the second registration notches 112a, 112b together with the second alignment pin 58A prevents movement of the cover element 44A from inadvertently disengaging the first alignment pin 56A from the first registration notches 111a, 111b. The weight of the liquid paint component 14 dispensed into the paint receptacle 152 is monitored by the control module 192 through the weigh cell 190, thereby ensuring an accurate liquid paint component pour. Once the first liquid paint component 14 is poured, its container 16A, 16B is removed and is replaced with the next paint component container 16A, 16B and so on, until all paint components 14 of the paint formula have been added to the paint receptacle 152, thereby completing the paint formula mixing process.
This lid member 20A, 20B can be used with the original container 16A, 16B of a liquid paint component 14. In addition, this lid member 20A, 20B is compatible with the semi-automated dispensing system 10 for dispensing liquid paint components 14 from their original containers 16A, 16B that virtually eliminates system operator errors, in particular over pouring errors, that can be costly to a body shop or jobber. The lid member 20A, 20B together with the semi-automated dispensing system 10 are easy to use, and do not require a highly skilled operator, since operator interface with the lid members 20A, 20B and the dispensing system 10 is substantially limited to identifying the desired paint formula, and loading and unloading the proper containers 16A, 16B of the liquid paint components 14 to and from the dispensing system 10 using the alignment rods 56A, 58A, 56B 58B and the latch lugs 78A, 78B of the lid member 20A, 20B.
The wire loop 50A, 50B operating arrangement of the cover element 44A, 44B of the lid member 20A, 20B is releasably engagable with the operating device 141 of the dispensing system 10 which moves the cover element 44A, 44B between its closed and opened states. This lid member/dispensing system interface automatically dispenses (i.e., pours) the liquid paint components 14 from their containers 16A, 16B, thereby ensuring a highly accurate, precision liquid paint component pour. This highly accurate liquid paint component pour substantially limits the additional cost of the added paint components 14 used due to over pouring errors. In addition, the lid members 20A, 20B of the present invention together with the paint dispensing system 10 makes efficient use of the operator's time, since the operator is free to perform other duties instead of manually pouring the proper amounts of the liquid paint components 14 from their containers 16A, 16B. This efficiency gain allows the operator to mix a greater number of paint formulas during a work day. Lastly, the paint component lid members 20A, 20B, of the present invention, together with the semi-automated dispensing system 10 complies with all regulations and laws, such as being explosion protected, governing the handling and mixing of liquid paint components 14 for the duplication of automotive paint formulas.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For example, although the lid members 20A and 20B and the semi-automated dispensing system 10 have been described as useable to dispense liquid automotive paint components 14 from their original containers 16A and 16B, the lid members and dispensing system can be used to dispense other pourable components, such as primers, thinners and liquid or powdered chemicals. In particular the lid members 20A and 20B and the dispensing system 10 could be used in laboratory or pharmaceutical organizations to accurately dispense liquid and powdered chemicals according to a desired formula.
Claims
  • 1. A lid member for an original container of a pourable component, the lid member being usable with a system for dispensing the pourable component from its original container into a receptacle according to a formula to form a mixture of pourable components, the lid member comprising:
  • a base portion adapted to releasably engage an open top of the original container of the pourable component;
  • a pour spout on the base portion through which the pourable component can be dispensed from its original container;
  • a cover element for the pour spout;
  • means for movably securing the cover element to the base portion such that the cover element is movable between a closed state, wherein the cover element covers the pour spout and the pourable component is prevented from being dispensed from the original container, and an opened state, wherein the pour spout is uncovered and the pourable component can be dispensed from its original container through the pour spout into the receptacle;
  • operating means on the cover element releasably engagable by an operating device of the pourable component dispensing system that moves the cover element between its closed and opened states according to the formula to form the mixture of pourable components; and
  • alignment means on pour spout of the base portion releasably engagable by an engaging mechanism of the pourable component dispensing system for aligning the original container on the dispensing system so that the operating device is in engagement with the operating means on the cover element.
  • 2. The lid member of claim 1 wherein the alignment means includes:
  • an alignment rod having opposite free ends, the free ends of the alignment rod defining a pair of registration lugs releasably engagable with the engaging mechanism of the dispensing system.
  • 3. The lid member of claim 1 wherein the alignment means includes:
  • a first alignment rod having opposite free ends, the free ends of the first alignment rod defining a first pair of registration lugs releasably engagable with the engaging mechanism of the dispensing system; and
  • a second alignment rod spaced from the first alignment rod, the second alignment rod having opposite free ends, the free ends of the second alignment rod defining a second pair of registration lugs that are also releasably engagable with the engaging mechanism of the dispensing system.
  • 4. The lid member of claim 3 wherein the first alignment rod is positioned so as to be parallel to the second alignment rod.
  • 5. The lid member of claim 3 wherein the first and second alignment rods are positioned so as to define a plane that is parallel to an upper surface of a circumferential lip extending about the open top of the original container when the lid member is attached to the original container of the pourable component.
  • 6. The lid member of claim 3 wherein the first alignment rod is longer than the second alignment rod.
  • 7. The lid member of claim 3 wherein the first alignment rod has a diameter that is greater than a diameter of the second alignment rod.
  • 8. The lid member of claim 3 wherein the base portion has an outer circumferential edge, and wherein the first alignment rod is closer to the outer circumferential edge of the base portion than the second alignment rod.
  • 9. The lid member of claim 1, and further including:
  • means on the base portion for releasably engaging a circumferential lip extending about the open top of the original container to releasably secure the lid member to the original container.
  • 10. The lid member of claim 9 wherein the means on the base portion for releasably engaging a circumferential lip of the original container includes:
  • a pair of spaced pivotable cam lock mechanisms.
  • 11. The lid member of claim 1, and further including:
  • means on the base portion for stirring the pourable component within the original container.
  • 12. The lid member of claim 1 wherein the pourable component is a liquid paint component, the receptacle is a paint receptacle, the formula is a paint formula, and the mixture of pourable components is a liquid paint mixture.
  • 13. A lid member for an original container of a pourable component, the lid member being usable with a system for dispensing the pourable component from its original container into a receptacle according to a formula to form a mixture of pourable components, the lid member comprising:
  • a base portion adapted to releasably engage an open top of the original container of the pourable component;
  • a pour spout on the base portion through which the pourable component can be dispensed from its original container;
  • a cover element for the pour spout;
  • means for movably securing the cover element to the base portion such that the cover element is movable between a closed state, wherein the cover element covers the pour spout and the pourable component is prevented from being dispensed from the original container, and an opened state, wherein the pour spout is uncovered and the pourable component can be dispensed from its original container through the pour spout into the receptacle;
  • operating means on the cover element releasably engagable by an operating device of the pourable component dispensing system that moves the cover element between its closed and opened states according to the formula to form the mixture of pourable components; and
  • latch means on the base portion releasably engagable by an engaging mechanism of the pourable component dispensing system for securing the original container on the dispensing system against movement relative to the dispensing system and with the operating device in engagement with the operating means of the cover element.
  • 14. The lid member of claim 13 wherein the latch means includes a pair of spaced latch lugs releasably engagable with the engaging mechanism of the dispensing system.
  • 15. A lid member for an original container of a pourable component, the lid member being usable with a system for dispensing the pourable component from its original container into a receptacle according to a formula to form a mixture of pourable components, the lid member comprising:
  • a base portion adapted to releasably engage an open top of the original container of the pourable component;
  • a pour spout on the base portion through which the pourable component can be dispensed from its original container;
  • a cover element for the pour spout;
  • means for movably securing the cover element to the base portion such that the cover element is movable between a closed state, wherein the cover element covers the pour spout and the pourable component is prevented from being dispensed from the original container, and an opened state, wherein the pour spout is uncovered and the pourable component can be dispensed from its original container through the pour spout into the receptacle;
  • operating means on the cover element releasably engagable by an operating device of the pourable component dispensing system that moves the cover element between its closed and opened states according to the formula to form the mixture of pourable components;
  • alignment means on a first portion of the base portion releasably engagable by a first engaging mechanism of the pourable component dispensing system for aligning the original container on the dispensing system so that the operating device is in engagement with the operating means on the cover element; and
  • latch means on a second portion of the base portion spaced from the first portion, the latch means being releasably engagable by a second engaging mechanism of the pourable component dispensing system for securing the original container on the dispensing system against movement relative to the dispensing system and with so that the operating device can move the cover element between its closed and opened states.
  • 16. The lid member of claim 15 wherein the alignment means includes:
  • a first alignment rod having opposite free ends, the free ends of the first alignment rod defining a first pair of registration lugs releasably engagable with the first engaging mechanism of the dispensing system; and
  • a second alignment rod spaced from the first alignment rod, the second alignment rod having opposite free ends, the free ends of the second alignment rod defining a second pair of registration lugs that are also releasably engagable with the first engaging mechanism of the dispensing system.
  • 17. The lid member of claim 16 wherein the latch means includes a pair of spaced latch lugs releasably engagable with the second engaging mechanism of the dispensing system.
  • 18. A lid member for an original container of a pourable component, the lid member being usable with a system for dispensing the pourable component from its original container into a receptacle according to a formula to form a mixture of pourable components, the lid member comprising:
  • a base portion adapted to releasably engage an open top of the original container of the pourable component;
  • a pour spout on the base portion through which the pourable component can be dispensed from its original container;
  • a cover element for the pour spout;
  • means for movably securing the cover element to the base portion such that the cover element is movable between a closed state, wherein the cover element covers the pour spout and the pourable component is prevented from being dispensed from the original container, and an opened state, wherein the pour spout is uncovered and the pourable component can be dispensed from its original container through the pour spout into the receptacle; and
  • operating means on the cover element releasably engagable by an operating device of the pourable component dispensing system that moves the cover element between its closed and opened states according to the formula to form the mixture of pourable components, wherein the operating means is a wire loop secured at a first end to one end of the cover element, the wire loop having end edges releasably engagable with the operating device of the dispensing system.
  • 19. The lid member of claim 18 and further including:
  • a manually operable actuator for the cover element, the actuator being coupled to the cover element via the wire loop; and
  • means for pivotably mounting the actuator to the base portion, such that manually pivoting the actuator moves the cover element between its closed and opened states.
  • 20. A lid member for an original container of a pourable component, the lid member being usable with a system for dispensing the pourable component from its original container into a receptacle according to a formula to form a mixture of pourable components, the lid member comprising:
  • a base portion adapted to releasably engage an open top of the original container of the pourable component;
  • a pour spout on the base portion through which the pourable component can be dispensed from its original container;
  • alignment means on a first portion of the base portion releasably engagable by a first engaging mechanism of the pourable component dispensing system for aligning the original container on the dispensing system; and
  • latch means on a second portion of the base portion spaced from the first portion, the latch means being releasably engagable by a second engaging mechanism of the pourable component dispensing system for securing the original container on the dispensing system against movement relative to the dispensing system, so that the pourable component can be dispensed from its original container, through the pour spout and into the receptacle according to the formula, to form the mixture of pourable components.
  • 21. The lid member of claim 20 wherein the alignment means includes:
  • a first alignment rod having opposite free ends, the free ends of the first alignment rod defining a first pair of registration lugs releasably engagable with the first engaging mechanism of the dispensing system; and
  • a second alignment rod spaced from the first alignment rod, the second alignment rod having opposite free ends, the free ends of the second alignment rod defining a second pair of registration lugs that are also releasably engagable with the first engaging mechanism of the dispensing system.
  • 22. The lid member of claim 21 wherein the latch means includes a pair of spaced latch lugs releasably engagable with the second engaging mechanism of the dispensing system.
  • 23. The lid member of claim 22, and further including:
  • a cover element for the pour spout;
  • means for movably securing the cover element to the base portion such that the cover element is movable between a closed state, wherein the cover element covers the pour spout and the pourable component is prevented from being dispensed from the original container, and an opened state, wherein the pour spout is uncovered and the pourable component can be dispensed from its original container through the pour spout and into the receptacle; and
  • operating means on the cover element releasably engagable by an operating device of the pourable component dispensing system that moves the cover element between its closed and opened states according to the formula to form the mixture of pourable components.
  • 24. The dispensing system of claim 20 wherein the pourable component is a liquid paint component, the receptacle is a paint receptacle, the formula is a paint formula, and the mixture of pourable components is a liquid paint mixture.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is related to U.S. patent application Ser. No. 09/189,214, entitled "Semi-Automated System for Dispensing Automotive Paint" filed on even date herewith, assigned to the same assignee, and incorporated herein by reference thereto.

US Referenced Citations (92)
Number Name Date Kind
2027297 Tramposch Jan 1936
2035646 Farrington Mar 1936
2068646 Hexter Jan 1937
2423969 Foltz Jul 1947
2428492 Haller Oct 1947
2521384 Marienthal Sep 1950
2585334 McCauley Feb 1952
2603461 Marienthal Jul 1952
2636643 McCauley Apr 1953
2757910 O'Neill Aug 1956
2802649 Stockton Aug 1957
2898094 O'Neill, Jr. Aug 1959
2965363 Worden Dec 1960
3021118 Dedoes Feb 1962
3041052 Dedoes Jun 1962
3118653 Dedoes Jan 1964
3147891 Fielitz Sep 1964
3162338 Grubelic Dec 1964
3175808 Dedoes Mar 1965
3284057 Duquette Nov 1966
3350083 Buhrer et al. Oct 1967
3412937 Chamberlain Nov 1968
3670785 Heiss et al. Jun 1972
3797744 Smith Mar 1974
3930598 Slagle Jan 1976
4090475 Kwan May 1978
4163523 Vincent Aug 1979
4225248 Para Sep 1980
4299500 Bassetti Nov 1981
4372666 Kaufmann Feb 1983
4380399 Godat et al. Apr 1983
4407584 Boudin et al. Oct 1983
4538222 Crain et al. Aug 1985
4585148 Ito Apr 1986
4630654 Kennedy, Jr. Dec 1986
4671892 Bereiter Jun 1987
4691850 Kirschmann et al. Sep 1987
4781312 Strazdins Nov 1988
4792236 Heinis et al. Dec 1988
4845965 Copeland et al. Jul 1989
4898308 Rudick Feb 1990
4926390 Murzsa May 1990
4941596 Marty et al. Jul 1990
4946100 Flemming et al. Aug 1990
4967938 Hellenberg Nov 1990
4976137 Decker et al. Dec 1990
5020700 Krzywdziak et al. Jun 1991
5020917 Homan Jun 1991
5027284 Senghaas et al. Jun 1991
5056686 Jarrett Oct 1991
5078302 Hellenberg Jan 1992
5094543 Mursa Mar 1992
5096071 Neri Mar 1992
5115842 Crafts et al. May 1992
5119973 Miller et al. Jun 1992
5153825 Yauk et al. Oct 1992
5156194 Von Nehring et al. Oct 1992
5160198 Fillon Nov 1992
5169232 Fillon et al. Dec 1992
5199788 Stallings Apr 1993
5203366 Czeck et al. Apr 1993
5251979 Larsen Oct 1993
5310258 Godat et al. May 1994
5335806 Dedoes Aug 1994
5358153 Caldwell et al. Oct 1994
5368388 Fillon Nov 1994
5368389 Dedoes Nov 1994
5413257 Amberger et al. May 1995
5437385 Fillon Aug 1995
5454639 Krzywdziak Oct 1995
5456534 Krzywdziak Oct 1995
5472277 Dedoes Dec 1995
5474211 Hellenberg Dec 1995
5482370 Dedoes Jan 1996
5496109 Dedoes Mar 1996
5498076 Krzywdziak Mar 1996
5498077 Krzywdzjak et al. Mar 1996
5503474 Krzywdziak Apr 1996
5511878 Dedoes et al. Apr 1996
5533802 Garganese Jul 1996
5542761 Dedoes Aug 1996
5586822 Krzywdziak Dec 1996
5603426 Krzywdziak Feb 1997
5622289 Dedoes Apr 1997
5676463 Larsen Oct 1997
5697703 Lucchetti Dec 1997
5800057 Lesimple Sep 1998
5813760 Strong Sep 1998
5839825 Krzywdziak Nov 1998
5904420 Dedoes May 1999
5947598 Dedoes Sep 1999
5988868 Dedoes Nov 1999
Foreign Referenced Citations (9)
Number Date Country
0 035 422 A1 Sep 1981 EPX
0 127 589 A2 Dec 1984 EPX
0 298 806 A1 Jan 1989 EPX
2102417 Apr 1972 FRX
2562874 Oct 1985 FRX
2742072 Jan 1998 FRX
858607 Dec 1952 DEX
29 51 731 Jul 1980 DEX
2 203 059 Oct 1988 GBX