Paint spray booth detackification composition and method

Information

  • Patent Grant
  • 4504395
  • Patent Number
    4,504,395
  • Date Filed
    Tuesday, February 7, 1984
    40 years ago
  • Date Issued
    Tuesday, March 12, 1985
    39 years ago
Abstract
Paint spray booth detackification compositions and methods are disclosed. The compositions comprise a hectorite clay, an anti-foaming agent and optionally, an aluminum oxide material and a montmorillonite clay. These compositions are introduced into a paint spray booth water wash system so as to detackify oversprayed paint.
Description

FIELD OF THE INVENTION
This invention relates to an improved method and composition for treating paint wastes and paint oversprays encountered in paint spray booths or any areas where these wastes and oversprays exist.
BACKGROUND OF INVENTION
Spray painting of automobile bodies, truck engines, appliances, and other industrial goods is customarily carried out in enclosed areas called paint spray booths (PSB). These booths act both to contain any fumes or oversprayed paint and to reduce the chances of dust contamination. These booths vary in size, but are somewhat basic in their design and operation. A typical booth would thus consist of a work area, back section with mist eliminators, and a sump.
The units to be painted generally pass through the work area while an airflow makes the oversprayed paint contact either the sump water or the spray from the water curtain. The air is scrubbed with recirculated water at the water curtain, passes through the mist eliminators, and is removed by an exhaust fan.
Because roughly one-half of all paint sprayed does not reach its intended article, a significant concentration of paint builds in the system and agglomeration can occur. The resultant mass is a sticky, tacky material which can plug the mist eliminators, shower heads, and even recirculating pumps. When this happens, scrubbing efficiency decreases leading to potentially hazardous conditions of unchecked paint emissions being discharged into the atmosphere. Such conditions may also present severe safety hazards to paint spray booth operators.
This process involves other problems. These tacky organic deposits are subject to bacterial growth and fungii proliferation which conditions generate corrosion and odor problems. In addition, the paint solids which are recirculated can form suspensions in the water. They remain tacky and can create expensive separation and disposal problems.
These problems show, therefore, the desirability to treat PSB water systems so as to reduce or prevent as much as possible, the agglomeration and deposition of oversprayed paint on critical PSB operation parts; to render the resultant sludge non-tacky and easily removable; and to provide a water quality such that it can be recycled for use in the system.
PRIOR ART
Many compositions and methods have been tried in an effort to reduce these problems. One of the first of these processes is disclosed in U.S. Pat. No. 2,585,407. This disclosure acknowledges the then conventional practice of allowing the overspray to come in contact with water treated with caustic to a pH above 8. The paint eventually settles by gravity to the bottom of the sump where it is removed by shovelling the sticky residue from the sump. This method eventually was considered unacceptable and as a result, more sophisticated chemical treatments have been developed to separate the paint from the water and turn it into a non-tacky, or detackified, solid which does not cause the aforementioned problems.
The prior art is replete with such chemical treatment approaches. For instance, the use of a combination of esters of aliphati dibasic acids and bentonite clay is suggested in U.S. Pat. No. 2,362,964 (Affeck). Similarly, U.S. Pat. No. 3,515,575 (Arnold et al) discloses the use of talc, chalk, starch, bentonite, clay, colloidal silica, calcium silicate, magnesium silicate, aluminum silicate, antifoams in general, and polycationic or polyanionic polymers to perform the detackification function.
Other prior art patents disclosing the use of bentonite clays in this environment include U.S. Pat. Nos. 4,220,456 (Block); 2,267,426 (Saunders et al); 4,185,970 (Dean); 4,125,476 (Dean); and 4,380,495 (Maher).
Despite the advantages of the above-noted prior art approaches, the present inventors faced the problem of developing a versatile detackification product and method capable of performing the intended detackification function for a wide degree of paint products including water based paints, oil based paints, lacquers, enamels and the newer high solids paints.
In addition to finding a versatile detackifier composition and method, the inventors attempted to develop a detackifier that remained suspended in the wash water over a relatively long time period, in contrast to certain of the prior art montmorillonite and bentonite clay detackifiers which quickly separated from the wash water and hence could no longer fulfill the desirable detackifier function.
Of even further importance is the need for a detackification composition and method capable of performing adequately with the difficult to "kill" epoxy, amino resin, vinyl resin based paints, alkyd resin, urethane and acrylic paints.
These and other problems have been substantially minimized by the compositions and methods herein disclosed and claimed.
DETAILED DESCRIPTION
In accordance with the invention, it has been discovered that hectorite clay effectively detackifies water-based paints, oil-based paints, lacquers and enamels.
Paint is a broad-based term used to describe the coating applied to a given object. Paints are normally composed of a film former (the resin which forms the coating), a solvent or carrier (water or oil); pigments (for color), and additives such as biocides, drying agents, viscosity modifiers, etc. In general, the solvent is used to classify the paint type: either water base or oil base. Technically, if the paint forms its coating by evaporation of the solvent without chemical reaction, it is a lacquer. If the coating is formed via cross-linking, it is an enamel.
The term "clay" is unusual in that it has decidedly different meanings to technologists in different fields. One standard definition for the term is that of a "naturally occurring sediment (including that obtained by alteration in situ by supergene and hydrothermal processes) or sedimentary rock composed of one or more minerals and accessory compounds, the whole usually being rich in hydrated silicates of aluminum, iron or magnesium, hydrated alumina, or iron oxide, predominating in particles of colloidal or near-colloidal size, and commonly developing plasticity when sufficiently pulverized and wetted." Kirk-Othmer, Encyclopedia of Chemical Technology, Volume 5, page 544, (2nd edition) John Wiley and Sons, Inc., New York, N.Y. 1964.
The "montmorillonite" clays refer generically to crystalline clays having three layers. These clays are composed of units having two layers of silica tetrahedrons and one centrally disposed dioctahedral or trioctahedral layer. Such montmorillonite clays may be classified as either having an expanding lattice structure or a nonexpanding lattice. The Encyclopedia of Chemistry, (third edition), Van Nostrand Reinhold Co., New York, 1973.
The term "montmorillonite" has also been used to specify a species member of the "montmorillonite" genus; i.e., an aluminous member of the group accorded the empirical formula ##STR1##
Both bentonite and hectorite are members of the expanding lattice montmorillonite subgenus. One difference between the two is that in hectorite, the aluminum present in the bentonite lattice is almost completely substituted by magnesium atoms. Another difference is that lithium and fluorine are absent from the bentonite lattice and present in the hectorite lattice. Bentonite may be characterized as a sodium aluminum silicate, with hectorite being a sodium magnesium-fluoro-litho silicate.
Hectorite has been given the empirical formula [Mg.sub.2.67 Li.sub.0.33 (Na.sub.0.33)]Si.sub.4 O.sub.10 (OH, F).sub.2.
One hectorite, which may be used in accordance with the invention is Capricorn H, Capricorn Chemicals. It has been reported to have the following analysis:
______________________________________Capricorn HHECTORITE______________________________________Shape: ElongateParticle Size: 0.8 .times. 0.89 .times. 0.0010(dispersed) micronsType: TrioctahedralColor: White to Light PinkComposition:Clay 50.0%Water 6.1Quartz 1.0Cristobalite --Calcite 30.0Dolomite 12.9Feldspar --Gypsum --Illite -- 100.0%Oxide Analyses:SiO.sub.2 55.86%Al.sub.2 O.sub.3 0.13Fe.sub.2 O.sub.3 0.03FeO --MnO NoneMgO 25.03CaO TrK.sub.2 O 0.10Na.sub.2 O 2.68Li.sub.2 O 1.05TiO.sub.2 NoneCO.sub.2 --F 5.96H.sub.2 O- 9.90H.sub.2 O+ 2.24 102.98%______________________________________
In contrast, Wyoming bentonite has been reported to have the following analysis:
______________________________________WYOMING BENTONITE______________________________________Shape: EquidimensionalParticle Size: 0.8 .times. 0.8 .times. 0.0010 microns(dispersed)Type: DioctahedralColor: Gray to BrownComposition: Clay 77.4% Water 7.9 Quartz 5.0 Cristobalite 0.7 Calcite -- Dolomite -- Feldsper 6.0 Gyspsum 1.0 Illite 2.0 100.0%Oxide Analysis: SiO.sub.2 55.44% Al.sub.2 O.sub.3 20.14 Fe.sub.2 O.sub.3 3.67 FeO 0.30 MnO -- MgO 2.49 CaO 0.50 K.sub.2 O 0.60 Na.sub.2 O 2.75 Li.sub.2 O -- TiO.sub.2 0.10 CO.sub.2 -- F -- H.sub.2 O 14.70 100.69%______________________________________
Other commercially available hectorite clays which may be used in accordance with the invention include "Hectorite Clay" a natural hectorite available from NL Industries; "Macoloid", a purified hectorite available from NL Industries and "Bentone EW", a beneficiated hectorite available from NL Industries.
By "natural" hectorite, we mean hectorite as it is mined. Typically such "natural" hectorite may comprise from around 40-60% hectorite and 40-60% other minerals.
Use of the phase purified hectorite in the disclosure and claims signifies a hectorite which, via processing, has had all or most of the non-clay components removed. This includes those hectorites which have been subjected to a drying step.
The phrase beneficiated hectorite is used herein to define hectorites that have been treated with or chemically reacted with organic or other chemical treatments.
Of course, those skilled in the art may be capable of developing a purely synthetic hectorite. Such synthetic hectorites also fall within the ambit of the invention.
We have surprisingly found that use of the hectorite clays results in effective paint detackification of many different paint types. Surprisingly, such hectorite clay detackifier products work much better than the prior art montmorillonites and bentonites. Although we do not intend to be bound by any particular theory of operation, it is postulated that the enhanced detackification efficacy is caused by the remarkable expansion capacity exhibited by hectorites.
Moreover, hectorite is more versatile than the other clays mentioned above in that it performs its detackification function with respect to a wide variety of paint types, and is especially effective in detackifying epoxy, polyurethane and vinyl resin paints which are difficult to detackify.
In combination with the hectorite clay, it is preferred to use an antifoaming agent such as a polyoxylkylene glycol or a silicone material so as to minimize foaming problems that may occur. In order to provide an effective yet inexpensive treatment, montmorilonite clays may be combined with the more expensive hectorite clay. Other materials such as alumina may also be added.
Compositions in accordance with the invention may comprise: (the percentages adding up to 100%)
10-100 weight % hectorite clay
01-60 weight % montmorillonite clay (when present)
01-25 weight % alumina (when present)
01-5 weight % antifoam (when present)
At present, the composition preferred for use comprises:
68.2 weight % hectorite clay: (200 mesh): particle size--75 microns.
19.5 weight % montmorillonite clay
9.8 weight % aluminum oxide (325 mesh)
2.5 weight % antifoam
Prior to use, the composition is first preferably slurried with water and then either shot or continuously fed to the spray system in an amount of about 0.5-50% by weight dry composition based on the weight of the oversprayed paint. The composition may also be added to the desired paint spray booth system in its dry powder form. Most preferably, the composition is added to the system at a rate of from about 1-15% by weight dry composition to weight oversprayed paint.
We have found that optimal results are attained when the dry composition is subjected to high-shear agitation upon mixing with water. If such high-shear agitation is not available, it is recommended that the composition be allowed to stand for about 24 hours after being mixed with water. Also, it is beneficial if the water in the wash system is maintained at or near a neutral pH (i.e., .apprxeq.6-8).
The following examples amply demonstrate that the compositions of the present invention may be successfully utilized in processes of the type which are directed toward the inhibition of pollution and/or contamination in paint spray booth systems. In these types of water wash systems, the water is used to wash air in the booth and to remove oversprayed paints, enamels or lacquers. Solids may be removed by conventional techniques via filters, etc. The water is normally recirculated so that it may once again perform its intended washing function. Upon treatment with the detackification compositions of the invention, the tackiness of the paints, enamels and lacquers is reduced and therefore, to the extent that these paints, enamels and lacquers are not separated from the liquid phase, they exhibit less tendency to adhere to the integral parts of the pumps, mist eliminators or sump sidewalls of the spray booths. Further, the agglomeration function of the detackification compositions facilitates removal of these waste paint solids from the water so that relatively clean water can be recirculated in the system. Another important function of the treatment of the present invention is to reduce the volume of the resultant sludge.
The detackification compositions (based upon the weight of oversprayed paint) can be admitted in the paint spray booth system at varied locations including; the sump, upstream from pumps, or at any advantageous position along the circulating water system.
The invention will now be further described with reference to a number of specific examples which are to be regarded solely as illustrative and not as restricting the scope of the invention.





SPECIFIC EMBODIMENTS
Example 1
In order to access the effectiveness of hectorite clays in detackifying paints, each of the clays listed below was prepared as a 5% weight solution in water. Then, 2 cc of each 5% clay solution were mixed with 98 cc water and 1 cc of the test paint in a jar. After this addition, the resulting mixture was agitated and then allowed to settle. The overall resulting water clarity was judged subjectively, and observations were made as to whether the paint coated the glass jar, the characteristics of the floc formed, and the approximate ratio of sunk to floating paint. Results are recorded in Tables IA and IB hereinbelow.
TABLE IA______________________________________High Solids White Paint - styrene/melamine/acrylate binder, ketone/alcohol/acetate solvent Jar Test ResultsClay Coated % Sink/Additive Floc Glass Float Comments Rating______________________________________montmoril- oily yes 10/90 globby fairlonite N-C beadsmontmoril- oily yes 70/30 globby poorlonite/ contcalciumcarbonatesodium mont- oily yes 65/35 small globs poormorillonite N-Csodium mont- small, Yes 60/40 small floc fairmorillonite oilysodium mont- med, Yes 50/50 medium fairmorillonite oily flocsodium mont- NC yes 50/50 globby poormorillonitepurified fluffy no 20/80 excellent excellenthectorite killmodified sticky yes -- globby, badorgano clay unkilledmodified sticky yes 60/40 unkilled poororgano claykaolin oily, yes non-tacky fair N-Chectorite fluffy no 20/80 excellent excellent killwestern small yes 20/80 small paint goodbentonite beads beads in flocswestern small yes 40/60 small paint goodbentonite beads beads in flocswestern small yes 40/60 small beads goodbentonite beads in floccrude kaolin globby yes -- unkilled poorkaolin, globby yes 30/70 unkilled poorceramic,gradecontrol globby yes -- unkilled poor______________________________________ N-C means a noncontinuous layer of paint Cont. means a continuous layer of paint % sink/float relates to the floc layer
TABLE IB______________________________________Blue Lacquer Paint - methacrylate binder,ester/mixed aromatic solvent - Jar Test ResultsClay Coated Sink/Additive Floc Glass Float Comments Rating______________________________________montmoril- small no 0/100 fluffy, goodlonite small flocsmontmoril- beady, yes 5/95 globby, poorlonite/ cont oilycalciumcarbonatesodium mont- fluffy no 0/100 small, goodmorillonite fluffy flocsodium mont- fluffy no 0/100 small, v. goodmorillonite fluffy flocsodium mont- small no 0/100 moderate goodmorillonite foamsodium mont- fluffy yes 0/100 moderate goodmorillonite foampurified fluffy no 0/100 small, excellenthectorite fluffy flocmodified globby yes -- all paint v. badorgano-clay stuck to glassmodified beady no 0/100 continuous fairorgano-clay layerKaolinite beady- no 10/90 non- good N-C continuous layerhectorite fluffy no 0/100 wide floc excellent layerwestern no 2/98 clay/paint goodbentonite separationwestern small no 0/100 fluffy, goodbentonite no 20/80 small clay/ good paint separationwestern globby, no 5/95 small globs fairbentonite contcrude kaolin beady yes unkilled, poor cont.kaolin beads yes 0/100 oily, poorceramic continuousgradecontrol globby yes 0/100 oily, poor continuous______________________________________
Example 2
Another series of jar tests was performed with the clays, talcs, zeolites and silicates listed below being used as detackifying agents. The procedure used in Example 1 was repeated. This time, however, foaming propensity was measured on a subjective 1 to 5 scale with #1 signifying worse than control, #2 signifying control, and #5 indicating a lack of foam formation. Floc depth was measured (in milliliters) as opposed to the subjective sink/float ratio used in Example I. In addition to the other subjective characteristics measured in conjunction with Example 1, a "finger test" was performed in which the tester's finger was placed in the formed floc and then visual and tactile observations recorded. All results appear in Tables IIA-C. As used herein, Composition "A" refers to a composition consisting of 68.2 weight % hectorite, 19.5 weight % montmorillonite, 9.8 weight % aluminum oxide, and 2.5% polyoxylalkylene glycol antifoam.
TABLE IIA______________________________________BROWN PAINT - melamine modified alkyd binder,ethylene glycol monoethylether acetate solvent Float CoatingDetackifying Floc Sink Finger onAgent Description Foam (MM) Test Jar______________________________________Composition Fluffy, 1 5/11 oily, None"A" small beads smears non- tackynatural Fluffy, 1 12/18 oily, Nonehectorite small beads smears non- tackypurified Fluffy, 1 11/34 Oily, Nonehectorite small beads smears non- tackymodified Oily, con- 5 2/0 Greasy Noneorgano-clay tinuous non- tackybeneficiated Fluffy, 1 18/25 Slightly Nonehectorite small beads rollablemodified Globby, 5 --/-- Not Yesorgano-clay non- killed continuousmodified Globby, 5 --/-- Not Yesorgano-clay non- killed continuousmodified Globby, 5 --/-- Not Yesorgano-clay non- killed continuoussodium Oily, con- 5 2/0 Smears Yessilicon tinuousaluminatehydrated Oily, con- 5 2/1 Smears Yessilicon tinuousdioxideattapulgite Fine, 5 Beady Unkilled Minimalclay beady, layer/3 continuousattapulgite Oily, 5 --/thin Unkilled Con-clay globby, layer tinuous non- continuoustalc Small 4 2/1 Oily Yes beady & flakytalc Medium 4 2/1 Oily Yes beady floctalc Beady 5 2/1 Oily No layer on bottomtalc Beady 5 2/1 Oily No layer on bottomzeolite sieve Oily, non- 5 1/1 Dis- Yes continuous persionzeolite sieve Oily, non- 5 1/1 Dis- Yes continuous persionzeolite Oily, non- 5 0/2 Dis- Yes continuous persedzeolite Oily, non- 5 0/2 Dis- Yes continuous persedhollow, Continuous, 5 2/0 Heavy Yesinorganic globby coatingmicrospherehollow, Continuous, 5 2/0 Heavy Yesinorganic globby coatingmicrospherehollow, Continuous, 5 3/0 Heavy Yesinorganic globby coatingmicrosphereactivated Medium 5 0/2 Dis- Yesbauxite beady floc persion______________________________________
TABLE IIB______________________________________RED/BROWN PRIMER - melamine modified epoxy binder,alcohol/acetate/mixed aromatics solvent Float CoatingDetackifying Floc Sink Finger onAgent Description Foam (MM) Test Jar______________________________________Composition Fluffy, tiny 1 9/2 Smears, No"A" beads in non- floc tackyhectorite Fluffy, tiny 1 10/2 Smears, No beads in non- floc tackypurified Fluffy, tiny 1 20/3 Rollable Nohectorite beads in flocmodified Beady, 5 4/1 Greasy, Yesorgano-clay flaky flocs non- tackybeneficiated Fluffy, tiny 1 22/2 Rollable, Nohectorite beads in non- floc tackymodified Globby, 5 --/-- Tacky Yesorgano-clay non- continuousmodified Globby, 5 --/-- Tacky Yesorgano-clay non- continuousmodified Small 5 --/-- Tacky Yesorgano-clay globs, non- continuoussodium Beady, con- 5 2/1 Oily Yessilicon tinuousaluminatehydrated Beady 4 3/1 Oily Yessilicondioxidetalc Fluffy floc 4 3/2 Oily Slighttalc Fluffy floc 4 3/1 Oily Non-con- tinuoustalc Globby 5 3/1 Oily Yes continuoustalc Globby 5 3/1 Oily Yes continuouszeolite sieve Beady & 5 1/1 -- Yes globbyzeolite sieve Tiny beads 5 1/1 -- Yes & globbyzeolite Beady, con- 5 2/0 Globby, Yes tinuous smearszeolite Beady, con- 5 2/0 Yes tinuoushollow, Beady, 5 2/0 Greasy Yesinorganic globbymicrospherehollow, Beady, 5 2/1 Greasyinorganic globbymicrospherehollow, Beady, 5 2/1 Greasyinorganic globbymicrosphereactivated Beady, 5 1/1 Oily Yesbauxite globby layer on bottom______________________________________
TABLE IIC______________________________________CAMEL TAN - melamine modified alkyd/styrene binder,ethylene glycol monethyl ether acetate/mixed aromatics solvent Coat- Float ing Floc Foam Sink onAdsorbant Description (1-5) (MM) Class II Jar______________________________________Composition Fluffy with 1 3/38 Oily, coats No"A" tiny beads finger, non- tackyhectorite Fluffy with 1 3/20 Oily, coats No tiny beads finger, non- tackypurified Fluffy with 1 7/55 Non-tacky, Nohectorite tiny beads light coatingmodified Continuous 5 --/-- Coats Yesorgano-clay with some finger, beads non-tackybeneficiated Fluffy with 1 22/32 Non-tacky, Nohectorite tiny beads light coatingmodified Oily, 5 1/0 Oily, non- Yesorgano-clay globby, tacky non- continuousmodified Oily, 5 1/0 Oily, non- Yesorgano-clay globby, tacky non- continuousmodified Beady, 5 2/0 Oily, non- Yesorgano-clay flaking tackyattapulgite Oily, non- 5 --/-- Oily, non- Yesclay continuous tackyattapulgite Oily, non- 5 --/-- Oily, non- Yesclay continuous tacky______________________________________
Discussion Tables I and II
The hectorite clays are clearly the best paint detackifiers/dispersants of the materials evaluated. The montmorillonite clays were somewhat efffective, but not nearly as effective as the hectorite clays. All of the other tested products were ineffective.
Quite surprisingly, the hectorite products appeared to work well on all of the paint samples tested. It is noted that all of the tested hectorite samples exhibited a tendency to foam. Hence, Composition "A" was developed so as to formulate a hectorite based detackifier with an antifoam component.
Example 3
In order to ascertain the detackification efficacy of the antiforam containing hectorite product, another series of jar tests, as per Examples 1 and 2, was undertaken. This time, the hectorite product was compared to other commercially available, well-known detackifier products. Results are shown in Tables IIIA-C.
TABLE IIIA__________________________________________________________________________Red/Brown Primer - melamine modified epoxybinder, alcohol/acetate/mixed aromatics solvent Coating Floc Floc TreatmentProduct/ on Depth Descrip- Finger Rating (perPaint Foam* Jar* (mm) tion Test paint)__________________________________________________________________________Composi- 3 5 4 fluffy floc, light coat, good, besttion "A" no beads of slight tack, overall paint, easily not oily, disperses, does not medium floc smearmontmoril- 4 5 2 very fine light coat, goodlonite floc, easily slight tack, disperses, not oily, unused clay does not on bottom smearmontmoril- 5 3 4 medium floc heavy coat, poorlonite/ with chunks smears oncalcium of paint glasscarbonatediatoma- 5 4 2 medium floc medium coat, fairceous with chunks oily, tackyearth of paintControl 5 2 0 chunky, un- oily, heavy poor killed coat, un- killed__________________________________________________________________________
TABLE IIIB__________________________________________________________________________Silver - acrylic modified polyesterbinder, alcohol/acetate/acetone solvent Coating Floc Floc TreatmentProduct/ on Depth Descrip- Finger Rating (perPaint Foam* Jar* (mm) tion Test paint)__________________________________________________________________________Composi- 4 5 13 fluffy, easi- light coat- good-tion "A" ly disperses, ing on fin- best fine particle ger, no overall size, small smear on beads of glass, oily paint in flocmontmoril- 5 5 3 floc easily medium coat goodlonite disperses, on finger, medium size oily flocmontmoril- 5 3 0 terrible, unkilled, badlonite chunks of oily, tacky paint on bottomdiatoma- 5 4 1 medium flocs unkilled, poorceous with chunks oily, tackyearth of paintControl 5 1 0 continuous unkilled, bad layer__________________________________________________________________________
TABLE IIIC__________________________________________________________________________GREY PRIMER (high solids) Coating Floc Floc TreatmentProduct/ on Depth Descrip- Finger Rating (perPaint Foam* Jar* (mm) tion Test paint)__________________________________________________________________________Composi- 4 5 11 fluffy, easi- light coat good-tion "A" ly disperses, on finger, best fine particle not oily, results - size, small no smear beads of paint in flocmontmoril- 4 5 4 medium size medium coat, goodlonite floc with not oily, large beads smeared on of paint, jar cloudy H.sub.2 Omontmoril- 5 3 0 chunks of greasy, poorlonite/ paint float- heavy coatcalcium ingcarbonatediatoma- 5 4 2 beads of oily, un- fairceous paint, no killed, notearth real flocs tackyControl 5 3 0 continuous greasy, not poor glob on killed bottom__________________________________________________________________________ *Rating as follows: 0 = very heavy; 5 = none at all. All numbers in between represent degrees of 0 to 5.
It is apparent from the examples that the hectorite detackification agents of the invention provide excellent results in conjunction with a variety of differing paint types.
In accordance with the patent statutes, the best mode of practicing the invention has been herein set forth. However, it will be apparent to those skilled in the art that many modifications can be made without departing from the spirit of the invention. It is to be understood that the scope of the invention is to be limited solely by the scope of the appended claims.
Claims
  • 1. A process for controlling pollution and contamination in paint, lacquer or enamel spray booths in which water is used to wash air in said booth and to remove over-sprayed paints, enamels or lacquers, said water being recirculated for further use in washing the air in said spray booths, said process comprising adding to said water an effective amount for the purpose of a detackifying composition consisting essentially of a hectorite clay having the empirical formula [Mg.sub.2.67 Li.sub.0.33 (Na.sub.0.33)]Si.sub.4 O.sub.10 (OH,F).sub.2, said amount being sufficient to reduce the tackiness of said paints, enamels and lacquers and to thereby reduce the tendency of oversprayed paints, enamels and lacquers to adhere to pump parts, mist eliminators, or sump sidewalls of said spray booths, said composition being effective to condition paint, enamel and lacquer solids so as to facilitate removal of said solids from said water.
  • 2. Process as recited in claim 1 wherein said composition is added to said water at a rate of between about 0.5-50% by weight based upon the weight of said over-sprayed paint, enamel or lacquer.
  • 3. Process as recited in claim 2 wherein said composition is added to said water at a rate of between about 1-15% by weight based upon the weight of said over-sprayed paint, enamel or lacquer.
  • 4. Process as recited in claim 1 wherein said hectorite clay is a member selected from the group consisting of natural hectorite clay, purified hectorite clay, beneficiated hectorite clay synthetic hectorite clay and mixtures thereof.
US Referenced Citations (9)
Number Name Date Kind
2267426 Saunders et al. Dec 1941
2362964 Affeck Nov 1944
2585407 Rives Feb 1952
3429823 Cataneo Feb 1969
3515575 Arnold et al. Jun 1970
4125476 Dean Nov 1978
4185970 Dean Jan 1980
4220456 Block Sep 1980
4380495 Maher Apr 1983
Foreign Referenced Citations (1)
Number Date Country
2052459 Jan 1981 GBX
Non-Patent Literature Citations (6)
Entry
Form Osha-20 (Mat'l Safety Data Sheet) "Sodium Montmorillonite", Benton Clay Co., Mills, WY, 1982.
Product Data+Mat'l Safety Data Sheets, "Macaloid" NL Chemicals, Hightstown, NJ, '81.
Mat'l Safety Data Sheet, "Hectorite", NL Chemicals, Hightstown, NJ, '81.
Kirk-Othmer, Encyclopedia of Chemical Technology, vol. 5, p. 544, (2nd edition), J. Wiley & Sons, NY, NY, 1964.
The Encyclopedia of Chemistry, 3rd ed., Van Nostrand Reinhold Co., NY, 1973, pp. 272-274.
Martin Barr, General Characteristics and Applications of the Montmorillonite Hydrocolloids, Am. Perfumer and Cosmetics, vol. 78, Feb. 1963.