This application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2015/001366, filed on Jul. 3, 2015, which claims priority to German Application No. DE 10 2014 009 945.8 filed on Jul. 4, 2014, each of which applications are hereby incorporated herein by reference in their entireties.
The present disclosure relates to a painting method and a painting facility for painting a component with a decorative layer, in particular for painting a motor vehicle bodywork component.
In the painting of motor vehicle bodywork components, there sometimes exists the desire for a multi-coloured paint coating, wherein the motor vehicle bodywork component is provided with a decorative layer (e.g. decorative stripes, designer stripe, pattern, graphic or contrast surface).
One possibility for such a decorative coating lies therein that corresponding films are affixed onto the base coat or onto the clear coat, wherein such films can also be overcoated with a clear coat.
Another possibility for realizing such a decorative coating lies therein that following the application and baking of the clear coat, the desired decorative layer is shaped with masking, wherein the free surface is then painted automatically or by hand. Following this application of the decorative layer, a further clear coat layer can then be applied onto the decorative layer.
In a few exceptional cases (e.g. for luxury limousines), decorative stripes are applied by hand with a brush, although this is not suitable for mass production.
If the decorative layer consists of a contrast surface with a differing colour, then the motor vehicle bodywork can be moved twice in succession through the same paint line or through two separate lines, wherein base coat and clear coat are applied respectively. Herein, in each case, the partial regions of the motor vehicle bodywork which are not to be coated are masked.
In known painting methods for a decorative coating, the base coat and clear coat layer serving as a substrate for the decorative layer can be intermediate-dried and baked, wherein the intermediate drying and the baking would extend over the entire component surface, which would be associated with a correspondingly high expenditure of energy and time.
The development of a painting method which applies coating agents or paints with sharp edges and over-spray-free without further auxiliary agents (DE 10 2013 002 413.7, DE 10 2013 002 412.9, DE 10 2013 002 411.0, DE 10 2013 002 433.1) enables the manufacturing of decorative layers, patterns or contrast surfaces without masking. With such a method, the decorative layer, the pattern or the contrast paint can be applied, for example, directly onto a base coat. However, for this purpose (at least for water-based base coats), pre-drying thereof is necessary. According to the prior art, for this purpose, the entire coating object would be conveyed through a convection dryer. Before the application of the clear coat, the content of volatile constituents in the decorative layer, pattern layer or contrast layer is reduced so far that no faults arise in the clear coat layer. According to the prior art, this means a renewed passage of the complete component through a dryer with subsequent cooling. This process requires a high energy input. According to the prior art, the overspray-free painting method would thereby only enable savings through the lack of a need for masking materials.
From DE 38 06 257 A1, a painting facility for painting motor vehicle bodyworks is known wherein an infrared radiator is arranged laterally adjoining the painting line and dries the sill region of the motor vehicle bodyworks in order to be able to apply a decorative layer on the sill. This known painting facility is, however, only suitable for decorative coating in the sill region.
Reference is also made, with regard to the prior art, to DE 20 2008 008 428 U1 and DE 20 2007 008 852 U1.
The painting method according to the present disclosure provides initially that at least one paint layer which can then serve as the basis for the decorative layer is applied to the component.
In some implementations, this paint layer is a base coat layer that is known per se from the prior art and therefore need not be described in detail. It should be understood that, e.g., the paint layer of the present disclosure is typically not the lowest paint layer, which is applied to the component. In a typical multilayer paint for painting motor vehicle bodywork components, further paint layers are situated under this paint layer, for example, a cathodic dip coating (KTL) or a filling layer. It should also be understood that the paint layer of the present disclosure is not restricted to a wet paint. Rather, e.g., the paint layer in the context of the present disclosure can consist of powdered paint.
Furthermore, the painting method according to the present disclosure provides that an areally delimited—i.e. defined across an area—decorative layer (e.g. a decorative stripe, graphic, contrast surface or pattern) is applied to the component. The decorative layer is herein applied to the paint layer. In some implementations, the decorative layer is applied directly onto the paint layer, i.e. without a further intermediate layer. In other implementations, the decorative layer is applied indirectly onto the paint layer, i.e. with a further layer arranged therebetween.
With regard to the application of the decorative layer, reference should also be made to the aforementioned patent application DE 10 2013 002 433.1, so that the content of this patent application is fully incorporated within the present description.
The application of the decorative layer takes place with a suitable method which is able to apply a coating agent with sharp edges and overspray-free, as described, for example, in the patent application DE 10 2013 002 412.9 also mentioned above.
The applicator used according to the present disclosure for applying the paint may be one of known devices including, e.g., atomisers, print heads, nozzle arrangements or the like. In particular, however, it can involve a device which is suitable for the painting method mentioned above which applies painting or other coating agents with sharp edges and overspray-free without further aids.
The decorative layer of the present disclosure is not restricted to the aforementioned decorative design or decor stripes. Rather the decorative layer in some implementations of the present disclosure also comprises graphics, images and the like. A further example of a decorative layer is the painting of a partial area (e.g. a roof strut or a roof area of a motor vehicle bodywork) which is to be painted in a colour different from the remaining motor vehicle bodywork. The expression decorative layer in the present disclosure therefore covers any partial areas of a component surface which are to be coated with a different coating agent (e.g. in another colour tone or in another level of glossiness) from the remainder of the component surface. Furthermore, the phrase a partial area of the component surface used in the context of the expression decorative layer of the present disclosure means that the decorative layer covers only a partial area of the component surface, i.e. not the whole component surface. According to the principles of the present disclosure, in some exemplary embodiments, the decorative layer is not areally continuous, but covers the component surface only at the respective decorative details (e.g. lines).
Furthermore, the painting method according to the present disclosure provides that the component is dried in order to reduce the content of volatile constituents in the paint layer or in the decorative layer and to bring it below the residual moisture level necessary for the further painting process. For example, the residual moisture in typical aqueous paint systems following the intermediate drying lies, in some implementations, between 5% and 20%, and, in some such implementations, between 8% and 15%. The residual moisture in paint systems based on organic solvents can differ significantly therefrom, although this usually plays a subordinate role since, due to the organic solvents, the evaporation is so rapid that no process problems (e.g. bubbles, pinholes and dulling) occur, such as may occur due to other solvents remaining in the film.
The painting method according to the present disclosure further provides that the component is dried only in a limited area within a particular drying region which does not comprise the whole component surface, wherein the drying region at least partially comprises the decorative region. The drying step provided according to the present disclosure thus has a significantly lower time and energy requirement since it is not the entire component surface that is dried, but only the drying region of limited area.
Furthermore, the present disclosure provides that the limited drying region is moved over the component surface. For example, for this purpose a multi-axis drying robot which moves a drying unit over the component surface in order to dry the component surface at the respective correct site can be used.
The painting method according to the present disclosure is herein not restricted to a particular paint type (for example, water-based, solvent-containing, UV-curing).
In one implementation of the painting method according to the present disclosure, the paint layer is dried over its whole component surface before the application of the decorative layer. Subsequently, the limited area decorative layer is applied to the dried paint layer. Finally, the decorative layer is then dried, wherein this drying of the decorative layer takes place in a limited area within the drying region and does not cover the whole component surface. In this implementation of the present disclosure, the limited area drying of the decorative layer may result in saving of time and energy.
In another implementation of the painting method according to the present disclosure, the paint layer is dried only in a limited area within the drying region before the application of the decorative layer, wherein the limited area drying region at least partially covers the later decorative region. Following this limited area drying of the paint layer, the decorative layer is then applied onto the paint layer in the decorative region. In this implementation of the present disclosure, the saving of time and energy may result from the limited area drying of the decorative layer, since the paint layer is not dried over the whole component surface, but only within the drying region.
In one exemplary implementation of the painting method according to the present disclosure, the drying region and the decorative region coincide areally, i.e. each point of the drying region also lies within the decorative region and vice versa.
In some implementations, the drying region entirely encompasses the decorative region and is larger than the decorative region.
Furthermore, in some implementations, the decorative region is larger than the drying region and completely encompasses the drying region, wherein the drying region merely covers the peripheral edge of the decorative region. The drying at the peripheral edge of the decorative region is important so that the peripheral edge of the decorative region does not run, which would be visually unacceptable.
Furthermore, in some implementations the decorative region is larger than the drying region, wherein the drying region covers the peripheral edge of the decorative region and extends outwardly beyond the peripheral edge of the decorative region.
In the context of the present disclosure, different drying types are distinguished, specifically, first, the unlimited area drying of the component over its entire component surface. Second, another drying type is the limited area drying of the component within the drying region as provided according to the present disclosure. These two different drying types lead typically to a particular residual moisture level after the drying.
In an implementation of the present disclosure, the residual moisture level achieved with the limited area drying is essentially the same as the residual moisture level achieved with the areally unlimited conventional drying.
In some implementations, the residual moisture level achieved in the limited area drying according to the principles of the present disclosure is lower than the residual moisture level achieved in the unlimited area drying.
Finally, in other implementations, the residual moisture level achieved in the limited area drying is higher than the residual moisture level achieved in the unlimited area drying.
In one exemplary implementation of the present disclosure, drying of the paint layer is limited (limited area drying) as only required for applying the decorative layer (characterised, for example, by even strength of the decorative layer, a good progression of the decorative layer, no mixing of the decorative paint with the base paint, no sinking of the decorative paint into the base paint). It should be understood that, according to the principles of the present disclosure, in limited area drying, the drying is insufficiently extensive to provide a residual moisture level to enable application of a clear coat layer onto the paint layer without difficulty.
In the context of the present disclosure, different drying methods can be used some of which are per se known from the prior art and therefore need not be described in detail.
For example, in some implementations, the drying can take place by irradiation of the component to be dried, with a radiation. The radiation is, for example, electromagnetic radiation, e.g. microwave radiation, infrared radiation or ultraviolet radiation, or bombardment with electrons. The electromagnetic radiation can be generated, for example, by LEDs (light-emitting diodes) OLEDs (organic light-emitting diodes), halogen incandescent lamps or carbon-infrared radiators.
For example, the electromagnetic radiation can be short-waved with a wavelength in the region of 0.8 μm to 1.2 μm. The radiation can, however, also be medium-wavelength radiation with a wavelength in the region of 1.2 μm to 4 μm. In other implementations, that the radiation is long-waved with a wavelength in the region of 4 μm to 10 μm. Finally, in other implementations, the radiation is microwave radiation which can have a wavelength, for example, in the order of a few cm (1-100 cm). According to the present disclosure, drying with UV may be utilized if the paints are suitable therefor.
The radiation source per se can also be sharply delimited and/or directed (for example, of the type of a laser) in order to irradiate and dry at least a part of the area to be dried.
In some implementations, the component is dried by air drying, for example, with cold air (air temperature from 0° C. to +40° C.), warm air (air temperature from +40° C. to +300° C.) and/or with dry air with a relative humidity of less than 20%, 10%, 5% or 1%.
Finally, some implementations of the present disclosure include negative pressure drying, wherein the component to be dried is subjected to a local negative pressure.
The aforementioned negative pressure drying can take place, for example, with a suction bell which is guided over the component surface to be dried and generates a locally delimited negative pressure.
In the drying described above by radiation or air, the limited area drying region can be masked by a shield so that the radiation or an air stream essentially only impacts upon the drying region.
Regarding the aforementioned air drying, it should be mentioned that an air stream can be directed through a diffuser onto the component surface to be dried, so that the air stream diffusely impacts upon the component surface to be dried. For example, the diffuser can comprise a wire mesh, porous sintered metal or porous sintered ceramic or can consist of porous sintered plastics.
According to the principles of the present disclosure, the radiation drying can be combined with air drying (cold, hot, dry) and/or with negative pressure drying.
Furthermore, the air stream for drying the component can be directed through at least one nozzle onto the component surface to be dried. In one implementation of the present disclosure, a plurality of nozzles are oriented parallel to one another and perpendicularly to the component surface to be dried. In other implementations, the nozzles are oriented parallel to one another and inclined to the component surface to be dried. Furthermore, in other implementations, the nozzles are oriented obliquely inwardly at the peripheral edge of the drying region and, in the centre of the drying region, substantially perpendicularly to the component surface to be dried.
It should be understood that the combination of obliquely and perpendicularly oriented nozzles is not restricted to the implementation described. Rather, a plurality of implementations of the present disclosure include both nozzle types are arranged in different ways on the drying unit. The nozzle exit can be round, oval or slit-shaped.
The nozzles can also be diffuse, i.e. arranged in many mutually different angles and not subject to any symmetry.
In an exemplary implementation of the present disclosure, the component can be dried with a drying unit which can emit, for example, air or radiation in order to dry the component. It is herein advantageous if the drying unit has a form which is adapted to the form of the component to be dried. For example, the drying unit can therefore have a planar, convex or concave form.
In one exemplary implementation of the present disclosure, the drying unit is moved together with the applicator along a painting path over the component, in particular with a multi-axis painting robot. In some such implementations, the drying unit dries the component, and the applicator applies the decorative layer.
In some such implementations, the drying unit is arranged in the path direction in front of the applicator, so that the paint layer is firstly dried by the drying unit, whereupon the subsequent applicator then applies the decorative layer onto the intermediate-dried paint layer.
In other such implementations, the drying unit is arranged behind the applicator in the path direction, so that on a movement, the applicator first applies the decorative layer and then the subsequent drying unit dries the previously applied decorative layer in a limited area.
In other implementations of the present disclosure, the drying and application of the decorative layer takes place sequentially on separate movement paths. For example, initially, a movement path of the drying unit takes place, wherein the drying unit then dries the paint layer in a limited area. Subsequently, a second movement path then takes place, wherein the applicator applies the decorative layer. In other such implementations, the decorative layer is first applied on the first movement path and then, on the subsequent second movement path, the drying unit dries the decorative layer.
The present disclosure includes variations in the sequence of steps of the painting method.
In one exemplary implementation of the present disclosure, first a base coat layer is applied to the component. The base coat layer is then intermediate-dried on the whole component surface, for example, with air drying with an air temperature of +60° C. to +80° C. Following this intermediate drying and subsequent cooling of the base coat layer, the decorative layer is then applied to the intermediate-dried base coat layer. Subsequently, a limited area drying of the decorative layer within the drying region then takes place, wherein the drying region at least partially encompasses the decorative region. Finally, a clear coat layer is applied to the base coat layer and the decorative layer.
In another exemplary implementation of the present disclosure, first a base coat layer is applied to the component. Subsequently, a limited area drying of the decorative layer of the base coat layer then takes place within the drying region, wherein the drying region encompasses the later decorative region. Thereafter, the decorative layer is applied to the limited area intermediate-dried base coat layer within the decorative region. In a next step, an intermediate drying of the base coat layer and of the decorative layer then takes place on the whole component surface, for example, with air drying with an air temperature of +60° C. to +80° C. Finally, a clear coat layer is then applied to the base coat layer and the decorative layer.
In a further exemplary implementation of the present disclosure, first a base coat layer is applied to the component. Subsequently, a limited area drying of the base coat layer then takes place within the drying region, wherein the drying region encompasses the later decorative region. Thereafter, the decorative layer is applied to the intermediate-dried base coat layer within the decorative region. In a further step, a limited area drying of the base coat layer and of the decorative layer then takes place within the drying region, wherein the drying region encompasses the decorative region. Finally, in another implementation of the present disclosure, a clear coat layer is applied to the base coat layer and the decorative layer.
A further exemplary implementation of the present disclosure provides first that a base coat layer is applied to the component. Subsequently, a limited area drying of the base coat layer then takes place within the drying region, wherein the drying region encompasses the later decorative region. In a further step, an application of the decorative layer onto the limited area intermediate-dried base coat layer within the decorative region then takes place. Finally, a clear coat layer is then applied to the base coat layer and the decorative layer.
According to another implementation of the present disclosure, it is provided, by contrast, that initially a base coat layer is applied to the component, wherein the base coat layer is then subjected to an intermediate drying over the whole component surface, for example, with air drying with an air temperature of +60° C. to +80° C. Subsequently, a clear coat layer is then applied to the intermediate-dried base coat layer. In a further step, it is then provided that the clear coat layer is dried in a limited area within the drying region, wherein the drying region encompasses the later decorative region. Thereafter, the decorative layer is then applied within the decorative region. Then, finally, a drying of the clear coat layer and of the decorative layer takes place on the entire component, in particular by air drying, for example, with an air temperature of +130° C. to +150° C. This drying of the clear coat layer and of the decorative layer is thus to be differentiated from the intermediate drying in the other implementations of the present disclosure described above, since the intermediate drying takes place with a lower air temperature of +60° C. to +80° C.
A further implementation of the present disclosure provides that first a base coat layer is applied to the component. Then subsequently, an intermediate drying of the base coat layer takes place on the whole component surface, for example, with air drying with an air temperature of +60° C. to +80° C. Then in a subsequent step, a clear coat layer is applied to the intermediate-dried base coat layer. In a next step, the clear coat layer is dried, specifically on the whole component surface, in particular, with air drying with an air temperature of +130° C. to +150° C. Thereafter, the decorative layer is then applied within the decorative region on the clear coat layer. Finally, a limited area drying of the decorative layer within the drying region then takes place, wherein the drying region encompasses the decorative region.
Furthermore, another exemplary implementation of the present disclosure is where, first, a base coat layer is applied to the component. Subsequently, a clear coat layer is then applied to the base coat layer, wherein the clear coat layer is applied without any intermediate drying, wet-on-wet onto the base coat layer. The clear coat layer and the base coat layer are then dried on the entire component, in particular by air drying, for example, with an air temperature of +130° C. to +150° C. Thereafter, the decorative layer is then applied within the decorative region. Finally, a limited area drying of the decorative layer within the drying region can then take place, wherein the drying region encompasses the decorative region.
A further implementation of the present disclosure provides, that first a base coat layer is applied to the component. In a further step, an application of the decorative layer then takes place. Subsequently, a limited area drying of the decorative paint layer takes place. Finally, a clear coat layer is then applied to the base coat layer and the decorative layer.
The different implementations of the present disclosure described above can also be combined with additional further steps which are inserted arranged before, after or between the above-described steps.
Finally, the present disclosure also includes a painting facility for applying a decorative coating. The painting facility according to the present disclosure has an application apparatus for applying a paint layer. This application apparatus can be, for example, a conventional painting robot with a rotary atomiser.
Furthermore, the painting facility according to the present disclosure has an application apparatus in order to apply the limited area decorative layer to the component. This application apparatus can be, for example, a conventional rotary atomiser, but in particular an applicator as described, for example, in DE 10 2013 002 413.7, DE 10 2013 002 412.9 and DE 10 2013 002 411.0, so that the content of these patent applications is fully incorporated within the present description.
Furthermore, the present disclosure also comprises a drying unit for drying the component to reduce the content of volatile constituents. The painting facility according to the present disclosure is further distinguished in that the drying apparatus is configured and operated so that the component is dried only in a limited area within a particular drying region, wherein the drying region at least partially comprises the decorative region.
Herein, the present disclosure provides that the drying unit is moved over the component surface. For example, for this purpose a multi-axis drying robot which moves a drying unit over the component surface in order to dry the component surface at the respective correct site can be used.
In one exemplary implementation of the present disclosure, it is provided that the drying unit and the application apparatus for applying the decorative layer are guided together with a multi-axis robot.
In other implementations, the drying unit and the application apparatus for applying the paint layer or the application apparatus for applying the decorative layer are guided by separate robots, respectively.
The present disclosure is described below in greater detail with reference to the drawings, in which:
In a step BC (BC: base coat), a base coat layer is applied to the component surface of the component to be coated (e.g. motor vehicle bodywork component). In some implementations, the base coat layer is single-layered and, in other implementations, there are two base coat layers (BC1+BC2). The base coat layer may be wet paint or powder paint. The base coat layer is, in some implementations, applied in a conventional manner, e.g., with a rotary atomiser or an air atomiser which is guided by a multi-axis painting robot.
In a step ZTR (intermediate drying), the entire component surface is then intermediate-dried. For example, this intermediate drying can take place with air drying, for example, with an air temperature of +60° C. to +80° C. It should be mentioned that, in each case, in the context of the intermediate drying, the entire component surface is dried, for which purpose, the component to be dried can be introduced, for example, into a drying chamber, as is known from the prior art.
In a step DC (DC: decor coat), a decorative layer (e.g. decorative stripe, graphic, contrast surface or pattern) is applied to the component, wherein the decorative layer is areally limited to a particular decorative region and does not extend over the entire component surface.
In a step PTR (partial drying), a limited area (partial) drying takes place within a drying region which at least partially encompasses the decorative layer. This limited area drying can take place, for example, with air drying or by irradiation of the component surface.
In a step CC (CC: clear coat), a clear coat layer is then applied. The clear coat layer may be single-layered or multi-layered. The clear coat may be a single-component clear coat or a two-component clear coat.
In the field of automobile serial-production painting, components are typically dried or baked with a suitable apparatus following the final painting step—including the application of a clear coat layer is described, provided air-drying lacquers (e.g. two-component lacquers) are not used.
Finally, some implementations also comprise a further step TR (drying) in which the entire component surface is completely dried. This drying takes place, for example, by air drying with a relatively high air temperature of +130° C. to +150° C. During the drying in the step TR, the air temperature is thus substantially higher than during the intermediate drying in the step ZTR.
The implementations shown in
The individual figures herein differ in the shaping of the component and the correspondingly adapted shaping of the drying unit. The drying unit 1, on one side, and the component 2, on the other, therefore have complementary matching forms.
Thus, the component 2 in
In the implementation of the present disclosure according to
In the exemplary implementation according to
In the implementation according to
Finally, the drying unit 1 in the exemplary implementation according to
In the exemplary implementation according to
In the exemplary implementation according to
The exemplary implementation according to
The exemplary implementation according to
The exemplary implementation according to
Herein, a shield 6 is also shown which masks the component surface and only allows through the radiation serving for drying purposes in the region of the decorative layer 4, so that the drying unit 1 dries the component surface in a limited area within the decorative region.
In the exemplary implementation according to
In the exemplary implementation according to
The exemplary implementation according to
In the exemplary implementation according to
Finally,
Finally,
In the exemplary implementation according to
In the exemplary implementation according to
In the exemplary implementation according to
Finally, the air nozzles 11 in the exemplary implementation according to
The present disclosure is not restricted to the above-described exemplary implementations. Rather, it should be understood that this disclosure is exemplary in nature, i.e. that additional variants and modifications are possible which also make use of the teachings of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 009 945.8 | Jul 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/001366 | 7/3/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/000826 | 1/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3941116 | Placek | Mar 1976 | A |
6151798 | Petersen | Nov 2000 | A |
20020038521 | Speck | Apr 2002 | A1 |
20030163932 | Samekawa et al. | Sep 2003 | A1 |
20070056184 | Samekawa et al. | Mar 2007 | A1 |
20090257070 | Baird | Oct 2009 | A1 |
20090317629 | Wegner | Dec 2009 | A1 |
20100086669 | Kuhlenschmidt | Apr 2010 | A1 |
20100203261 | Kirk | Aug 2010 | A1 |
20100251963 | Herre et al. | Oct 2010 | A1 |
20100304039 | Bausen | Dec 2010 | A1 |
20100319618 | Bausen | Dec 2010 | A1 |
20130224398 | Vidal | Aug 2013 | A1 |
20140063096 | Pitz | Mar 2014 | A1 |
20150045493 | Schwalm | Feb 2015 | A1 |
20150375239 | Herre et al. | Dec 2015 | A1 |
20150375241 | Wohr et al. | Dec 2015 | A1 |
20150375258 | Fritz et al. | Dec 2015 | A1 |
20160001322 | Fritz et al. | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
3806257 | Aug 1989 | DE |
10141413 | Mar 2003 | DE |
10261298 | Jul 2003 | DE |
10312381 | Sep 2004 | DE |
202007008852 | Oct 2007 | DE |
202008008428 | Nov 2009 | DE |
102010050704 | May 2012 | DE |
102013002411.0 | Aug 2014 | DE |
102013002412.9 | Aug 2014 | DE |
102013002413.7 | Aug 2014 | DE |
102013002433.1 | Aug 2014 | DE |
102011117666 | Jan 2019 | DE |
1518609 | Mar 2005 | EP |
2961718 | Dec 2011 | FR |
2004066042 | Mar 2004 | JP |
2006021138 | Jan 2006 | JP |
2006150206 | Jun 2006 | JP |
2008006438 | Jan 2008 | JP |
2008531243 | Aug 2008 | JP |
2008246415 | Oct 2008 | JP |
2011025244 | Feb 2011 | JP |
2014050832 | Mar 2014 | JP |
2014114995 | Jun 2014 | JP |
2009156388 | Dec 2009 | WO |
2010127738 | Nov 2010 | WO |
2012176529 | Dec 2012 | WO |
2013143659 | Oct 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/EP2015/001366 dated Jan. 14, 2016 (with English translation; 35 pages). |
Number | Date | Country | |
---|---|---|---|
20170182516 A1 | Jun 2017 | US |