This application claims priority to Japanese Patent Application No. 2021-179363, filed on Nov. 2, 2021, the entire contents of which are incorporated herein by reference.
The technique disclosed herein is related to a pair of blades and a working machine comprising the same.
Japanese Patent Application Publication No. 2010-98972 describes a working machine including a pair of blades and a prime mover that reciprocates the pair of blades relative to each other. Each of the pair of blades includes a plurality of edge portions disposed along a reciprocating direction. Each of the plurality of edge portions of one of the pair of blades includes: a slide surface which slides with respect to the plurality of edge portions of the other of the pair of blades as the pair of blades reciprocates relative to each other; and an edge surface connected to the slide surface via a connecting line and disposed at a first angle with respect to the slide surface. The connecting line is inclined with respect to the reciprocating direction.
In a working machine as described in Japanese Patent Publication Application No. 2010-98972, which cuts an object to be cut such as grass and plants by reciprocating a pair of blades including a plurality of edge portions relative to each other, when the object is cut, the edge portions of the pair of blades cut into the object using their cutting edges and tear and open the object in a direction orthogonal to a cutting direction using their portions that are separated away from the cutting edges. Therefore, when the object is cut, very high load is applied to the cutting edges of the edge portions of the pair of blades. On the other hand, sharpness of the edge portions of the pair of blades depends on resistance received in the cutting direction when the edge portions tear and open the object using the portions separated away from the cutting edges. In addition to the sharpness, durability is also required for such edge portions of the pair of blades as described above, especially when they are designed to operate under a high voltage and high torque. The working machine of Japanese Patent Application Publication No. 2010-98972 only has one edge surface disposed at an angle with respect to the slide surface at each of the edge portions of the pair of blades. Consequently, when an angle between the slide surface and the edge surface is decreased, the sharpness is increased due to decrease in the resistance received in the cutting direction, however, the durability against the load applied upon cutting is adversely decreased. On the other hand, when the angle between the slide surface and the edge surface is increased, the durability against the load applied upon cutting is increased, however, the sharpness is adversely decreased due to increase in the resistance received in the cutting direction. In other words, the sharpness and the durability cannot be achieved simultaneously by the edge portions of the pair of blades of the working machine of Japanese Patent Application Publication No. 2010-98972. The present disclosure provides a technique capable of achieving both sharpness and durability in edge portions of a pair of blades included in a working machine.
A working machine disclosed herein may comprise: a pair of blades; and a prime mover configured to reciprocate the pair of blades relative to each other. Each of the pair of blades may comprise a plurality of edge portions disposed along a reciprocating direction. Each of the plurality of edge portions of one of the pair of blades may comprise: a slide surface configured to slide with respect to the plurality of edge portions of the other of the pair of blades as the pair of blades reciprocates relative to each other; a first edge surface connected to the slide surface via a first connecting line and disposed at a first angle with respect to the slide surface, the first connecting line being inclined with respect to the reciprocating direction; and a second edge surface connected to the first edge surface via a second connecting line and disposed at a second angle with respect to the slide surface, the second connecting line being inclined with respect to the reciprocating direction. The first angle may be greater than the second angle.
A pair of blades disclosed herein may be configured to be attached to a working machine comprising a prime mover and reciprocated relative to each other by the prime mover. Each of the pair of blades may comprise a plurality of edge portions disposed along a reciprocating direction. Each of the plurality of edge portions of one of the pair of blades may comprise: a slide surface configured to slide with respect to the plurality of edge portions of the other of the pair of blades as the pair of blades reciprocates relative to each other; a first edge surface connected to the slide surface via a first connecting line and disposed at a first angle with respect to the slide surface, the first connecting line being inclined with respect to the reciprocating direction; and a second edge surface connected to the first edge surface via a second connecting line and disposed at a second angle with respect to the slide surface, the second connecting line being inclined with respect to the reciprocating direction. The first angle may be greater than the second angle.
According to the above configuration, each of the edge portions of the pair of blades has two edge surfaces. The first edge surface positioned at the cutting edge of each of the edge portions of the pair of blades is disposed at the first angle with respect to the slide surface, and the second edge surface positioned away from the cutting edge is disposed at the second angle, which is smaller than the first angle, with respect to the slide surface. Therefore, sharpness is increased by decreasing resistance received in a cutting direction when the edge portions tear and open the object to be cut, and durability against load applied upon cutting is also increased. In other words, according to the above configuration, both the sharpness and the durability can be achieved in the edge portions of the pair of blades.
Representative, non-limiting examples of the present disclosure will now be described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing aspects of the present teachings and is not intended to limit the scope of the present disclosure. Furthermore, each of the additional features and teachings disclosed below may be utilized separately or in conjunction with other features and teachings to provide improved working machines and pairs of blades as well as methods for using and manufacturing the same.
Moreover, combinations of features and steps disclosed in the following detailed description may not be necessary to practice the present disclosure in the broadest sense, and are instead taught merely to particularly describe representative examples of the present disclosure. Furthermore, various features of the above-described and below-described representative examples, as well as the various independent and dependent claims, may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings.
All features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter, independent of the compositions of the features in the embodiments and/or the claims. In addition, all value ranges or indications of groups of entities are intended to disclose every possible intermediate value or intermediate entity for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter.
In one or more embodiments, a working machine may comprise: a pair of blades; and a prime mover configured to reciprocate the pair of blades relative to each other. Each of the pair of blades may comprise a plurality of edge portions disposed along a reciprocating direction. Each of the plurality of edge portions of one of the pair of blades may comprise: a slide surface configured to slide with respect to the plurality of edge portions of the other of the pair of blades as the pair of blades reciprocates relative to each other; a first edge surface connected to the slide surface via a first connecting line and disposed at a first angle with respect to the slide surface, the first connecting line being inclined with respect to the reciprocating direction; and a second edge surface connected to the first edge surface via a second connecting line and disposed at a second angle with respect to the slide surface, the second connecting line being inclined with respect to the reciprocating direction. The first angle may be greater than the second angle.
In one or more embodiments, a pair of blades may be configured to be attached to a working machine comprising a prime mover and reciprocated relative to each other by the prime mover. Each of the pair of blades may comprise a plurality of edge portions disposed along a reciprocating direction. Each of the plurality of edge portions of one of the pair of blades may comprise: a slide surface configured to slide with respect to the plurality of edge portions of the other of the pair of blades as the pair of blades reciprocates relative to each other; a first edge surface connected to the slide surface via a first connecting line and disposed at a first angle with respect to the slide surface, the first connecting line being inclined with respect to the reciprocating direction; and a second edge surface connected to the first edge surface via a second connecting line and disposed at a second angle with respect to the slide surface, the second connecting line inclined with respect to the reciprocating direction. The first angle may be greater than the second angle.
According to the above configuration, each of the edge portions of the pair of blades has two edge surfaces. The first edge surface positioned at the cutting edge of each of the edge portions of the pair of blades is disposed at the first angle with respect to the slide surface, and the second edge surface positioned away from the cutting edge is disposed at the second angle, which is smaller than the first angle, with respect to the slide surface. Therefore, sharpness is increased by reducing resistance received in the cutting direction when the edge portions tear and open an object to be cut, and durability against load applied upon cutting is also increased. In other words, according to the above configuration, both sharpness and durability can be achieved in the edge portions 120 of the pair of blades.
In one or more embodiments, the first edge surface may have a first width in a direction orthogonal to the first connecting line, as viewed in a direction orthogonal to the slide surface. The second edge surface may have a second width in a direction orthogonal to the second connecting line, as viewed in the direction orthogonal to the slide surface. A ratio of the first width to the second width may be 1:4.
If the ratio of the first width of the first edge surface cutting into an object to the second width of the second edge surface tearing and opening the object is too small, the sharpness upon cutting is adversely decreased. Contrary to this, if the ratio of the first width of the first edge surface to the second width of the second edge surface is too large, the durability against the load applied upon cutting is adversely decreased. According to the above configuration, both the sharpness and durability can more suitably be achieved in each of the edge portions of the pair of blades.
In one or more embodiments, the first width may be within a range from 0.28 mm to 0.8 mm.
When the first width of the first edge surface is too small, it is difficult to achieve an effect of improving the durability. On the other hand, when the first width of the first edge surface is too large, this may cause a substantial decrease in the sharpness. According to the above configuration, in the edge portions of the pair of blades, the effect of improving the durability can sufficiently be obtained without causing a substantial decrease in the sharpness.
In one or more embodiments, the second width may be within a range from 1.12 mm to 3.2 mm.
When the second width of the second edge surface is too small, it is difficult to achieve an effect of improving sharpness. On the other hand, when the second width of the second edge surface is too large, this may cause a substantial decrease in durability. According to the above configuration, in the edge portions of the pair of blades, the effect of improving the sharpness can sufficiently be obtained without causing a substantial decrease in the durability.
In one or more embodiments, a ratio of the first angle to the second angle may be 3:2.
When the ratio of the first angle between the first edge surface and the slide surface to the second angle between the second edge surface and the slide surface is too small, sharpness upon cutting is adversely decreased. On the other hand, when the ratio of the first angle with respect to the second angle is too large, durability against the load applied upon cutting is adversely decreased. According to the above configuration, both the sharpness and durability can more suitably be achieved in the edge portions of the pair of blades.
In one or more embodiments, the first angle may be within a range from 45 degrees to 70 degrees.
When the first angle is too small, it is difficult to achieve effect of improving durability. On the other hand, when the first angle is too large, this may cause a substantial decrease in sharpness. According to the above configuration, in the edge portions of the pair of blades, the effect of improving the durability can sufficiently be obtained without causing a substantial decrease in the sharpness.
In one or more embodiments, the second angle may be within a range from 20 degrees to 45 degrees.
When the second angle is too small, this may cause a substantial decrease in the durability. On the other hand, when the second angle is too large, it is difficult to achieve an effect of improving the sharpness. According to the above configuration, in the edge portions of the pair of blades, the effect of improving the sharpness can sufficiently be obtained without causing a substantial decrease in the durability.
In one or more embodiments, the first edge surface and the second edge surface may be formed by die forging.
When the first edge surface and the second edge surface are formed on each of the edge portions, it is contemplated to perform polishing. In that case, however, the polishing needs to be separately performed on each of the plurality of edge portions, which makes mass production of the pair of blades difficult. According to the above configuration, the first edge surface and the second edge surface can be formed in one processing, thus the mass production of the pair of blades is facilitated.
With reference to drawings, a hedge trimmer 100 will be described below as an example of a working machine comprising a pair of blades 12. The hedge trimmer 100 is a gardening tool used mainly in trimming hedges and plants. As illustrated in
The pair of blades 12 linearly extends forward from the housing 14 and includes a plurality of edge portions 120 disposed along the longitudinal direction. The pair of blades 12 is configured to trim hedges and plants using the plurality of edge portions 120 by reciprocating relative to each other in the longitudinal direction. In the hedge trimmer 100 of the present embodiment, each of the pair of blades 12 is configured to reciprocate relative to the housing 14.
Here, in the present embodiment, the longitudinal direction of the pair of blades 12 is defined as a front-rear direction, a direction extending from the housing 14 to the pair of blades 12 is defined as a frontward direction, and a direction extending from the pair of blades 12 to the housing 14 is defined as a rearward direction. Further, a direction orthogonal to the front-rear direction and parallel to the plane where the plurality of edge portions 120 of the pair of blades 12 is positioned is defined as a left-right direction. A direction orthogonal to the front-rear direction and the left-right direction is defined as an up-down direction.
As illustrated in
A first drive switch 21 is disposed on the front handle 16, and a second drive switch 22 is disposed on the rear handle 18. A lock switch 24 is disposed on the rear handle 18. The hedge trimmer 100 is configured to actuate the pair of blades 12 only when the first drive switch 21 and the second drive switch 22 are concurrently operated. The second drive switch 22 is usually mechanically locked by the lock switch 24, and its operation is permitted only when the lock switch 24 is operated. The first drive switch 21, the second drive switch 22 and the lock switch 24 are operated by the user gripping the front handle 16 and the rear handle 18. Therefore, the hedge trimmer 100 is configured such that actuation of the pair of blades 12 is prohibited unless the user grips both the front handle 16 and the rear handle 18.
The hedge trimmer 100 further includes a motor 26 as an example of a prime mover. The motor 26 is housed in the housing 14 and actuates the pair of blades 12. With regard to this point, the motor 26 is connected to the pair of blades 12 via crank cams 28 and is configured to reciprocate each of the pair of blades 12 relative to the housing 14. The motor 26 of the present embodiment is a brushless motor. The rotation axis of the motor 26 extends orthogonally to the longitudinal direction of the pair of blades 12 and in the up-down direction.
The hedge trimmer 100 further includes an electric circuit unit 30 housed at a front upper portion inside the housing 14. The electric circuit unit 30 is electrically connected to the power cable 20 and is configured to adjust external power supplied via the power cable 20 and supply the same to the motor 26. When the user operates the first drive switch 21 and the second drive switch 22, the electric circuit unit 30 starts supplying power to the motor 26. The electric circuit unit 30 stops supplying power to the motor 26 when operation on the first drive switch 21 and/or the second drive switch 22 is released. Therefore, the electric circuit unit 30 can switch the motor 26 on and off. The electric circuit unit 30 further can switch the main power of the hedge trimmer 100 on and off, change a rotation speed of the motor 26, drive the motor 26 in a backward rotation direction, and the like, based on an operation status of the operation button 32 which the user operates. In the present embodiment, the motor 26 is a brushless motor, thus the electric circuit unit 30 further includes an inverter circuit 30a. The inverter circuit 30a is electrically connected to the power cable 20 and also electrically connected to the motor 26. The inverter circuit 30a converts direct current from the power cable 20 to alternating current and supplies the same to the motor 26.
(Configuration of Pair of Blades 12)
As illustrated in
As illustrated in
(Configurations of Plurality of Edge Portions 120b, 120c)
Hereafter, the plurality of edge portions 120b, 120c included in each of the pair of blades 12 of the embodiment will be described in detail with reference to the drawings, taking one of the edge portions 120 as an example. In
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
(Operation of Pair of Blades 12)
Hereafter, operation when the pair of blades 12 is actuated will be described. In
As illustrated in
(Cutting Operation of Edge Portions 120b, 120c)
As illustrated in
As illustrated in
In the present embodiment, the shape of the lower blade 12c is the same as the shape of the upper blade 12b, and the shape of each of the edge portions 120b on the right side of the upper blade 12b is a mirror image of the shape of each of the edge portions 120c on the right side of the lower blade 12c. Therefore, the operation for the edge portions 120b, 120c to cut the object B to be cut when the lower blade 12c moves in the forward direction relative to the upper blade 12b corresponds to the operation when the upper blade 12b moves in the forward direction relative to the lower blade 12c in the example illustrated in
Here, when the tilting angle α1 at which the first connecting line b1 of the edge portion 120 is inclined relative to the front-rear direction or the tilting angle α3 at which the third connecting line b3 is inclined relative to the front-rear direction is too large, the object B to be cut adversely is displaced to the side of the pair of blades 12 when the edge portions 120 are entering into the object B, by which the object B may not be cut. In the pair of blades 12 of the present embodiment, since the tilting angle α1 at which the first connecting line b1 of the edge portion 120 is inclined relative to the front-rear direction is 80 degrees and the titling angle α3 at which the third connecting line b3 is inclined relative to the front-rear direction is 80 degrees, the object B can be cut without the object B being displaced to the side of the pair of blades 12. Further, since the titling angle α5 at which the fifth connecting line b5 of the edge portion 120 is inclined relative to the front-rear direction is 15 degrees, the object B on the side of the pair of blades 12 is easily guided to a position between the edge portion 120b and the edge portion 120c.
(Variant)
In the above embodiment, the hedge trimmer 100 was described as an example of the working machine including the pair of blades 12. Unlike this, the working machine may be a working machine other than the hedge trimmer 100. For example, the working machine may for example be a pole hedge or a ground trimmer.
In the above embodiment, the configuration including the motor 26 as an example of the prime mover was described. Unlike this, the prime mover may be a prime mover other than the motor 26. For example, the prime mover may be an engine.
In the above embodiment, the configuration in which the prime mover (motor 26) is a brushless motor was described. Unlike this, the prime mover (motor 26) may be a motor other than a brushless motor. For example, the prime mover (motor 26) may be a brushed motor.
In the above embodiment, the configuration in which the working machine (hedge trimmer 100) includes the power cable 20 and supplies external power to the hedge trimmer 100 through the power cable 20 was described. Unlike this, the working machine (hedge trimmer 100) may include a battery pack (not illustrated) configured to be attached to and detached from the rear handle 18 and may supply power to the working machine (hedge trimmer 100) from the battery pack.
In the above embodiment, the configuration in which each of the pair of blades 12 is configured to reciprocate relative to the housing 14 was described. Unlike this, only one of the pair of blades 12 may be configured to reciprocate relative to the housing 14 and the other of the pair of blades 12 may be fixed to the housing 14.
In the above example, the configuration in which each of the upper blade 12b and the lower blade 12c includes the plurality of edge portions 120b, 120c on the both side in the left-right direction was described. Unlike this, each of the upper blade 12b and the lower blade 12c may include the plurality of edge portions 120b, 120c only on the left side. Alternatively, each of the upper blade 12b and the lower blade 12c may include the plurality of edge portions 120b, 120c only on the right side.
In the above embodiment, the configuration in which stainless steel is used for the upper blade 12b and the lower blade 12c was described. Unlike this, for example, steel, copper, silver, gold, aluminum, titan or nickel may be used for the upper blade 12b and the lower blade 12c, or an alloy of the aforementioned materials may be used for the upper blade 12b and the lower blade 12c.
In the above embodiment, the tilting angle α1 of the first connecting line b1, the tilting angle α2 of the second connecting line b2, the tilting angle α3 of the third connecting line b3, the tilting angle α4 of the fourth connecting line b4, the tilting angle α5 of the fifth connecting line b5, the tilting angle α6 of the sixth connecting line b6, the tilting angle α81 of the top-surface connecting line b81, the tilting angle α82 of the top-surface connecting line b82, and the tilting angle α83 of the top-surface connecting line b83 of each of the edge portions 120 of the pair of blades 12 may be suitably changed in the process of forming the pair of blades 12.
In the above embodiments, the first angle θ1, the second angle θ2, the third angle θ3, the fourth angle θ4, the fifth angle θ5, the sixth angle θ6, the first width d1, the second width d2, the third width d3, the fourth width d4, the fifth width d5 and the sixth width d6 of each of the edge portions 120 of the pair of blades 12 may be suitably changed in the process of forming the pair of blades 12. Since in reality required sharpness and required durability vary in accordance with the type of the object B to be cut, the pair of blades 12 of the present embodiment may be formed in accordance with a type of the object B. In particular, when the object B to be cut is a thick branch and the pair of blades 12 is actuated at a high voltage and high torque, durability is more prioritized than sharpness as compared to the usual case, however, sufficient durability can be realized by setting the first angle θ1, the third angle θ3 and the fifth angle θ5 of the edge portion 120 to relatively large angles within the respective angle ranges.
In the above embodiment, the configuration in which the lower portion of each of the edge portions 120 is flat was described. Unlike this, as illustrated in
(Corresponding Relationships)
In one or more embodiments, the hedge trimmer 100 (an example of the working machine) comprises: the pair of blades 12; and the motor 26 (an example of the prime mover) configured to reciprocate the pair of blades 12 relative to each other. Each of the pair of blades 12 (the upper blade 12b and the lower blade 12c) comprises the plurality of edge portions 120 (120b, 120c) disposed along the reciprocating direction (the front-rear direction). Each of the plurality of edge portions 120 (120b, 120c) of one of the pair of blades 12 (the upper blade 12b, the lower blade 12c) comprises: the slide surface 129 (129b, 129c) configured to slide with respect to the plurality of edge portions 120 (120c, 120b) of the other of the pair of blades 12 (the lower blade 12c, the upper blade 12b) as the pair of blades 12 reciprocates relative to each other; the first edge surface 121 (121b, 121c) connected to the slide surface 129 (129b, 129c) via the first connecting line b1 and disposed at the first angle θ1 with respect to the slide surface 129 (129b, 129c), the first connecting line b1 being inclined with respect to the reciprocating direction (front-rear direction); and the second edge surface 122 (122b, 122c) connected to the first edge surface 121 (121b, 121c) via the second connecting line b2 and disposed at the second angle θ2 with respect to the slide surface 129 (129b, 129c), via the second connecting line b2 being inclined with respect to the reciprocating direction (the front-rear direction). The first angle θ1 is greater than the second angle θ2.
In one or more embodiments, the pair of blades 12 is the pair of blades 12 configured to be attached to the hedge trimmer 100 comprising the motor 26 and reciprocated relative to each other by the motor 26. Each of the pair of blades 12 (the upper blade 12b and the lower blade 12c) comprises the plurality of edge portions 120 (120b, 120c) disposed along the reciprocating direction (the front-rear direction). Each of the plurality of edge portions 120 (120b, 120c) of one of the pair of blades 12 (the upper blade 12b, the lower blade 12c) comprises: the slide surface 129 (129b, 129c) configured to slide with respect to the plurality of edge portions 120 (120c, 120b) of the other of the pair of blades 12 (the lower blade 12c, the upper blade 12b) as the pair of blades 12 reciprocates relative to each other; the first edge surface 121 (121b, 121c) connected to the slide surface 129 (129b, 129c) via the first connecting line b1 and disposed at the first angle θ1 with respect to the slide surface 129 (129b, 129c), the first connecting line b1 being inclined with respect to the reciprocating direction (the front-rear direction); and the second edge surface 122 (122b, 122c) connected to the first edge surface 121 (121b, 121c) via the second connecting line b2 and disposed at the second angle θ2 with respect to the slide surface 129 (129b, 129c), the second connecting line b2 being inclined with respect to the reciprocating direction (the front-rear direction). The first angle θ1 is greater than the second angle θ2.
According to the above configuration, each of the edge portions 120 (120b, 120c) of the pair of blades 12 has two edge surfaces. The first edge surface 121 (121b, 121c) positioned at the cutting edge of each of the edge portions 120 (120b, 120c) of the pair of blades 12 is disposed at the first angle θ1 with respect to the slide surface 129 (129b, 129c), and the second edge surface 122 (122b, 122c) positioned away from the cutting edge is disposed at the second angle θ2, which is smaller than the first angle θ1, to the slide surface 129 (129b, 129c). Therefore, the sharpness is increased by reducing resistance received in the cutting direction when the edge portions 120 tear and open the object B to be cut, and durability against the load applied upon cutting is also increased. In other words, according to the above configuration, both sharpness and durability can be achieved in the edge portions 120 (120b, 120c) of the pair of blades 12.
In one or more embodiments, the first edge surface 121 (121b, 121c) has the first width d1 in the direction orthogonal to the first connecting line b1, as viewed from above (an example of the direction orthogonal to the slide surface), and the second edge surface 122 (122b, 122c) has the second width d2 in the direction orthogonal to the second connecting line b1, as viewed from above. The ratio of the first width d1 to the second width d2 is 1:4.
If the ratio of the first width d1 of the first edge surface 121 (121b, 121c) entering into the object B to be cut to the second width d2 of the second edge surface 122 (122b, 122c) tearing and opening the object B is too small, the sharpness upon cutting is adversely decreased. Contrary to this, if the ratio of the first width d1 of the first edge surface 121 (121b, 121c) to the second width d2 of the second edge surface 122 (122b, 122c) is too large, the durability against the load applied upon cutting is adversely decreased. According to the above configuration, both the sharpness and durability can more suitably be achieved in the edge portions 120 (120b, 120c) of the pair of blades 12.
In one or more embodiments, the first width d1 is within a range from 0.28 mm to 0.8 mm.
When the first width d1 of the first edge surface 121 (121b, 121c) is too small, it is difficult to achieve an effect of improving the durability. On the other hand, when the first width d1 of the first edge surface 121 (121b, 121c) is too large, this may cause a substantial decrease in the sharpness. According to the above configuration, in the edge portions 120 (120b, 120c) of the pair of blades 12, the effect of improving the durability can sufficiently be obtained without causing a substantial decrease in the sharpness.
In one or more embodiments, the second width d2 is within a range from 1.12 mm to 3.2 mm.
When the second width d2 of the second edge surface 122 (122b, 122c) is too small, it is difficult to achieve an effect of improving the sharpness. On the other hand, when the second width d2 of the second edge surface 122 (122b, 122c) is too large, this may cause a substantial decrease in the durability. According to the above configuration, in the edge portions 120 (120b, 120c) of the pair of blades 12, the effect of improving the sharpness can sufficiently be obtained without causing a substantial decrease in the durability.
In one or more embodiments, the ratio of the first angle θ1 to the second angle θ2 is 3:2.
When the ratio of the first angle θ1 between the first edge surface 121 (121b, 121c) and the slide surface 129 (129b, 129c) to the second angle θ2 between the second edge surface 122 (122b, 122c) and the slide surface 129 (129b, 129c) is too small, sharpness upon cutting is adversely decreased. On the other hand, when the ratio of the first angle θ1 to the second angle θ2 is too large, durability against the load applied upon cutting is adversely decreased. According to the above configuration, both the sharpness and durability can more suitably be achieved in the edge portions 120 (120b, 120c) of the pair of blades 12.
In one or more embodiments, the first angle θ1 is within a range from 45 degrees to 70 degrees.
When the first angle θ1 is too small, it is difficult to achieve an effect of improving durability. On the other hand, when the first angle θ1 is too large, this may cause a substantial decrease in sharpness. According to the above configuration, in the edge portions 120 (120b, 120c) of the pair of blades 12, the effect of improving the durability can sufficiently be obtained without causing a substantial decrease in the sharpness.
In one or more embodiments, the second angle θ2 is within a range from 20 degrees to 45 degrees.
When the second angle θ2 is too small, this may cause a substantial decrease in durability. On the other hand, when the second angle θ2 is too large, it is difficult to achieve an effect of improving sharpness. According to the above configuration, in the edge portions 120 (120b, 120c) of the pair of blades 12, the effect of improving the sharpness can sufficiently be obtained without causing a substantial decrease in the durability.
In one or more embodiments, the first edge surface 121 (121b, 121c) and the second edge surface 122 (122b, 122c) are formed by die forging.
When the first edge surface 121 (121b, 121c) and the second edge surface 122 (122b, 122c) are formed on each of the edge portions 120 (120b, 120c), it is contemplated to perform polishing. In that case, however, the polishing needs to be separately performed on each of the plurality of edge portions 120 (120b, 120c), which makes mass production of the pair of blades 12 (upper blade 12b, lower blade 12) (examples of the blades) difficult. According to the above configuration, the first edge surface 121 (121b, 121c) and the second edge surface 122 (122b, 122c) can be formed in one processing, thus mass production of the pair of blades 12 (upper blade 12b, lower blade 12c) is facilitated.
Number | Date | Country | Kind |
---|---|---|---|
2021-179363 | Nov 2021 | JP | national |