The present invention relates to pairing a remote control device to a vehicle.
Materials handling vehicles are commonly used for picking stock in warehouses and distribution centers. Such vehicles typically include a power unit and a load handling assembly, which may include load carrying forks. The vehicle also has control structures for controlling operation and movement of the vehicle.
In a typical stock picking operation, an operator fills orders from available stock items that are located in storage areas provided along one or more aisles of a warehouse or distribution center. The operator drives the vehicle between various pick locations where item(s) are to be picked. The operator may drive the vehicle either by using the control structures on the vehicle, or via a wireless remote control device that is associated with the vehicle, such as the remote control device disclosed in commonly owned U.S. Pat. No. 9,082,293, the entire disclosure of which is hereby incorporated by reference herein.
In accordance with various aspects of the present invention, a method comprises providing a remote control device that is paired with a first vehicle such that the remote control device wirelessly communicates with the first vehicle. A pairing process is initiated to pair the remote control device to a second vehicle by physically contacting a component of the remote control device with an element of the second vehicle. The pairing process also unpairs the remote control device from the first vehicle, such that: the remote control device no longer wirelessly communicates with the first vehicle; and the remote control device wirelessly communicates with the second vehicle.
The pairing process may further comprise inserting the remote control device into a charging station of the second vehicle. Inserting the remote control device into the charging station of the second vehicle may also charge a rechargeable power source of the remote control device. The pairing process may be initiated when a first presence contact of the remote control device engages with a second presence contact of the charging station. The engagement of the first presence contact with the second presence contact may also enable the supply of power from the charging station to the rechargeable power source of the remote control device. The supply of power from the charging station to the rechargeable power source may be cut off when the first and second presence contacts are disengaged from one another.
Pairing the remote control device to the second vehicle may enable the second vehicle to respond to remote requests sent by the remote control device.
The method may further comprise, before initiating the pairing process, sending the second vehicle to a designated location, wherein a warehouse management system in communication with the second vehicle sends instructions to the second vehicle to move to the designated location. Once the second vehicle is paired to the remote control device, the second vehicle may no longer implement commands from the warehouse management system, such that the second vehicle will only implement wireless commands from the remote control device. The method may further comprise the warehouse management system sending instructions to the first vehicle to move to a different location after the first vehicle is unpaired from the remote control device. The different location may be a loading dock or a vehicle charging station. The second vehicle may include a receiver for receiving wireless transmissions from a transmitter of the remote control device, and wherein at least one of the receiver or the transmitter enter a low power mode during the pairing process.
The method may further comprise determining whether one or more remote control device operational checks have been performed within a predetermined time period, and only allowing the remote control device to pair with the second vehicle if the one or more remote control device operational checks have been performed within the predetermined time period.
The method may further comprise determining whether an operator of the remote control device is authorized to operate the second vehicle, and only allowing the remote control device to pair with the second vehicle if the operator is authorized to operate the second vehicle.
In accordance with yet another aspect of the present invention, a method comprises providing a remote control device that is paired with a first vehicle such that the first vehicle implements wireless requests from the remote control device. A pairing process is initiated to pair the remote control device to a second vehicle by inserting the remote control device into a charging station of the second vehicle. The pairing process also unpairs the remote control device from the first vehicle, such that: the first vehicle no longer implements wireless requests from the remote control device; and the second vehicle implements wireless requests from the remote control device.
Inserting the remote control device into the charging station of the second vehicle may also charge a rechargeable power source of the remote control device.
The method may further comprise: before initiating the pairing process, sending the second vehicle to a designated location, wherein a warehouse management system in communication with the second vehicle sends instructions to the second vehicle to move to the designated location; and after the remote control device is unpaired from the first vehicle, the warehouse management system sending instructions to the first vehicle to move to a different location.
The second vehicle may include a receiver for receiving wireless transmissions from a transmitter of the remote control device, and wherein at least one of the receiver or the transmitter enter a low power mode during the pairing process.
The method may further comprise determining whether one or more remote control device operational checks have been performed within a predetermined time period, and only allowing the remote control device to pair with the second vehicle if the one or more remote control device operational checks have been performed within the predetermined time period.
The method may further comprise determining whether an operator of the remote control device is authorized to operate the second vehicle, and only allowing the remote control device to pair with the second vehicle if the operator is authorized to operate the second vehicle.
In the following detailed description of the illustrated embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of various embodiments of the present invention.
Referring now to the drawings, and particularly to
The illustrated power unit 14 comprises a step-through operator's station 20 dividing a first end section of the power unit 14 (opposite the forks 16) from a second end section (proximate the forks 16). The operator's station 20 includes a platform 21 upon which an operator may stand to drive the vehicle 10 and/or to provide a position from which the operator may operate various included features of the vehicle 10.
Presence sensors 22 (see
According to one embodiment shown in
The remote control device 32 is manually operable by an operator, e.g., by pressing a button or other control, to cause the remote control device 32 to wirelessly transmit at least a first type signal designating a travel request to a vehicle 10 that is paired to the remote control device 32. The travel request is a command that requests the vehicle 10 to travel, as will be described in greater detail herein. Although the remote control device 32 is illustrated in
The vehicle 10 also comprises one or more contactless obstacle sensors 40, which are provided about the vehicle 10, e.g., towards the first end section of the power unit 14 as shown in
The obstacle sensors 40 may comprise any suitable proximity detection technology, such as ultrasonic sensors, image capture devices, infrared sensors, laser scanner sensors, etc., which are capable of detecting the presence of objects/obstacles or are capable of generating signals that can be analyzed to detect the presence of objects/obstacles within the predefined detection zone(s). In the exemplary embodiment illustrated in
The first obstacle detector 42 may comprise a sweeping laser sensor capable of detecting objects, for example, in first, second, and third zones Z1, Z2, Z3 (also referred to herein as scan zones or detection zones), which first, second, and third zones Z1, Z2, Z3 may comprise planar zones, see
The second obstacle detectors 44A and 44B may comprise point laser sensors that are capable of detecting objects between one or more of the zones Z1, Z2, Z3 of the first obstacle detector 42 and the vehicle 10, i.e., underneath one or more of the zones Z1, Z2, Z3, as illustrated in
Additional sensor configurations and/or detection zones may be used, such as discussed in the various patents and patent applications incorporated by reference herein.
The vehicle 10 shown in
Referring to
Thus, the controller 103 may define, at least in part, a data processing system suitable for storing and/or executing program code and may include at least one processor coupled directly or indirectly to memory elements, e.g., through a system bus or other suitable connection. The memory elements can include local memory employed during actual execution of the program code, memory that is integrated into a microcontroller or application specific integrated circuit (ASIC), a programmable gate array or other reconfigurable processing device, etc.
The response implemented by the controller 103 in response to wirelessly received commands, e.g., via a wireless transmitter 178 of the remote control device 32 (to be discussed below) and sent to the receiver 102 on the vehicle 10, may comprise one or more actions, or inaction, depending upon the logic that is being implemented. Positive actions may comprise controlling, adjusting or otherwise affecting one or more components of the vehicle 10. The controller 103 may also receive information from other inputs 104, e.g., from sources such as the presence sensors 22, the obstacle sensors 40, switches, load sensors, encoders and other devices/features available to the vehicle 10 to determine appropriate action in response to the received commands from the remote control device 32. The sensors 22, 40, etc. may be coupled to the controller 103 via the inputs 104 or via a suitable truck network, such as a control area network (CAN) bus 110.
In an exemplary arrangement, the remote control device 32 is operative to wirelessly transmit a control signal that represents a first type signal such as a travel command to the receiver 102 on the vehicle 10. The travel command is also referred to herein as a “travel signal”, “travel request” or “go signal”. The travel request is used to initiate a request to the vehicle 10 to travel, e.g., for as long as the travel signal is received by the receiver 102 and/or sent by the remote control device 32, by a predetermined amount, e.g., to cause the vehicle 10 to advance or jog in a first direction by a limited travel distance, or for a limited time. The first direction may be defined, for example, by movement of the vehicle 10 in a power unit 14 first, i.e., forks 16 to the back, direction. However, other directions of travel may alternatively be defined. Moreover, the vehicle 10 may be controlled to travel in a generally straight direction or along a previously determined heading. Correspondingly, the limited travel distance may be specified by an approximate travel distance, travel time or other measure.
Thus, a first type signal received by the receiver 102 is communicated to the controller 103. If the controller 103 determines that the travel signal is a valid travel signal and that the current vehicle conditions are appropriate (explained in greater detail in U.S. Pat. No. 9,082,293, which is already incorporated by reference herein), the controller 103 sends a signal to the appropriate control configuration of the vehicle 10 to advance and then stop the vehicle 10. Stopping the vehicle 10 may be implemented, for example, by either allowing the vehicle 10 to coast to a stop or by initiating a brake operation to cause the vehicle 10 to brake to a stop.
As an example, the controller 103 may be communicably coupled to a traction control system, illustrated as a traction motor controller 106 of the vehicle 10. The traction motor controller 106 is coupled to a traction motor 107 that drives at least one steered wheel 108 of the vehicle 10. The controller 103 may communicate with the traction motor controller 106 so as to accelerate, decelerate, adjust and/or otherwise limit the speed of the vehicle 10 in response to receiving a travel request from the remote control device 32. The controller 103 may also be communicably coupled to a steer controller 112, which is coupled to a steer motor 114 that steers at least one steered wheel 108 of the vehicle 10. In this regard, the vehicle 10 may be controlled by the controller 103 to travel an intended path or maintain an intended heading in response to receiving a travel request from the remote control device 32.
As yet another illustrative example, the controller 103 may be communicably coupled to a brake controller 116 that controls vehicle brakes 117 to decelerate, stop or otherwise control the speed of the vehicle 10 in response to receiving a travel request from the remote control device 32. Still further, the controller 103 may be communicably coupled to other vehicle features, such as main contactors 118, and/or other outputs 119 associated with the vehicle 10, where applicable, to implement desired actions in response to implementing remote travel functionality.
According to various aspects of the present invention, the controller 103 may communicate with the receiver 102 and with the traction motor controller 106 to operate the vehicle 10 under remote control in response to receiving travel commands from the associated remote control device 32. Moreover, the controller 103 may be configured to perform various actions if the vehicle 10 is traveling under remote control in response to a travel request and an obstacle is detected in one or more of the detection zone(s) Z1, Z2, Z3. In this regard, when a travel signal is received by the controller 103 from the remote control device 32, any number of factors may be considered by the controller 103 to determine whether the received travel signal should be acted upon to initiate and/or sustain movement of the vehicle 10.
Correspondingly, if the vehicle 10 is moving in response to a command received by the remote control device 32, the controller 103 may dynamically alter, control, adjust or otherwise affect the remote control operation, e.g., by stopping the vehicle 10, changing the steer angle of the vehicle 10, or taking other actions. Thus, the particular vehicle features, the state/condition of one or more vehicle features, vehicle environment, etc., may influence the manner in which the controller 103 responds to travel requests from the remote control device 32.
The controller 103 may refuse to acknowledge a received travel request depending upon predetermined condition(s), e.g., that relate to environmental or operational factor(s). For example, the controller 103 may disregard an otherwise valid travel request based upon information obtained from one or more of the sensors 22, 40. As an illustration, according to various aspects of the present invention, the controller 103 may optionally consider factors such as whether an operator is on the vehicle 10 when determining whether to respond to a travel command from the remote control device 32. As noted above, the vehicle 10 may comprise at least one presence sensor 22 for detecting whether an operator is positioned on the vehicle 10. In this regard, the controller 103 may be further configured to respond to a travel request to operate the vehicle 10 under remote control when the presence sensor(s) 22 designate that no operator is on the vehicle 10. Thus, in this implementation, the vehicle 10 cannot be operated in response to wireless commands from the remote control device 32 unless the operator is physically off of the vehicle 10. Similarly, if the obstacle sensors 40 detect that an object, including the operator, is adjacent and/or proximate to the vehicle 10, the controller 103 may refuse to acknowledge a travel request from the remote control device 32. Thus, in an exemplary implementation, an operator must be located within a limited range of the vehicle 10, e.g., close enough to the vehicle 10 to be in wireless communication range (which may be limited to set a maximum distance of the operator from the vehicle 10). Other arrangements may alternatively be implemented.
Any other number of reasonable conditions, factors, parameters or other considerations may also/alternatively be implemented by the controller 103 to interpret and take action in response to received signals from the transmitter 178. Other exemplary factors are set out in greater detail in U.S. Provisional Patent Application Ser. No. 60/825,688, entitled “SYSTEMS AND METHODS OF REMOTELY CONTROLLING A MATERIALS HANDLING VEHICLE;” U.S. patent application Ser. No. 11/855,310, entitled “SYSTEMS AND METHODS OF REMOTELY CONTROLLING A MATERIALS HANDLING VEHICLE” now U.S. Pat. No. 9,082,293; U.S. patent application Ser. No. 11/855,324, entitled “SYSTEMS AND METHODS OF REMOTELY CONTROLLING A MATERIALS HANDLING VEHICLE” now U.S. Pat. No. 8,072,309; U.S. Provisional Patent Application Ser. No. 61/222,632, entitled “APPARATUS FOR REMOTELY CONTROLLING A MATERIALS HANDLING VEHICLE;” U.S. patent application Ser. No. 12/631,007, entitled “MULTIPLE ZONE SENSING FOR MATERIALS HANDLING VEHICLES” now U.S. Pat. No. 9,645,968; and U.S. Provisional Patent Application Ser. No. 61/119,952, entitled “MULTIPLE ZONE SENSING FOR REMOTELY CONTROLLED MATERIALS HANDLING VEHICLES;” the disclosures of which are each already incorporated by reference herein.
Upon acknowledgement of a travel request, the controller 103 interacts with the traction motor controller 106, e.g., directly or indirectly, e.g., via a bus such as the CAN bus 110 if utilized, to advance the vehicle 10. Depending upon the particular implementation, the controller 103 may interact with the traction motor controller 106 and optionally, the steer controller 112, to advance the vehicle 10 for as long as a travel control signal is received. Alternatively, the controller 103 may interact with the traction motor controller 106 and optionally, the steer controller 112, to advance the vehicle 10 for a period of time or for a predetermined distance in response to the detection and maintained actuation of a travel control on the remote control device 32. Still further, the controller 103 may be configured to “time out” and stop the travel of the vehicle 10 based upon a predetermined event, such as exceeding a predetermined time period or travel distance regardless of the detection of maintained actuation of a corresponding control on the remote control device 32.
The remote control device 32 may also be operative to transmit a second type signal, such as a “stop signal”, designating that the vehicle 10 should brake and/or otherwise come to rest. The second type signal may also be implied, e.g., after implementing a “travel” command, e.g., after the vehicle 10 has traveled a predetermined distance, traveled for a predetermined time, etc., under remote control in response to the travel command. If the controller 103 determines that a wirelessly received signal is a stop signal, the controller 103 sends a signal to the traction motor controller 106, the brake controller 116 and/or other truck component to bring the vehicle 10 to a rest. As an alternative to a stop signal, the second type signal may comprise a “coast signal” or a “controlled deceleration signal” designating that the vehicle 10 should coast, eventually slowing to rest.
The time that it takes to bring the vehicle 10 to a complete rest may vary, depending for example, upon the intended application, the environmental conditions, the capabilities of the particular vehicle 10, the load on the vehicle 10 and other similar factors. For example, after completing an appropriate jog movement, it may be desirable to allow the vehicle 10 to “coast” some distance before coming to rest so that the vehicle 10 stops slowly. This may be achieved by utilizing regenerative braking to slow the vehicle 10 to a stop. Alternatively, a braking operation may be applied after a predetermined delay time to allow a predetermined range of additional travel to the vehicle 10 after the initiation of the stop operation. It may also be desirable to bring the vehicle 10 to a relatively quicker stop, e.g., if an object is detected in the travel path of the vehicle 10 or if an immediate stop is desired after a successful jog operation. For example, the controller 103 may apply predetermined torque to the braking operation. Under such conditions, the controller 103 may instruct the brake controller 116 to apply the brakes 117 to stop the vehicle 10.
Also shown in
A pairing system 34 can utilize a close range system to wirelessly communicate with a compatible close range system on the wireless remote control device 32. Using the pairing system 34, a vehicle 10 and wireless remote control device 32 can be “paired” such that a vehicle 10 will transmit and receive messages from only its paired wireless remote control device 32. In addition to, or as an alternative to close range or other types of wireless communications, such as near-field communication (NFC), the pairing system 34 can also use physical contacts that allow electrical communication between the remote control device 32 and the vehicle 10, at least for the initial pairing procedure. For example, electrical contacts of the charging station 50 used for charging the remote control device 32 could be used for pairing the vehicle 10 to the remote control device 32, as will be described in greater detail herein. The pairing system 34 includes components that physically implement the communication method (e.g., Bluetooth, NFC, BLE, Wi-Fi, etc.) used to send messages and includes components that programmatically exchange information in an agreed upon protocol to establish and maintain a pairing. Thus, the pairing system 34 includes a device that can execute programmable instructions to implement a predetermined algorithm and protocol to accomplish pairing operations.
In
As noted above, the vehicle 10 (including the charging station 50) and the remote control device 32 form the system 8 in accordance with an aspect of the present invention. The remote control device 32 and the charging station 50 will now be described in turn.
With reference to
The remote control device 32 illustrated in
The rechargeable power source 180 may be a super capacitor, a high capacity battery, etc. For example, an AVX supercapacitor, model SCCR20E335PRB can be used, which has a rated voltage of 3V and a capacitance of 3.3 F. The rechargeable power source 180 is small enough to fit within the internal area 176 while also having enough capacity on a substantially full charge to yield a use period of the remote control device 32 of at least two hours, at least four hours, at least eight hours, or more. A use period of up to eight hours may be preferable to correspond with an eight-hour working shift for an operator.
A supercapacitor (also called a supercap or ultracapacitor) is a high-capacity capacitor with capacitance values much higher than other capacitors but, typically with lower voltage limits that bridge the gap between electrolytic capacitors and rechargeable batteries. They typically store 10 to 100 times more energy per unit volume or mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerate many more charge and discharge cycles than rechargeable batteries. Because supercapacitors can be used in applications requiring many rapid charge/discharge cycles, some embodiments of the remote control device 32 can include a supercapacitor as the rechargeable power source 180. In embodiments of the present invention, the current supplied to the supercapacitor can be limited to about 2 A and can accomplish charging to a full charge in about 2 seconds or less. Regardless of the specific type of rechargeable power source 180 used, embodiments of the present invention contemplate recharging the rechargeable power source 180 to a desired amount, such as to a full charge state, or to a charge state less than a substantially full charge state (as will be discussed in detail herein) via the charging station 50 within a desired charging period. The power supplied to the rechargeable power source 180 by the charging station 50 may be varied in accordance with the capacity of the rechargeable power source 180, the desired charge amount, and/or the desired charging period, as will be discussed in greater detail herein.
With reference to
The holding strap 190 shown in
The remote control device 32 further comprises at least one control, depicted in
The remote control device 32 is compact, and substantially the entirety of the remote control device 32 is mountable and positioned directly over the index finger of the operator. Hence, interference of the operator performing working tasks caused by wearing the remote control device 32 is minimal or non-existent. The remote control device 32 is durable and long lasting since the rigid base 172 and the upper housing 174 are preferably formed from a durable and rigid polymeric material, such as acrylonitrile butadiene styrene (ABS), polycarbonate or nylon. The rigid base 172 and the upper housing 174 define a durable, generally non-flexible and rigid structure.
An operator can easily actuate the travel button 197A manually via his/her thumb to cause the wireless transmitter 178 to wirelessly transmit at least a first type signal designating a travel request or command to the vehicle 10. It is contemplated that the travel request may result in the vehicle 10 traveling for as long as the operator holds down the travel button 197A, or by a predetermined distance or for a predetermined amount of time. The horn button 197B and the brake button 197C can be actuated by the operator's opposite hand, for example.
As shown in
In embodiments, the charging contacts 210 mate or engage with elements, e.g., electrical contacts or charging elements 220 of the on-vehicle charging station 50 (to be discussed below), and the first presence contact 212 mates or engages with a complementary second sensor in the form of a second presence contact 222, such as a switch, pogo pin or pressure pin, for example, of the on-vehicle charging station 50, as shown in
Embodiments of the present invention also contemplate contactless, or induction, charging in which the rechargeable power source 180 of the remote control device 32 can be charged by the remote control device 32 being in close proximity to, or on the surface of, a compatible induction charging station (not shown). Such an induction charging station may be located, for example, in a driving or steering control of the vehicle 10 such that the rechargeable power source 180 may be charged while the operator is manually driving the vehicle 10 from the operator's station 20.
It is noted that the first and second presence contacts 212, 222 can respectively be provided on either the remote control device 32 or the charging station 50. That is, while the second presence contact 222 is illustrated on the charging station 50 and the first presence contact 212 on the remote control device 32, the second presence contact 222 could be located on the remote control device 32 and the first presence contact 212 could be located on the charging station 50.
The relationship between the second presence contact 222 and the charging elements 220 is such that the charging contacts 210 of the remote control device 32 and the charging elements 220 of the charging station 50 are in contact with one another before the second presence contact 222 engages the first presence contact 212 when a charging procedure is being initiated, see
As an alternative to the presence contacts 212, 222 being used to initiate the supply of power from the charging station 50 to the remote control device 32, a separate switch may be present that the operator engages to begin a charging operation. In one specific embodiment using induction charging, such a switch can be incorporated into the vehicle's steering control, such that the operator's gripping of the steering control is detected and charging is subsequently enabled.
Controls 414 for providing controlling signals to operate the LEDs 404 can be from various sources. While the remote control device 32 is operated within range of the charging station 50, the controller 103 can receive information about the state of charge of the rechargeable power source 180 and drive the display of the LEDs 404 to convey this information utilizing a CAN bus interface, for example. When the remote control device 32 is coupled with the charging station 50 the LEDs 404 can be used to convey a) that a remote control device 32 is physically connected to charging station 50, b) that there is a remote control device 32 presently paired with the controller 103 of the vehicle, c) the progress/charging state of a current charging operation, and/or d) the charging state of the rechargeable power source 180. The information for items c) and d) may be sent to the charging station 50 by the remote control device 32, for example, over a Bluetooth Low Energy (BLE) connection, which BLE connection will be discussed in greater detail below. According to one aspect, since the pairing and charging processes are performed very quickly, the progress/charging state of a current charging operation may not be displayed by the LEDs 404. The remote control device 32 may store its charging profile and then send the charging profile to the charging station 50, e.g., over the BLE connection, after the remote control device 32 is removed from the charging station 50, wherein the charging profile may be evaluated, for example, by the controller 103, to determine if a proper charge of the rechargeable power source 180 occurred. The second presence contact 222 can also send control signals to controls 414 that indicate whether charging contacts 210 of the remote control device 32 are properly coupled with corresponding charging elements 220 of the charging station 50.
In
The LEDs 404 can further serve as an indicator to identify the progress of a recharging operation when the remote control device 32 is attached. When the remote control device 32 is not attached to the charging station 50, the LEDs 404 may serve as an indicator to indicate the present state of charge of the rechargeable power source 180 of the remote control device 32. Thus, the LEDs 404 can indicate the state of charge of the rechargeable power source 180 both when charging the rechargeable power source 180 at the charging station 50 and during use of the remote control device 32, i.e., while the operator is using the remote control device 32 to assist in performing work operations. In one exemplary embodiment, the LEDs 404 can comprise a series of lights, each light representing a level of the state of charge of the rechargeable power source 180.
In
The charging station 50 may be located at various locations on the vehicle 10. Its location should be such that it does not interfere with normal operation of the vehicle 10, but where it is accessible and convenient for the operator. In embodiments the charging station 50 is located in the operator's station 20 (see
The charging station 50 may include a voltage regulator (not shown) that transforms the power from the vehicle 10 received by the charging station 50 into a regulated direct current (DC) voltage signal selected based on the charging characteristics of the rechargeable power source 180. For example, in an embodiment in which the rechargeable power source 180 is an AVX supercapacitor described above or equivalent device, a 3V DC (1%) supply voltage could be provided to the current limiter 406.
It is noted that the remote control device 32 is described herein as having an exemplary configuration and may be structurally modified without departing from the spirit and scope of the invention. For example, one or more components of the remote control device 32 may be combined in an integral component, or components may be substituted for alternate components that effect a similar/identical purpose.
In one embodiment, charging of the rechargeable power source 180 via the charging station 50 occurs when one or more charging contacts 210 engage a corresponding charging element 220 of the charging station 50. In some embodiments, at least two charging contacts 210 or at least four charging contacts 210 and corresponding charging elements 220 are present. In some embodiments, one or more pairs of charging contacts 210 are provided, wherein at least one charging contact 210 from each pair must engage a corresponding charging element 220 for charging to occur. As described above, at least one of the remote control device 32 and the charging station 50 can include a second presence contact 222, such as a switch, for example. The second presence contact 222 detects whether or not the at least one charging contact 210 is correctly engaged with the at least one corresponding charging element 220 for charging the rechargeable power source 180, wherein if a correct engagement is detected, the transfer of power to the rechargeable power source 180 is enabled by the charging station 50, and if a correct engagement is not detected, the transfer of power to the rechargeable power source 180 is not enabled by the charging station 50.
Furthermore, the arrangement of the remote control device 32 and the charging station 50 is configured such that the second presence contact 222 indicates the removal of the remote control device 32 from the charging station 50, which ceases the transfer of power to the rechargeable power source 180 from the charging station 50, before the at least one charging contact 210 is disengaged from the at least one corresponding charging element 220. Hence, the transfer of power from the charging station 50 to the rechargeable power source 180 is ceased before the at least one charging contact 210 is disengaged from the at least one corresponding charging element 220. This may be effected, for example, by setting the heights of the charging elements 220 and the second presence contact 222 as shown in
The remote control device 32 can include protection circuitry 452 that limits electrical parameters such as voltage and/or current to be within expected operating ranges. Charge controller and disconnect circuitry 454 can monitor the voltage being received from the protection circuitry 452 as well as monitor the present state of charge of the rechargeable power source 180 in order to determine when to stop charging the rechargeable power source 180. For example, according to one exemplary embodiment, when the charge on the rechargeable power source 180 reaches 3V, the charge controller and disconnect circuitry 454 can operate to stop further charging. The charge controller and disconnect circuitry 454 can include temperature sensing capabilities or be connected to a temperature sensor so that the rechargeable power source 180 can be charged (or discharged) to different charging levels. In some embodiments, the rechargeable power source 180 is discharged to a high temperature state of charge, e.g., a less than fully charged state, if a sensed temperature is determined to be above a predetermined setpoint temperature. In one exemplary aspect of the invention, the sensed temperature is an ambient temperature. In an alternative aspect, the sensed temperature is a battery temperature. In some embodiments, the rechargeable power source 180 is charged at the charging station 50 to a predetermined charge level less than a 100% charge level if a sensed temperature is determined to be above a predetermined threshold temperature. This may help prevent damage to or degradation of the rechargeable power source 180.
As shown in
With reference to
The vehicle operator then initiates a power on sequence to enable the vehicle 10 for operation, i.e., the operator starts the vehicle 10 at 504. In starting the vehicle 10, the operator may be required to provide login information to the vehicle 10. This information may be provided for by example, entering a personal identification number (PIN) into a control panel of the vehicle 10, by utilizing a key fob to provide the logon ID to the vehicle 10, or the operator's PIN may be encoded into a memory device, such as a radio-frequency identification (RFID) chip that is integrated into the remote control device 32.
The operator then starts a pairing operation with the vehicle 10 at 506, and the pairing system 34 then pairs the remote control device 32 used by the operator to the vehicle 10 at 508. Details of two exemplary pairing operations will be described in detail below with reference to
Once paired, the system 8 may provide a visual indication as such, e.g., by displaying a message on the vehicle 10, illuminating the LED 424 in a predetermined color, making an audible or visual queue, etc., that indicates that the pairing is complete.
In accordance with an aspect of the invention, the remote control device 32 may be unpaired from the vehicle 10 by powering down the vehicle 10. Other exemplary methods for unpairing the remote control device 32 from the vehicle 10 are described below in exemplary use cases.
The operation of two example pairing systems 34 are described in relation to
With reference to
According to one aspect of the invention, where the pairing process is accomplished wirelessly, at 554, the remote control device 32 detects that a voltage is present at its charging contacts 210 and begins transmitting BLE advertisements via the wireless transmitter 178 indicating that the remote control device 32 is available for communicating with nearby devices.
In response, the BLE radio 402 of the charging station 50 can receive one of the transmitted advertisements and, at 556, issue a BLE scan request directed to the specific remote control device 32 associated with the received advertisement. If the BLE radio 402 of the charging station 50 were to identify two or more remote control devices 32 available for pairing, i.e., by receiving BLE advertisements from two or more remote control devices 32 while scanning or listening for nearby BLE transmissions, the vehicle 10 may not pair with any of the available remote control devices 32 and may require the operator to repeat the pairing process by removing the remote control device 32 from the charging station 50 and then reinserting the remote control device 32 into the charging station 50.
At 558, the remote control device 32 responds to the scan request with a unique identification code, which the BLE radio 402 receives.
At 560, the vehicle 10 verifies the code and instructs the BLE radio 402 to open a BLE connection and begin communicating with the remote control device 32.
At 562, once a communication session is established between the remote control device 32 and the charging station 50, a predetermined pairing algorithm can be implemented between the remote control device 32 and the charging station 50 to complete the pairing operation at 564. Once paired, the vehicle 10 wirelessly communicates with the remote control device 32, and the controller 103 of the vehicle 10 is capable of implementing wireless requests received from the remote control device 32.
In the example flowchart described above with respect to
With reference to
At 604, the signal strength of the BLE transmissions between the wireless transmitter 178 and the BLE radio 402 may be decreased during the pairing process to help prevent any other nearby vehicles 10 from receiving the BLE transmissions from the remote control device 32.
According to one aspect of the invention, where the pairing process is accomplished wirelessly, at 606, the remote control device 32 detects that a voltage is present at its charging contacts 210 and begins transmitting BLE advertisements via the wireless transmitter 178 at a predetermined rate, e.g., a 20 ms rate with a predetermined timeout, e.g., 2000 ms timeout, indicating that the remote control device 32 is available for communicating with nearby vehicles 10. If the BLE radio 402 of the charging station 50 were to identify two or more remote control devices 32 available for pairing, i.e., by receiving BLE advertisements from two or more remote control devices 32 while scanning or listening for nearby BLE transmissions, the vehicle 10 may not pair with any of the available remote control devices 32 and may require the operator to repeat the pairing process by removing the remote control device 32 from the charging station 50 and then reinserting the remote control device 32 into the charging station 50.
The charging station 50 may provide power to charge the rechargeable power source 180 for up to about, e.g., 1000 ms before the BLE advertisements are sent from the wireless transmitter 178. Charging of the rechargeable power source 180 by the charging station 50 will be discussed in detail below.
In response to receiving the BLE advertisements from the wireless transmitter 178, the BLE radio 402 of the charging station 50 can, at 608, issue a BLE scan request.
At 610, the remote control device 32 receives the scan request from the BLE radio 402 and uses the address of the BLE radio 402 to create a unique identification code, which the remote control device 32 sends back to the BLE radio 402 at 612.
At 614, the vehicle 10 verifies the code and instructs the BLE radio 402 to open a BLE connection and begin communicating with the remote control device 32. It is noted that if the vehicle 10 receives more than one valid identification code during step 614, for example, if the vehicle 10 receives identification codes from two different remote control devices 32, pairing will fail, the vehicle 10 may issue an error message or other warning, and the operator will be required to repeat the pairing process by removing the remote control device 32 from the charging station 50 and then reinserting the remote control device 32 into the charging station 50.
At 616, once a communication session is established between the remote control device 32 and the charging station 50, the pairing operation may be completed, and the signal strength of the BLE transmissions between the wireless transmitter 178 and the BLE radio 402 may be increased back to their normal levels at 618.
The operator may be required to perform an action at 620 as a test to confirm that the remote control device 32 is functional and can communicate to the charging station 50, such as by pressing a button sequence on the remote control device 32, for example, by pressing the horn button 197B and brake button 197C concurrently.
Once paired, the vehicle 10 wirelessly communicates with the remote control device 32, and the controller 103 of the vehicle 10 is capable of implementing wireless requests received from the remote control device 32.
In accordance with aspects of the invention, a pairing period (which is a time period that it takes to establish communication between the remote control device 32 and the vehicle 10 and commences with steps 552/602 and ends with steps 564/616) may be less than the charging period (which is the time it takes to charge the rechargeable power source 180 to a desired charge state at the charging station 50), wherein charging of the rechargeable power source 180 will be discussed below in connection with
Referring to
A successful operator action at 708 results in a confirmation of the pairing between the remote control device 32 and the vehicle 10 at 710. A visual queue may be displayed on the indicator (the LED 424) to signify the pairing, e.g., by illuminating the LED 424 in the second color noted above.
Alternatively, according to this aspect of the invention, if the operator powers the vehicle 10 back up after the predefined time period expires at 712, the operator may be required to re-pair the remote control device 32 to the vehicle 10 as with the initial pairing, e.g., by inserting the remote control device 32 into the charging station 50 at 714.
With reference to
At 808, if no vehicle-related activity takes place for less than a second predetermined amount of time after communication between the remote control device 32 and the vehicle 10 is established, the second predetermined amount of time equal to or less than the first predetermined amount of time, the communication between the remote control device 32 and the vehicle 10 is terminated but can be re-established without the pairing system 34, e.g., by performing a confirmation method utilizing the remote control device 32 at 810. The confirmation method may comprise, for example, the operator carrying out a button sequence on the remote control device 32, such as by long-pressing one or more of the buttons 197A-C. This state of pairing between the vehicle 10 and the remote control device 32 may be indicated, for example, on the touchscreen, by illuminating the LED 424 in a predetermined color, pattern, etc.
The method 900 for charging a remote control device 32 begins at 902 by initiating contact between a component of the remote control device 32 and an element of a charging station 50, the charging station 50 located at the vehicle 10, and then sensing contact between the remote control device component and the charging station element. As described above, the remote control device 32 can include one or more charging contacts 210 that are each arranged to engage a corresponding charging element 220 of the charging station 50, such that when they are engaged, a second presence contact 222 or a similar device engages a corresponding first presence contact 212 to detect or sense that the charging contact(s) 210 and charging element(s) 220 are in contact with one another. However, other components of the remote control device 32 and other elements of the charging station 50 may be used to detect/sense the initiation of contact.
Next, at 904, a charging period is started, wherein power is supplied from the charging station 50 to the rechargeable power source 180. As described above, as an example, circuitry of the charging station 50 is configured such that upon the sensing of contact between the charging contact(s) 210 and charging element(s) 220, power is supplied from the charging station 50 to the charging contacts 210 of the remote control device 32 to charge the rechargeable power source 180. Once the rechargeable power source 180 is substantially fully charged (or charged to the desired amount less than a substantially full state of charge), the remote control device 32 can be removed from the charging station 50.
Thus, the method of
Finally, upon the sensing of this interruption at 906, the charging station 50 can cease the supply of power from the charging station 50 to the rechargeable power source 180 at 908, thus ending the charging period. It is noted that the second presence contact 222 can be located on the remote control device 32 and its disengagement can result in ceasing the supply of power from the charging station 50 to the rechargeable power source 180. The supply of power from the charging station 50 to the rechargeable power source 180 may also be ceased when the rechargeable power source 180 is charged up to the desired amount (either fully charged or charged up to a desired amount less than fully charged), as described herein.
The method 900 can include other optional steps shown in
Additionally, the method 900 may include, at 914, displaying a state of charge of the rechargeable power source 180 at the vehicle 10, e.g., at the charging station 50, wherein the state of charge of the rechargeable power source 180 may be displayed at the vehicle 10 both when charging the rechargeable power source 180 and during use of the remote control device 32. The state of charge of the rechargeable power source 180 may be displayed, for example, via a series of lights, each light representing a level of a state of charge of the rechargeable power source 180.
The method 950 for charging a remote control device 32 begins at 952 by initiating contact between a component of the remote control device 32 and an element of a charging station 50, the charging station 50 located at the vehicle 10, and then sensing contact between the remote control device component and the charging station element. As described above, the remote control device 32 can include one or more charging contacts 210 that are each arranged to engage a corresponding charging element 220 of the charging station 50, such that when they are engaged, a second presence contact 222 or a similar device engages a corresponding presence contact 212 to detect or sense that the charging contact(s) 210 and charging element(s) 220 are in contact with one another. However, other components of the remote control device 32 and other elements of the charging station 50 may be used to detect/sense the initiation of contact.
At 954, the current state of charge of the rechargeable power source 180 is determined. Step 954 can be performed before or after step 952, i.e., the state of charge of the rechargeable power source 180 may be communicated to the charging station 50 both when the remote control device 32 is coupled to the charging station 50, and during use of the remote control device 32 by the operator, as discussed herein.
Based on the current state of charge of the rechargeable power source 180 and after step 952 is performed, at 956, a charging period is started, wherein power is supplied from the charging station 50 to the rechargeable power source 180. In one exemplary embodiment, at step 958A, if the voltage of the rechargeable power source 180 is below a voltage threshold VT, the charging station 50 charges the rechargeable power source 180 at a first, higher power level PL1. According to this embodiment, at step 958B, if the voltage of the rechargeable power source 180 is above the voltage threshold VT, the charging station 50 charges the rechargeable power source 180 at a second, lower power level PL2. The resulting charging period in either case, i.e., at step 958A or step 958B, may be about the same, i.e., charging the rechargeable power source 180 up to the desired amount from above or below the voltage threshold VT may take about the same time. While only two power levels PL1, PL2 associated with a single voltage threshold VT are discussed herein, additional voltage thresholds and power levels could be used, wherein the charging period can always be about the same time, regardless of the charge level of the rechargeable power source 180 when it is inserted into the charging station 50. Additionally, an equation could be used to dynamically set the power level according to the current state of charge of the rechargeable power source 180.
Once the charging period is complete, that is, once the rechargeable power source 180 is charged to the desired amount, i.e., substantially fully charged or charged to an amount less than a substantially full state of charge, e.g., in view of the sensed temperature if that technology is present in the system 8, or if less than a full charge is desired, the remote control device 32 can be removed from the charging station 50.
Thus, the method of
Finally, upon the sensing of this interruption at 960, or upon the rechargeable power source 180 being charged to the desired amount, the charging station 50 can cease the supply of power from the charging station 50 to the rechargeable power source 180 at 962, thus ending the charging period.
The method 950 can include other optional steps shown in
Additionally, the method 950 may include, at 968, displaying a state of charge of the rechargeable power source 180 at the vehicle 10, e.g., at the charging station 50, wherein the state of charge of the rechargeable power source 180 may be displayed at the vehicle 10 both when charging the rechargeable power source 180 and during use of the remote control device 32. The state of charge of the rechargeable power source 180 may be displayed, for example, via a series of lights, each light representing a level of a state of charge of the rechargeable power source 180.
In accordance with an aspect of the invention, the charging period may depend on the capacity of the rechargeable power source 180, the charge rate/power level supplied by the charging station 50, and/or the charge state of the rechargeable power source 180 when it is inserted into the charging station 50. Thus, a desired charging period could be achieved regardless of the current state of charge of the rechargeable power source 180 when the remote control device 32 is placed in the charging station 50. For example, the current state of charge of the rechargeable power source 180 may be known to the vehicle 10, e.g., the state of charge of the rechargeable power source 180 may be communicated to the charging station 50, as discussed herein. The charging station 50 may be instructed, e.g., by the controller 103, to supply power to the rechargeable power source 180 at different rates or levels based on the state of charge of the rechargeable power source 180 when the remote control device 32 is placed in the charging station 50, so that the charging period is generally about the same time regardless of the state of charge of the rechargeable power source 180 when the remote control device 32 is placed in the charging station 50. For example, as discussed above with reference to steps 958A/B of
Additionally, while the pairing period, which is described herein as the time period it takes to establish communication between the remote control device 32 and the vehicle 10, may be less than or equal to the charging period, the charging period may also be less than the pairing period. As one example, it may be determined that the rechargeable power source 180 does not need to be fully charged in order to operate for a desired use period. For example, a full charge of the rechargeable power source 180 may provide an operation time that is greater than a desired use period (e.g., an operator's shift), such that the rechargeable power source 180 does not need to be fully charged in order to be operable for the desired use period. In this case, the charging station 50 may be programmed to charge the rechargeable power source 180 up to a less than full state of charge, which would still be sufficient for the remote control device to be operable for the entire desired use period. The time it takes to charge rechargeable power source 180 up to this less than full state of charge may be less than the pairing period. Other situations may also occur where the charging period may be less than the pairing period.
With reference to
The vehicle 10′ can include a vehicle controller 103′ that is responsive to wireless requests from an associated remote control device 32′ that is used by an operator interacting with the vehicle 10′ similar to those types of vehicles 10 and remote control devices 32 described above. An example kit 1000 would include a charging station 50′ at the vehicle 10′, the charging station 50′ for charging a rechargeable power source 180′ of the remote control device 32′, wherein the charging station 50′ is electrically coupled to a vehicle power source, and a receiver 102′ such as a BLE radio communicably coupled to the controller 103′ of the vehicle 10′. In particular, the charging station 50′ is configured such that the rechargeable power source 180′ is charged up to a desired amount (a full charge or less than full charge as discussed herein) at the charging station 50′ within a desired charging period.
The kit 1000 may further include a pairing system 34′ for establishing communication between the remote control device 32′ and the vehicle 10′, such that the controller 103′ is capable of implementing wireless requests from the remote control device 32′. The pairing system 34′ may, for example, be similar to pairing system 34 and can implement the pairing algorithm(s) detailed in
It is contemplated that communication between the remote control device 32′ and the vehicle 10′ is established concurrently during charging of the rechargeable power source 180′ at the charging station 50′, i.e., the pairing period and the charging period may overlap. Furthermore, in some embodiments, communication between the remote control device 32′ and the vehicle 10′, and charging of the rechargeable power source 180′ at the charging station 50′ are initiated with a single action. For example, the single action can comprise physically contacting a component of the remote control device, for example, one or more charging contacts 210 as described above, with an element of the charging station, for example, one or more corresponding charging elements 220 as described above.
The remote control device 32′ used in combination with the kit 1000 may be the same as the remote control devices 32 disclosed herein. Hence, a remote control device manufactured for use with a vehicle 10 including an integrated charging station 50 and related components could also be used with a kit 1000 for use with an existing vehicle 10′.
As described above with respect to the charging station 50, the charging station 50′ of the kit 1000 can also include guide structure 420′ to align the remote control device 32′ in the proper orientation for charging the rechargeable power source 180′.
The kit 1000 can also include an indicator (e.g., LEDs 404′, light, or similar structure) configurable to be attachable at the vehicle 10′ for indicating a state of charge of the rechargeable power source 180′. The indicator can indicate the state of charge of the rechargeable power source 180′ both when charging the rechargeable power source 180′ at the charging station 50′ and during use of the remote control device 32′. In some embodiments, the indicator comprises a series of lights, each light representing a level of the state of charge of the rechargeable power source 180′.
The kit 1000 includes at least one charging element 220′ on the charging station 50′ that engages at least one corresponding charging contact 210′ of the remote control device 32′. Furthermore, at least one of the remote control device 32′ or the charging station 50′ includes a presence contact 212′ or 222′ that detects whether or not at least one corresponding charging contact 210′ and at least one charging element 220′ are correctly engaged with one another. If a correct engagement is detected, the transfer of power to the rechargeable power source 180′ of the remote control device 32′ is enabled by the charging station 50′, and if a correct engagement is not detected, the transfer of power to the rechargeable power source 180′ is not enabled by the charging station 50′. In at least some embodiments, the remote control device 32′ comprises at least two charging contacts 210′ or at least four charging contacts 210′ that are positioned to engage corresponding charging elements 220′ on the charging station 50′.
The arrangement of the remote control device 32′ and the charging station 50′ of the kit 1000 is configured such that the presence contact 212′ or 222′ indicates the removal of the remote control device 32′ from the charging station 50′, which ceases the transfer of power to the rechargeable power source 180′ from the charging station 50′, before the at least one charging contact 210′ is disengaged from the at least one corresponding charging element 220′. Hence, the transfer of power from the charging station 50′ to the rechargeable power source 180′ is ceased before the at least one charging contact 210′ is disengaged from the at least one corresponding charging element 220′.
The kit 1000 may also utilize contactless, or induction, charging in which the rechargeable power source 180′ of the remote control device 32′ can be charged by being in close proximity to, or on the surface of, a compatible induction charging station (not shown). Such an induction charging station may be located, for example, in a driving or steering control of the vehicle 10′ such that the rechargeable power source 180′ may be charged while the operator is manually driving the vehicle 10′ from the operator's station 20′. The kit 1000 according to this aspect of the invention may be at least partially located in the vehicle steering control or other vehicle component that facilitates the contactless/induction charging of rechargeable power source 180′, e.g., the rechargeable power source 180′ may be charged by the operator grasping the driving/steering control.
The kit 1000 may utilize any of the other features and/or functions of the remote control device 32′ and the charging station 50′ described above for
With reference now to
If the remote control device 32 incorporated into the glove garment 1100 were used in combination with the inductive charging technology disclosed herein, inductive charging structures may be incorporated, for example, into the palm of the glove garment 1100. Such charging structures in the glove garment 1100 could be used with charging elements incorporated, for example, into a steering control of a vehicle paired to the remote control device 32, in which case a rechargeable power source of the remote control device 32 could be charged while the operator is grasping the steering control.
According to additional aspects of the present invention, there may be conditions and/or events that cause the vehicle 10 to become unpaired from the remote control device 32, wherein a complete pairing process utilizing the pairing system 34, as described herein, may be required to re-pair the vehicle 10 with the remote control device 32. There may be other conditions or events that cause the vehicle 10 to become unpaired from the remote control device 32, wherein something other than a complete pairing process utilizing the pairing system 34, as described herein, may be required to re-pair the vehicle 10 with the remote control device 32. Several exemplary use cases with regard to unpairing and re-pairing will now be described.
A first exemplary use case may occur by powering down the vehicle 10. According to this first use case, the remote control device 32 is unpaired from the controller 103 and requires a complete pairing process utilizing the pairing system 34, as described herein, to re-pair the vehicle 10 with the remote control device 32. In accordance with this exemplary first use case, a complete pairing process utilizing the pairing system 34 may be required to re-pair the remote control device 32 to the vehicle 10 whenever the vehicle 10 is powered down.
A second exemplary use case may be substantially as described above with respect to
Third and fourth exemplary use cases may occur if no vehicle-related activity takes place for greater than a first predetermined amount of time after communication between the remote control device 32 and the vehicle 10 is established (third use case) or if no vehicle-related activity takes place for less than a second predetermined amount of time after communication between the remote control device 32 and the vehicle 10 is established (fourth use case). The details of these third and fourth exemplary use cases are discussed above with reference to
A number of exemplary use cases may arise where multiple remote control devices 32 and/or multiple vehicles 10 are concerned. In a fifth exemplary use case, assume a first remote control device 32 is currently paired with a first vehicle 10, and a second remote control device 32 is currently paired with a second vehicle 10. In this fifth use case, the first remote control device 32 is inserted into the charging station 50 of the second vehicle 10. Under this circumstance, the charging station 50 of the second vehicle 10 may charge the rechargeable power source 180 of the first remote control device 32, the first remote control device 32 may become unpaired from the first vehicle 10, and the second remote control device 32 may become unpaired from the second vehicle 10. The first remote control device 32 will not be paired to the second vehicle 10 in the fifth use case.
In a sixth exemplary use case and with reference to
As described above, the wireless communication system 456 of the remote control device 32 and/or the BLE radio 402 of the charging station 50 can be configured, for example, to enter a low power mode when the remote control device 32 is being paired to the second vehicle 10B and/or the rechargeable power source 180 of the remote control device 32 is being charged at the charging station 50, e.g., to ensure that only a remote control device 32 that is within a minimum distance, corresponding to the signal strength of the communications received from the remote control device 32, from the charging station 50 is recognized as the remote control device 32 for the second vehicle 10B to pair with.
According to the sixth exemplary use case, prior to the pairing process, the second vehicle 10B may be sent, e.g., by a Warehouse Management System WMS in communication with the second vehicle 10B, to a designated location, such as, for example, the location of the operator, the location of the first vehicle 10A, the end of an aisle in which the operator and/or first vehicle 10A are located, a designated waiting area, etc. The second vehicle 10B may be an unloaded vehicle, i.e., free from a load and thus ready to carry items to be picked by the operator. The second vehicle 10B may be instructed to move to the designated location by the Warehouse Management System WMS, for example, when the first vehicle 10A is loaded with a desired amount of pick items and is ready to be sent to a different location, i.e., a location that is different than the current location of the vehicle 10, such as a loading dock LD or other location where the pick items on the first vehicle 10A are to be sent. The operator may also request that the second vehicle 10B be sent to the designated location, for example, using a control on the first vehicle 10A, over a headset, etc. Once the second vehicle 10B is paired to the remote control device 32, the second vehicle 10B may no longer implement commands from the Warehouse Management System WMS, such that the second vehicle 10B will only implement wireless commands from the remote control device 32 with which it is paired.
Once the remote control device 32 is unpaired from the first vehicle 10A, the Warehouse Management System WMS may send instructions to the first vehicle 10A to move to the loading dock LD and/or to another location, such as a vehicle charging station (not shown). Using this sixth exemplary use case, an operator may quickly switch between vehicles 10A, 10B, resulting in an increase in work productivity and efficiency.
In a seventh exemplary use case, assume a first remote control device 32 is currently paired with a vehicle 10, and a second remote control device 32 is not paired with a vehicle. In this seventh use case, the second remote control device 32 is inserted into the charging station 50 of the vehicle 10. Under this circumstance, the charging station 50 of the vehicle 10 may charge the rechargeable power source 180 of the second remote control device 32, the first remote control device 32 may become unpaired from the vehicle 10, and the second remote control device 32 will not be paired to the vehicle 10.
In an eighth exemplary use case, the remote control device 32 is moved out of range of the vehicle 10, i.e., such that the wireless transmitter 178 is no longer able to communicate with the receiver 102 for a predetermined time period. According to the eighth use case, the remote control device 32 may become unpaired from the vehicle 10. According to the eighth use case, if the remote control device 32 moves back into range of the vehicle 10 after a predetermined time period, the vehicle 10 may need to be shut down and restarted to pair with a remote control device 32 utilizing the pairing system 34, including pairing with the previously-paired remote control device 32, or a different remote control device 32. If the remote control device 32 moves back into range of the vehicle 10 within the predetermined time period, the vehicle 10 may not need to be shut down and restarted to pair with the previously paired remote control device 32, e.g., the previously paired remote control device 32 may be re-paired with the vehicle 10 by inserting the remote control device 32 into the charging station 50 of the vehicle. Pairing the vehicle 10 to a different remote control device 32 may require a vehicle shut down and restart, regardless of how long the previously paired remote control device 32 was out of range of the vehicle 10.
Additional exemplary use cases concerning pairing and/or charging periods will now be described.
In a ninth exemplary use case, a desired charge state, e.g., a substantially full charge state, of the rechargeable power source 180 can be achieved by charging the rechargeable power source 180 at the charging station 50 in five seconds or less. According to this use case, the substantially full charge state of the rechargeable power source 180 may yield a use period of the remote control device 32 of at least eight hours.
In a tenth exemplary use case, the charging station 50 varies the power level supplied to the rechargeable power source 180 depending on the state of charge of the rechargeable power source 180 when the remote control device 32 is inserted into the charging station 50, as described herein with respect to
It is noted that the type of transmissions sent by the remote control device 32 to the vehicle 10, e.g., requests, such as travel requests, may be other types of transmissions. As one example, the transmissions may comprise location-based transmissions that inform the controller 103 of the vehicle 10 where the remote control device 32 is located relative to the vehicle 10. These type of location transmissions may be used by the controller 103, e.g., to follow the remote control device 32. Hence, the vehicle 10 may follow an operator wearing, holding, or carrying the remote control device 32. Such a remote control device 32 could be charged by the charging station 50 and paired to the vehicle 10 as described herein.
In accordance with another aspect of the present invention, charging of the rechargeable power source 180 by the charging station 50 may be disabled while the vehicle 10 is in motion. This aspect of the invention may not apply to inductive charging of the rechargeable power source 180.
Furthermore, when an operator is attempting to pair a remote control device 32 to a vehicle 10 that is in communication with the Warehouse Management System WMS, the Warehouse Management System WMS can determine if one or more remote control device operational checks have been performed within a predetermined time period, for example, within the last 12 hours. Such operational checks may include, for example, checks to ensure the operability of controls of the remote control device 32, such as the horn and/or brake buttons 197B, 197C. If such operational check(s) have not been performed within the predetermined time period, the vehicle 10 may communicate to the operator that operational check(s) must be performed prior to the remote control device 32 being pairable with the vehicle 10, i.e., the remote control device 32 is only allowed to pair with the vehicle 10 if the one or more remote control device operational checks have been performed within the predetermined time period. The operational checks may be performed by the operator implementing the controls, e.g., by holding down the horn and/or brake buttons 197B, 197C.
Additionally, when an operator is attempting to pair a remote control device 32 to a vehicle 10 that is in communication with the Warehouse Management System WMS, the Warehouse Management System WMS can determine if the operator is authorized to operate the vehicle 10 that the operator is attempting to pair to the remote control device 32. For example, vehicles that are to be used only in a certain location, such as in a freezer, may only be pairable with remote control devices 32 where the operator will use the vehicle in that location. As another example, operators may be limited to operating certain vehicles. Remote control devices 32 in these situations may only be authorized to pair with such vehicles when these condition(s) are met.
In accordance with an aspect of the invention, the charge life of the rechargeable power source 180 over a given operating cycle may be increased by turning off or reducing the power consumption of one or more components of the remote control device 32, e.g., the components of the wireless communication system 456 including the wireless transmitter 178, when an operator is determined to be standing on the platform 21 of the vehicle 10, e.g., as detected by the presence sensors 22.
The terms “pairing” and “synchronizing” (as used herein and in the various patents and published patent applications incorporated by reference herein) are used interchangeably herein to describe a secure process whereby a wireless remote control device and vehicle controller identify each other as valid command and response devices.
Having thus described the invention of the present application in detail and by reference to embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/800,032, filed Feb. 1, 2019 and entitled “ON-BOARD CHARGING STATION FOR A REMOTE CONTROL DEVICE”, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1835808 | Pitts | Dec 1931 | A |
2959260 | Johnson et al. | Nov 1960 | A |
3016973 | Williamson | Jan 1962 | A |
3047783 | Van Oort et al. | Jul 1962 | A |
3587784 | Tait | Jun 1971 | A |
3825130 | Lapham | Jul 1974 | A |
3831963 | Placko et al. | Aug 1974 | A |
3946882 | Koch | Mar 1976 | A |
3968893 | Lapham | Jul 1976 | A |
4074120 | Allred et al. | Feb 1978 | A |
4077486 | Blakeslee et al. | Mar 1978 | A |
4106584 | Matsubara | Aug 1978 | A |
4252495 | Cook | Feb 1981 | A |
4258825 | Collins | Mar 1981 | A |
4287966 | Frees | Sep 1981 | A |
4362458 | Jantzi | Dec 1982 | A |
4384695 | Nohmi et al. | May 1983 | A |
4476954 | Johnson et al. | Oct 1984 | A |
4518043 | Anderson et al. | May 1985 | A |
4527651 | Thiermann, Sr. | Jul 1985 | A |
4546840 | Yukishige et al. | Oct 1985 | A |
4551059 | Petoia | Nov 1985 | A |
4623032 | Kemmer | Nov 1986 | A |
4644237 | Frushour et al. | Feb 1987 | A |
4665487 | Ogawa et al. | May 1987 | A |
4714140 | Hatton et al. | Dec 1987 | A |
4716980 | Butler | Jan 1988 | A |
4727492 | Reeve et al. | Feb 1988 | A |
4785664 | Reebs | Nov 1988 | A |
4849735 | Kirtley et al. | Jul 1989 | A |
4878003 | Knepper | Oct 1989 | A |
4893689 | Laurich-Trost | Jan 1990 | A |
4954817 | Levine | Sep 1990 | A |
4967362 | Schutten et al. | Oct 1990 | A |
5023790 | Luke, Jr. | Jun 1991 | A |
5036935 | Kohara | Aug 1991 | A |
5044472 | Dammeyer et al. | Sep 1991 | A |
5107946 | Kamimura et al. | Apr 1992 | A |
5117935 | Hall | Jun 1992 | A |
5141381 | Kato et al. | Aug 1992 | A |
5151696 | Kasahara et al. | Sep 1992 | A |
5170351 | Nemoto et al. | Dec 1992 | A |
5220319 | Kendel | Jun 1993 | A |
5245144 | Stammen | Sep 1993 | A |
5307271 | Everett et al. | Apr 1994 | A |
5357560 | Nykerk | Oct 1994 | A |
5361861 | Miller | Nov 1994 | A |
5402257 | Hasselmann et al. | Mar 1995 | A |
5502638 | Takenaka | Mar 1996 | A |
5652486 | Mueller et al. | Jul 1997 | A |
5682313 | Edlund | Oct 1997 | A |
5709523 | Ware | Jan 1998 | A |
5778327 | Simmons et al. | Jul 1998 | A |
5816741 | Troppman | Oct 1998 | A |
5892855 | Kakinami et al. | Apr 1999 | A |
5913919 | Bauer et al. | Jun 1999 | A |
5928292 | Miller et al. | Jul 1999 | A |
5938710 | Lanza et al. | Aug 1999 | A |
5939986 | Schiffbauer et al. | Aug 1999 | A |
5964313 | Guy | Oct 1999 | A |
6030169 | Rossow et al. | Feb 2000 | A |
6112839 | Ostler et al. | Sep 2000 | A |
6137404 | O'Connor | Oct 2000 | A |
6148255 | Van Der Lely | Nov 2000 | A |
6157892 | Hada et al. | Dec 2000 | A |
6173215 | Sarangapani | Jan 2001 | B1 |
6179390 | Guzorek et al. | Jan 2001 | B1 |
6226902 | Heyne | May 2001 | B1 |
6276485 | Eriksson et al. | Aug 2001 | B1 |
6285925 | Steffen | Sep 2001 | B1 |
6364328 | Stahler | Apr 2002 | B1 |
6382359 | Lohmann | May 2002 | B1 |
6390496 | Eicher | May 2002 | B1 |
6459955 | Bartsch et al. | Oct 2002 | B1 |
6464025 | Koeper et al. | Oct 2002 | B1 |
6481525 | Bloch et al. | Nov 2002 | B1 |
6507366 | Lee | Jan 2003 | B1 |
6548982 | Papanikolopoulos et al. | Apr 2003 | B1 |
6552661 | Lastinger et al. | Apr 2003 | B1 |
6571176 | Shinmura et al. | May 2003 | B1 |
6587787 | Yokota | Jul 2003 | B1 |
6595306 | Trego et al. | Jul 2003 | B2 |
6686951 | Dickson et al. | Feb 2004 | B1 |
6688836 | Gourand | Feb 2004 | B2 |
6691015 | Levine | Feb 2004 | B1 |
6748292 | Mountz | Jun 2004 | B2 |
6750780 | Bitelli | Jun 2004 | B1 |
6764012 | Connolly et al. | Jul 2004 | B2 |
6784800 | Orzechowski | Aug 2004 | B2 |
6801125 | McGregor et al. | Oct 2004 | B1 |
6809680 | Tojima | Oct 2004 | B2 |
6810319 | Manaka | Oct 2004 | B2 |
6961561 | Himmel et al. | Nov 2005 | B2 |
7017689 | Gilliland et al. | Mar 2006 | B2 |
7025727 | Brockway et al. | Apr 2006 | B2 |
7027920 | Madau | Apr 2006 | B2 |
7047132 | Jacobs | May 2006 | B2 |
7076366 | Simon et al. | Jul 2006 | B2 |
7099764 | Seto et al. | Aug 2006 | B2 |
7133537 | Reid | Nov 2006 | B1 |
7266477 | Foessel | Sep 2007 | B2 |
7610121 | Nishira et al. | Oct 2009 | B2 |
7711464 | Kaufmann | May 2010 | B2 |
7734419 | Kondoh | Jun 2010 | B2 |
7765066 | Braeuchle et al. | Jul 2010 | B2 |
7775317 | Goodwin et al. | Aug 2010 | B1 |
7860653 | Joe et al. | Dec 2010 | B2 |
7937219 | Ichinose et al. | May 2011 | B2 |
8010261 | Brubaker | Aug 2011 | B2 |
8027029 | Lu et al. | Sep 2011 | B2 |
8060400 | Wellman | Nov 2011 | B2 |
8088262 | Choi et al. | Jan 2012 | B2 |
8099214 | Moshchuk et al. | Jan 2012 | B2 |
8170787 | Coats et al. | May 2012 | B2 |
8175772 | Onuma | May 2012 | B2 |
8180561 | Osanai | May 2012 | B2 |
8193903 | Kraimer et al. | Jun 2012 | B2 |
8195344 | Song et al. | Jun 2012 | B2 |
8209091 | Morichika et al. | Jun 2012 | B2 |
8280560 | Huang et al. | Oct 2012 | B2 |
8308174 | Muth et al. | Nov 2012 | B2 |
8386146 | Shirai | Feb 2013 | B2 |
8494718 | Muth et al. | Jul 2013 | B2 |
8577551 | Siefring et al. | Nov 2013 | B2 |
8705792 | James et al. | Apr 2014 | B2 |
8725317 | Elston et al. | May 2014 | B2 |
8725362 | Elston et al. | May 2014 | B2 |
8725363 | Elston et al. | May 2014 | B2 |
8731777 | Castaneda et al. | May 2014 | B2 |
8970363 | Kraimer et al. | Mar 2015 | B2 |
9002581 | Castaneda et al. | Apr 2015 | B2 |
9082293 | Wellman et al. | Jul 2015 | B2 |
9122276 | Kraimer et al. | Sep 2015 | B2 |
9493184 | Castaneda et al. | Nov 2016 | B2 |
9522817 | Castaneda et al. | Dec 2016 | B2 |
9643638 | Wittliff | May 2017 | B1 |
9908527 | Elston et al. | Mar 2018 | B2 |
10163334 | Capps et al. | Dec 2018 | B1 |
10179723 | Kraimer et al. | Jan 2019 | B2 |
10301155 | Dues et al. | May 2019 | B2 |
10404801 | Martch | Sep 2019 | B2 |
20010035729 | Graiger et al. | Nov 2001 | A1 |
20020035331 | Brockway et al. | Mar 2002 | A1 |
20020049539 | Russell et al. | Apr 2002 | A1 |
20020163495 | Doynov | Nov 2002 | A1 |
20020172017 | Tarnowski et al. | Nov 2002 | A1 |
20020178830 | Kazerooni et al. | Dec 2002 | A1 |
20030014162 | Sadano | Jan 2003 | A1 |
20030020808 | Luke et al. | Jan 2003 | A1 |
20030029647 | Trego et al. | Feb 2003 | A1 |
20030029648 | Trego et al. | Feb 2003 | A1 |
20030150663 | Farbotnik et al. | Aug 2003 | A1 |
20030205433 | Hagman | Nov 2003 | A1 |
20030209604 | Harrison, Jr. | Nov 2003 | A1 |
20030216854 | Katakura et al. | Nov 2003 | A1 |
20030235489 | Hoff | Dec 2003 | A1 |
20040099453 | Guy | May 2004 | A1 |
20040193349 | Flann et al. | Sep 2004 | A1 |
20040193363 | Schmidt et al. | Sep 2004 | A1 |
20040193374 | Hac et al. | Sep 2004 | A1 |
20050017858 | Gross | Jan 2005 | A1 |
20050052412 | McRae et al. | Mar 2005 | A1 |
20050073433 | Gunderson et al. | Apr 2005 | A1 |
20050075785 | Gray et al. | Apr 2005 | A1 |
20050216124 | Suzuki | Sep 2005 | A1 |
20050243058 | Morris et al. | Nov 2005 | A1 |
20050244259 | Chilson et al. | Nov 2005 | A1 |
20050246073 | Needelman et al. | Nov 2005 | A1 |
20050247508 | Gilliland et al. | Nov 2005 | A1 |
20050269145 | Schmidt | Dec 2005 | A1 |
20060025893 | Fischer et al. | Feb 2006 | A1 |
20060041271 | Bosma et al. | Feb 2006 | A1 |
20060058645 | Komistek et al. | Mar 2006 | A1 |
20060084422 | Huang et al. | Apr 2006 | A1 |
20060125806 | Voyles et al. | Jun 2006 | A1 |
20060229744 | Patzwald et al. | Oct 2006 | A1 |
20060231302 | Rose | Oct 2006 | A1 |
20060238156 | Kim | Oct 2006 | A1 |
20060250255 | Flanagan | Nov 2006 | A1 |
20060255961 | Hofer et al. | Nov 2006 | A1 |
20060265166 | Mäkelä | Nov 2006 | A1 |
20070002808 | Twitchell | Jan 2007 | A1 |
20070016341 | Nagasawa | Jan 2007 | A1 |
20070056157 | Hirata et al. | Mar 2007 | A1 |
20070078455 | Rashidi | Apr 2007 | A1 |
20070088477 | Brewer et al. | Apr 2007 | A1 |
20070109110 | Ohmura et al. | May 2007 | A1 |
20070112461 | Zini et al. | May 2007 | A1 |
20070116548 | Cooper | May 2007 | A1 |
20070129870 | Lange et al. | Jun 2007 | A1 |
20070137904 | Rose et al. | Jun 2007 | A1 |
20070171090 | Newman et al. | Jul 2007 | A1 |
20070194882 | Yokota et al. | Aug 2007 | A1 |
20070219720 | Trepagnier et al. | Sep 2007 | A1 |
20070255451 | Lewis et al. | Nov 2007 | A1 |
20080011554 | Broesel et al. | Jan 2008 | A1 |
20080071429 | Kraimer et al. | Mar 2008 | A1 |
20080129445 | Kraimer et al. | Jun 2008 | A1 |
20080187175 | Kim et al. | Aug 2008 | A1 |
20080188900 | Levin et al. | Aug 2008 | A1 |
20080189005 | Chilson et al. | Aug 2008 | A1 |
20080201044 | Yamada et al. | Aug 2008 | A1 |
20080202243 | Gross | Aug 2008 | A1 |
20080225271 | Ohmura | Sep 2008 | A1 |
20080253834 | Colvard | Oct 2008 | A1 |
20090032560 | Strandberg et al. | Feb 2009 | A1 |
20090069967 | Reed et al. | Mar 2009 | A1 |
20090076664 | McCabe et al. | Mar 2009 | A1 |
20090192710 | Eidehall et al. | Jul 2009 | A1 |
20090306835 | Ellermann et al. | Dec 2009 | A1 |
20090326763 | Rekow | Dec 2009 | A1 |
20100021006 | Kim et al. | Jan 2010 | A1 |
20100063663 | Tolstedt et al. | Mar 2010 | A1 |
20100063680 | Tolstedt et al. | Mar 2010 | A1 |
20100114405 | Elston et al. | May 2010 | A1 |
20100145551 | Pulskamp et al. | Jun 2010 | A1 |
20100204866 | Moshchuk et al. | Aug 2010 | A1 |
20100209888 | Huang et al. | Aug 2010 | A1 |
20110018699 | Chen et al. | Jan 2011 | A1 |
20110035086 | Kim et al. | Feb 2011 | A1 |
20110046813 | Castaneda et al. | Feb 2011 | A1 |
20120242455 | Hale et al. | Sep 2012 | A1 |
20130197720 | Kraimer et al. | Aug 2013 | A1 |
20130294306 | Borges | Nov 2013 | A1 |
20140074341 | Weiss | Mar 2014 | A1 |
20140266024 | Chinnadura et al. | Sep 2014 | A1 |
20150057843 | Kraimer et al. | Feb 2015 | A1 |
20150315001 | Choi | Nov 2015 | A1 |
20160358389 | Menard | Dec 2016 | A1 |
20170010619 | Foster et al. | Jan 2017 | A1 |
20170023945 | Cavalcanti et al. | Jan 2017 | A1 |
20180182236 | Hor-Lao et al. | Jun 2018 | A1 |
20190172340 | Goepner | Jun 2019 | A1 |
20220127079 | Hagiwara | Apr 2022 | A1 |
Number | Date | Country |
---|---|---|
1460082 | Dec 2003 | CN |
1864199 | Nov 2006 | CN |
101005981 | Jul 2007 | CN |
101162395 | Apr 2008 | CN |
101267958 | Sep 2008 | CN |
101999102 | Mar 2011 | CN |
108599283 | Sep 2018 | CN |
10033857 | Jan 2002 | DE |
202005003366 | Jul 2005 | DE |
102005059226 | Jul 2006 | DE |
60210360 | Mar 2007 | DE |
102007027494 | Jan 2009 | DE |
406070 | Jan 1991 | EP |
556031 | Aug 1993 | EP |
0732641 | Sep 1996 | EP |
1237062 | Sep 2002 | EP |
1288882 | Mar 2003 | EP |
1462880 | Sep 2004 | EP |
1475297 | Nov 2004 | EP |
1653251 | May 2006 | EP |
1813569 | Aug 2007 | EP |
2036763 | Mar 2009 | EP |
3173371 | Jan 2019 | EP |
2764091 | Dec 1998 | FR |
2819596 | Jul 2002 | FR |
2849160 | Jun 2004 | FR |
2867593 | Sep 2005 | FR |
1002825 | Sep 1965 | GB |
2197799 | Jun 1988 | GB |
2360500 | Oct 2003 | GB |
2398394 | May 2006 | GB |
02152898 | Jun 1990 | JP |
07138000 | May 1995 | JP |
2002104800 | Apr 2002 | JP |
2002179196 | Jun 2002 | JP |
2005094425 | Apr 2005 | JP |
2005241651 | Sep 2005 | JP |
2006259877 | Sep 2006 | JP |
2006293975 | Oct 2006 | JP |
60486 | Jan 2007 | RU |
8702483 | Apr 1987 | WO |
9215977 | Sep 1992 | WO |
9639679 | Dec 1996 | WO |
02088918 | Nov 2002 | WO |
2004057553 | Jul 2004 | WO |
2006078604 | Jul 2006 | WO |
2008039649 | Apr 2008 | WO |
2010065864 | Jun 2010 | WO |
2010095128 | Aug 2010 | WO |
2011002478 | Jan 2011 | WO |
2011022026 | Feb 2011 | WO |
2012054443 | Apr 2012 | WO |
Entry |
---|
Weber et al.; “Ein tragbares Funk-Fernsteuergerat fur Gewinnungsmaschinen” , Gluckauf, Minova Carbo Tech GmbH; Jul. 13, 1967; pp. 375-378; XP002093388; ISSN; 0340-7896; Essen DE. |
Weber, Karl-Heinz et al.; “A Portable Wireless Remote Control Device for Mining Equipment”; Apr. 13, 1967; XP002093388; pp. 375-378, Essen, Germany. |
Bourdon, G. et al.; Instantaneous Fuzzy Modelling for Obstacle Avoidance; Systems, Man and Cybernetics; Intelligent Systems for the 21st Century; IEEE International Conference; vol. 3; Oct. 22, 1995; pp. 2546-2551; New York, NY; USA. |
Durrant-Whyte, Hugh F., “An Autonomous Guided Vehicle for Cargo-Handling Applications;” The International Journal of Robotics Research, vol. 15, Oct. 1996, pp. 407-440. |
BT Products AB; “Swedish Industry Standard”; Swedish Industry Standard; 1998. |
Urban Challenge; http://www.darpa.mil/grandchallenge/index.asp; Nov. 3, 2007. |
Urban Challenge; http://www.darpa.mil/grandchallenge/resources.asp; Nov. 2007. |
Congmin, Zhu et al.; AGV Navigation System With Multiple Sensors; Chinese Journal of Scientific Instrument; Nov. 2008; China. |
Photograph 3; RS409 Wearable Ring Scanner; http://www.motorola.com/business/v/index.jsp?vgnextoid=5dbee90e3ae95110VgnVCM10; First publication date unknown, and first discovered by the inventors on Oct. 30, 2008. |
Yong, Zhou et al.; “Obstacle Detection For AGVS Based On Computer Vision”; Machine Design and Research; May 2008; China. |
Photograph 2; TINYOM Hand Free Scanning; http://txcom.com/public/?page=tinyom; First publication date unknown, and first discovered by the inventors on Aug. 10, 2009. |
Photograph 4; Peregrine; http://www.theperegrine.com/; First publication date unknown, and first discovered by the inventors on Nov. 23, 2009. |
Photograph 1; AirMouse; http://theairmouse.com/; Deanmark Ltd; Ontario, Canada; First publication date unknown, and first discovered by the inventors on Jan. 28, 2010. |
Wayback Machine, “Getting Started: a Wall following Robot”; Feb. 2, 2011; <www.mobotsoft.com>. |
http://www.cajunbot.com/technology; 2011; Cajun Bot Labs. |
http://www.cajunbot.com; 2011; Cajun Bot Labs. |
International Search Report & Written Opinion; International Application No. PCT/US2019/067075; dated Mar. 6, 2020; European Patent Office; Rijswijk, Netherlands. |
Dungate, D. et al.; “Higher-order Kalman filter to support fast target tracking in a multi-function radar system;” Publication Year: 1999; p. 14/1-14/3. |
Bhatt, R. et al.; “A real-time guidance system for an autonomous vehicle,” vol. 4; Publication Year: 1987; pp. 1785-1791. |
Patent application; U.S. Appl. No. 16/718,473 entitled “Pairing a Remote Control Device to a Vehicle”; filed Dec. 18, 2019 with inventors Vern I. Woodruff III et al. |
CajunBot Wiki; http:cajunbot.com/wiki/Main_Page; Apr. 18, 2010. |
Garcia, Gregory; B.O.S.S. A Battery Operated Smart Servant; EEL 5666c; Intelligent Machines Design Lab; Sensor Presentation; Center for Intelligent Machines and Robotics; University of Florida; Aug. 17, 2006. |
Kovacs, S. et al.; Interpolation-based Fuzzy Logic Controller, as a Simplified Way for Constructing the Fuzzy Rulebase of the Path Tracking and Collision Avoidance Strategy of an AGV; Systems, Man and Cybernetics; IEEE International Conference; vol. 2; Oct. 11, 1998; pp. 1317-1322; New York, NY; USA. |
International Search Report and Written Opinion of the International Searching Authority dated Apr. 14, 2020; International Application No. PCT/US2019/067068; European Patent Office; Rijswijk, Netherlands. |
International Preliminary Report on Patentability dated Aug. 12, 2021; International Application No. PCT/US2019/067068; The International Bureau of WIPO; Geneva, Switzerland. |
International Preliminary Report on Patentability dated Aug. 12, 2021; International Application No. PCT/US2019/067075; The International Bureau of WIPO; Geneva, Switzerland. |
Patent Application Entitled “On-Board Charging Station for a Remote Control Device” dated Jul. 8, 2021; U.S. Appl. No. 17/305,463; United States Patent and Trademark Office; Alexandria, Virginia. |
Youtube video dated Mar. 8, 2016 entitled “STILL iGo neo CX 20—oder picking the intelligent way”; https://www.youtube.com/watch?v=pRjn9s9VBho. |
Youtube video dated Nov. 29, 2017 entitled “Toyota t-mote: remote drive solution”; https://www.youtube.com/watch?v=HBxFqCBp8r0. |
Office Action dated Dec. 7, 2021; U.S. Appl. No. 16/718,411; United States Patent and Trademark Office; Alexandria, Virginia. |
International Search Report and Written Opinion of the International Searching Authority dated Oct. 28, 2021; International Application No. PCT/US2021/040796; European Patent Office; Rijswijk, Netherlands. |
Notice of Allowance dated Mar. 28, 2022; U.S. Appl. No. 16/718,411; United States Patent and Trademark Office; Alexandria, Virginia. |
Extended European Search Report dated Feb. 7, 2022; European Application No. 21204537.1; European Patent Office; Munich, Germany. |
Examination Report No. 1 dated May 31, 2022; Australian Application No. 2021209146; IP Australia. |
Examination Report No. 1 dated Jun. 24, 2022; Australian Application No. 2019426894; IP Australia. |
Office Action dated Jun. 24, 2022; U.S. Appl. No. 17/305,463; United States Patent and Trademark Office; Alexandria, Virginia. |
Number | Date | Country | |
---|---|---|---|
20200249668 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62800032 | Feb 2019 | US |