This invention is in the general field of load-bearing structures and, more particularly, to pallets used for transporting and storing goods.
The pallet provides support for cargo particularly during shipment and storage.
The pallet is one of the most ubiquitous elements of the transport and logistic network that serves the global supply chain.
A pallet is a flat transport structure used to support goods in a stable manner. The pallet provides a platform for items to be loaded securely onto and enables forklifts or other utility vehicles to insert arms underneath and into the platform for lifting and manipulation.
Most pallets shipped across national borders must be made of materials that are incapable of carrying invasive species of insects and plant diseases or must be heat/chemically treated prior to international movements.
Further, the surface of a wooden pallet is unsanitary for the transport of food since the pallet potentially can harbor insects, mold, and bacteria. Thus, a wooden pallet is generally ill-suited for the shipment of foodstuffs and other products requiring sanitary conditions. Consequently, such pallet surface must be free of insects, mold, plant diseases, and bacteria clean prior to each use.
In addition, untreated wooden pallets used to transport food can harbor pathogens such as E. coli and Listeria.
Some of the more relevant prior art includes:
Wooden pallets continue to dominate the industry despite all their deficiencies. While metal pallets are strong, they are heavy and expensive. Sturdy plastic pallets have a long life but are more expensive than wood and more probe to theft and loss. Corrugated pallets are lighter than wood, but most cannot rack and don't stand up to the rigors of shipping or warehouse handling.
There is a need for a pallet which is light, cheap, and does not present a fire hazard. Storage of pallets after unloading increases the risk of a significant fire. While flame retardant materials are known, there are only a small number of examples of them being successfully incorporated into pallet construction materials.
What is needed is a pallet for storing and transporting goods that is resistant to damage and has a long-life expectancy.
Therefore, there is a long felt need in the art for the ability to better track products, and the various components contained therein, from point of origin to retail and beyond.
Also, there exists a need for storage containers equipped with tracking equipment to identify and update the status of the contents within the storage container, the information from which can be accessed through mobile devices and computers.
It is the primary object of the present invention to provide a long-life pallet with outstanding physical attributes that is relatively inexpensive to make and maintain and can be manufactured with relative ease. In addition, it is desirable to provide a low-cost pallet that meets and exceeds stringent strength standards.
The pallets of the present invention address these needs.
The pallet assembly of the present invention comprises a top plate, a load-force plate, a runner, and a plurality of load blocks disposed between the load force plate and the runner.
The load-force plate is disposed between the top plate and the runner and increases the load-bearing capacity of the top plate while adding strength to the pallet assembly.
The pallet assembly of the present invention includes a coating material that will protect shipment of foodstuffs and other products requiring sanitary conditions. The biocidal coating material prevents the growth of mold, fungi, bacteria, and viruses. The flame retardant additives will mitigate the fire hazard caused by the storage of large quantities of wood pallets.
The pallet assembly includes a pallet integrated module positioned between the load-force plate and the runner. The pallet integrated module collects journey data on location, temperature, humidity and shock along with store forward capability for those times in a pallet journey where the integrated module lacks a direct communication path to the cloud.
The load-force plate has either an X-form configuration or a cross-form configuration. In one preferred embodiment, an antenna is embedded in the cross-form configuration.
The present invention relates to a load bearing structure with a thinner core, substantially the same or lower overall weight while having improvement in supporting cargo. The load bearing structure has a top plate, a load-force transfer plate designed in either a window frame pattern or an X-shaped pattern, the support legs, and a bottom plate with a width having a thickness therebetween joining the top plate and the bottom plate.
The openings in the bottom plate and the load-force plate assist in reducing the weight of the pallet assembly. The load-force plate and the top plate can vary in thickness and wood type depending on the requirements of the customer. This enables a mitigation in supply chain fluctuations while managing costs.
The pallet assembly of the present invention is preferably constructed entirely of Baltic Birch.
The pallet is then coated in a spray or a dip coating. The coating is preferably either a spray coating, powder coating or a fluid bed coating to protect the wood and to add strength to the pallet.
The pallet assembly of the present invention is designed to be able to quickly adjust its weight, load carrying capability, strength, and longevity to meet the needs of our customers and the needs of our business model. The business model is to lease pallets to our customers, and through the pallet design, ensure that they are constructed to make many cycles from source to final customer with minimal damage. The pallet is also designed to be quickly cleaned, refurbished, and recycled into service. The pallet also has a biocide coating, a flame-retardant additive, integrated into and delivered by the polyurea coating, to hinder the growth of mold, fungus, bacteria, and viruses. A unique feature is that the pallet records environmental data and communicates its location and other data to other pallets and to interested parties.
For a complete understanding of the pallets, reference is made to the accompanying drawings and description in which the presently preferred embodiments of the invention are shown by way of example. As the invention may be embodied in many forms without departing from spirit of essential characteristics thereof, it is expressly understood that the drawings are for purposes of illustration and description only and are not intended as a definition of the limits of the invention.
Referring now to the drawings,
The outer surface of the pallet assembly of the present invention [10], the top plate [20], the load-force plate [30], and the runner [60] preferably have generally, square shapes. The load blocks [50] are symmetrically distributed about the pallet assembly [10] between the load-force plate [30] and the runner [60] such that a forklift (not shown) can approach the pallet assembly [10] from any of the four side surfaces thereof.
The load force plate depicted in
The load force plate depicted in
The antenna repeaters [38A and 38B] are embedded in and run parallel to each other in the center bar of the cross of the load force plate (cross form) [30] and make no electrical contact with the pallet integrated module (tracking sensor) [55].
The load force plate depicted in
The coating is smooth, which enables a more thorough cleaning. There is no place for dirt, bacteria, mold, fungus, microbes, or viruses to hide.
Another advantage of the pallet assembly [10 and 110] of the present invention is that the species of wood selected for the pallet assembly [10 or 110] varies and is dependent upon the cargo being transported. Different species of wood are selected for the top plate [20], the load-force plate [30 or 40], the plurality of load blocks [50], and the runner [60] depending upon the weight of the cargo. By changing the species of wood, the strength and weight of the pallet assembly can be configured to meet the requirements of the customer. If the customer is shipping steel or cast parts, the strength of the pallet components must be reconfigured to accommodate the weight of these parts. In this example, the pallet components, a dense wood such as Baltic Birch or oak is used. If the customer is shipping a light load, such as a child's game or toy, a less dense wood, such as pine is selected. As the wood species are changed, the pallet cost and weight can be reconfigured to meet the requirements of the shipping industry while also meeting the needs of the customer for weight reduction and cost. All our additives are of such a small micron size, they don't cause the polyurea to be off from ratio. Off ratio polyurea will not cure properly and will not have all the properties of a properly cured polyurea.
Dowels, preferably wooden, are used to accurately locate the top plate, the legs, and the bottom plate within very tight tolerances. The pallet of the present invention can be readily assembled with the wooden dowels that facilitate attachment of transverse deck boards to parallel stringers in a quick and efficient manner. Also, the dowels provide structural stability during the adhesive curing and prevent rotation of the blocks during assembly. This build technique enables tight tolerances between all the components. For this equipment to properly pick and lift the pallet, the pallet must be built to tight tolerances.
The pallet integrated module [55] collects journey data on location, temperature, humidity, and shock along with “store forward” capability during unconnected times of the journey. All this data is sent to the cloud for parsing, future queries, report generation and alert capability. The module is capable of “over the air” software upgrades and has various modes of connectivity not only to mitigate connectivity costs but to seamlessly interact with the complete ecosystem.
The pallet integrated module [55] is programmed and then the pallet assembly of the present invention is sent to the customer who is renting or leasing the pallet. Information about the contents of the pallet is programmed into the electronics at the location of the customer. During shipping, the electronics monitors, temperature, G force, humidity, and other elements versus time. This data can be accessed at various places along the shipping route. The data collected helps ensure that contents of the pallet assembly of the present invention are not exposed to inappropriate temperatures or other harmful environmental conditions. The data also helps to prove that the pallet contents were properly cared for during shipping. The top plate [20], the load-force plate [30 and 40], the load blocks [50], and the runner [60] are preferably joined with an adhesive.
Suitable polymeric materials include, but are not limited to, polyolefins, polyesters, polyurethanes, polyureas, epoxies, polyurea-polyurethane hybrids, and combinations thereof. Desirably, the polymeric material comprises polyurea, polyurethane, or a combination thereof (see for example U.S. patent application Ser. No. 09/399,271 entitled “Novel Pallets” (Phillips; et al.).
The pallet assemblies [10, and 110] of the present invention are comprised of a conventional pallet coated with a fast-curing elastomeric material using spray techniques whereby a homogeneous, non-porous, and monolithic coating is formed. The desired elastomeric materials used are prepared by initiating the reaction of an aliphatic or aromatic isocyanate-terminated compound or polymer with an aliphatic or aromatic amine-terminated compound or polymer immediately before applying the elastomeric material to the surface to be coated. Desirably, the reactive components (i.e., isocyanate-containing and amine-containing materials) are mixed directly in a spray gun used to apply the elastomeric material. The thickness of the elastomeric coating can easily be controlled by conventional application means. It is important that the thickness of the elastomeric coating be enough so that the coating is resistant to impact that is normal in use. The desired thickness of the elastomeric coating on the pallet material is between approximately 1 mm and 250 mm, with the most desired thickness of between 60 mm and 75 mm.
The pallet assemblies of the present invention comprise one or more polymeric materials optionally in combination with one or more filler materials. Suitable polymeric materials include any polymeric material capable of being formed into a polymeric board or sheet. Suitable polymeric materials include, but are not limited to, polyolefins, polyesters, polyurethanes, polyurea, epoxies, polyurea-polyurethane hybrids, and combinations thereof. Desirably, the polymeric material comprises polyurea, polyurethane, or a combination thereof. More desirably, the polymeric material comprises a polyurethane foam. The filler material may be organic or inorganic filler material in the form of particulate material, fibers, fabrics, rods, or any other structural reinforcement. Suitable inorganic filler materials include, but are not limited to, calcium carbonates, clays, silica, sand, glass fibers and carbon fibers. Suitable organic fillers include, but are not limited to, fibers such as cotton, rayon, nylon, and other polymeric fibers, such as polyolefin fibers and aramid fibers.
The deflection, stress, strain testing of the load-force plate (cross-form) best compared to X-FORM load force plate (X-form) and the standard pallet. ISO 8611 Rack Test Simulation (2750 lb.) were conducted, and the results are shown below:
The standard pallet performed well. The deflection was 100 mm before the 2750 lb. load was applied. The deflection was 87.39 mm after the 2750 lb. load was applied.
The load-force plate (X-form) performed better. The deflection was 100 mm before the 2750 lb. load was applied. The deflection was 93.98 mm after the 2750 lb. load was applied.
The load-force plate (cross-form) performed best. The deflection was 100 mm before the 2750 lb. load was applied. The deflection was 94.35 mm after the 2750 lb. load was applied.
The standard pallet performed well. The stress was 8.522e{circumflex over ( )}+7 after the 2750 lb. load was applied.
The load-force plate (X-form) performed better. The stress was 6.114e{circumflex over ( )}+7 after the 2750 lb. load was applied.
The load-force plate (cross-form) performed best. The stress was 5.822e{circumflex over ( )}+7 after the 2750 lb. load was applied.
The standard pallet performed well. The stress was 5.648e{circumflex over ( )}−03 after the 2750 lb. load was applied.
The load-force plate (X-form) performed better. The stress was 3.943e{circumflex over ( )}−03 after the 2750 lb. load was applied.
The load-force plate (cross-form) performed best. The stress was 3.688e{circumflex over ( )}−03 after the 2750 lb. load was applied.
The pallet assembly of the present invention is designed to meet the requirements of the customers, as well as international standards for strength, flex, flame, and smoke requirements. The thin top plate, the load-transfer plate, the support blocks, and the runner will all be coated in a spray or a dip coating (powder coating or fluid bed coating) to protect the wood and to add strength to the pallet assembly of the present invention.
Throughout this Application, various Patents and Applications are referenced by number and inventor. The disclosures of these documents in their entireties are hereby incorporated by reference into this specification in order to more fully describe the state of the art to which this invention pertains.
It is evident that many alternatives, modifications, and variations of the pallets of the present invention will be apparent to those skilled in the art in lieu of the disclosure herein. It is intended that the metes and bounds of the present invention be determined by the appended claims rather than by the language of the above specification, and that all such alternatives, modifications, and variations which form a conjointly cooperative equivalent are intended to be included within the spirit and scope of these claims.
10. Pallet Assembly (1st preferred embodiment)
20. Top Plate
30. Load-Force Plate (Cross-Form configuration)
31—Upper Center Bar 32—Lower Center Bar
34A and 34B. Upper Antennas
36. Hole in Load-Force Plate
37A and 37B. Upper Antennas
38A and 38B. Antenna Repeater
40. Load-Force Plate (X-Form configuration)
50. Load Block
55. Pallet Integrated Module
60. Runner
70. Dowel
110. Pallet Assembly (2nd preferred embodiment)
This Application is related to and claims priority to U.S. Provisional Application No. 63/270,702, entitled “A New Generation in Pallet Technology” (Gabel and Novak), filed on Oct. 22, 2021.
Number | Date | Country | |
---|---|---|---|
Parent | 63270702 | Oct 2021 | US |
Child | 17971208 | US |