This is the U.S. National Stage of International Patent Application No. PCT/EP2018/051599 filed Jan. 23, 2018, which claims priority to European Patent Application No. 17152932.4 filed Jan. 24, 2017, and International Patent Application No. PCT/EP2017/069954 filed Aug. 7, 2017.
The invention relates to a pallet comprising folded wood material, particularly wood veneer. In particular the pallet can be used for storage and/or transport of goods.
Different types of pallets are known from the prior art.
So-called Euro pallets (i.e. described in DE 20 2009 003 944 U1) are cheap and easy to produce, but they are relatively heavy and consume a considerable amount of space when stacked for storage or transport.
For example, document DE 32 17 573 A 1 describes a stackable pallet formed from a composite of fibers and an artificial resin in one piece. However, the production of this type of pallet is relatively complex. Stacking pallets from other material, such as paper or plastic are known, but these are either heavy and expensive in production (plastic pallets), or they comprise limited mechanical stability and therefore limited load-bearing capacity (paper pallet).
Therefore, the problem to be solved by the present invention is to provide a pallet which is improved with respect to the above mentioned disadvantages of the prior art, wherein particularly mechanical stability is provided combined with light weight and low complexity of production.
This objective is attained by the subject matter of the claims.
A first aspect of the invention relates to a pallet comprising a first plate and a second plate, wherein the first plate and the second plate are parallel, and wherein the first plate and the second plate each extend along a length and a width of the pallet and wherein the pallet comprises a height which extends transversely to the length and the width, wherein the first plate and/or the second plate comprises at least one supporting element which is integrally formed with the first plate or the second plate, wherein the at least one supporting element extends between the first plate and the second plate along the height.
Therein, the supporting elements are not separate parts, but are formed from the same piece of material as the first plate or second plate. However, the first and the second plate are separate parts, such that each respective supporting element is integrally formed from either the first plate or the second plate, but not from both the first plate and the second plate.
In certain embodiments the first plate comprises the at least one supporting element.
In certain embodiments the second plate comprises the at least one supporting element.
In certain embodiments, the first plate and the second plate comprise the at least one supporting element. That is, the first plate may comprise respective supporting elements integrally formed from the first plate, and the second plate may comprise respective supporting elements integrally formed from the second plate.
For example, the supporting elements can be formed by folding pieces of the first plate and/or the second plate in the direction of the height, that is perpendicular to the first and second plate. This may be achieved by introducing mitres into a plate and folding parts of the plate along the mitres.
The supporting elements form a mechanically stable and stiff core of the pallet.
Advantageously, the pallet according to the invention can be easily manufactured in a time-efficient and cost-efficient manner, because the supporting elements are not formed from separate parts but are integrally formed with the first plate and/or second plate.
Supporting elements on both the first and the second plate provide additional stability to the pallet.
In certain embodiments, the first plate and/or the second plate are formed from a wood material, particularly a high density fiber board.
Advantageously wood materials, such as for example high density fiberboards comprise an especially high material strength combined with a relatively low weight, are easily available and cheap.
In the context of the present specification, the term wood material designates a material which comprises shredded wood, particularly wood chips, wood veneer, wood veneer strips, wood wool, wood fibres, wood dust or other lignocellulose materials. Furthermore, the wood material may contain binding agents, adhesives, and/or additives. In particular, additives may be hydrophobization agents, wood preservatives, flame retardants, hardeners, or paint particles. In particular, binding agents may include urea-based glue, synthetic resins, i.e. phenolic resins, isocyanates, plastics and/or bioplastics. In particular, wood veneer and/or wood veneer strips serve for manufacturing of plywood and/or oriented strand boards (OSB).
In particular, wood materials include solid wood materials, i.e. solid wood boards (according to DIN EN 12775) or glued wood materials, laminated timber, block boards, and/or laminated wood, veneer wood materials, i.e. veneer plywood, laminated veneer lumber, parallel strand lumber, bending plywood, pressed wood, i.e. flat pressed boards (P2), particle boards, chip board molded parts, oriented strand boards (OSB, according to DIN EN 300) and/or laminated strand lumber (LSL), wood fiber materials, i.e. wood fiber insulation boards (HFD), porous fiberboards, soft boards (SB), medium density fiberboards (MB), hardboards (HB or HFH), extra-hard fiberboards (HFE), medium density fiberboards (MDF), high density fiberboards (HDF), and/or ultralight fiberboards, Arboform or liquid wood.
Therein, the term fiberboards designates the wood materials specified in DIN EN 622. The term particle boards designates the wood materials specified in the standards DIN EN 309 and DIN EN 312. The term plywood designates the wood materials specified in the standards DIN 68708 and DIN EN 313.
Wood materials have the advantages of a high material strength and mechanical load-bearing capacity combined with a light weight.
In certain embodiments, the wood material comprises a lignin content of >5%, particularly >10% weight proportion. That means that in particular paper and cardboard are not considered wood materials within the scope of the present invention, since during paper production, the lignin of the used wood raw materials is removed for example by chemical bleaching agents.
In certain embodiments, the wood material is free from chemical bleaching agents.
In certain embodiments, the wood material is manufactured in a dry process at a wood moisture content of <20%. Therein the percentage refers to the ratio of the weight of the water contained in the wood material to the absolute dry wood mass. In a dry process, the wood particles are dried before formation of a fleece and pressing into the final product, and the final product comprises a wood moisture content of less than 20%. Glue can be applied before or after drying.
In certain embodiments, the wood material comprises wood fibers which are pressed by application of pressure and/or heat. In certain embodiments, the wood material comprises a density of >800 kg/m3. For example, high density fiberboards comprise densities in this range.
In certain embodiments, the first plate and the second plate are mechanically connected by means of the at least one supporting element.
In certain embodiments, the first plate comprises at least one first opening, wherein the at least one supporting element is positioned adjacent to the at least one first opening, particularly adjacent to a partial circumference of the at least one first opening.
Advantageously, the supporting elements can be formed by folding along the edges of the first openings during manufacture of the pallet. In addition, the weight of the pallet is reduced due to the at least one first opening.
In certain embodiments, the first plate and the at least one supporting element are mechanically connected to each other by means of corresponding first mitres, particularly V-shaped first mitres. By means of such mitres, the supporting elements can easily be folded from an intermediate product during manufacture of the pallet. In particular the first plate comprises an adhesive material, particularly a glue, applied at the mitre, wherein the position of the supporting elements is fixed by means of the adhesive material.
In certain embodiments, the second plate comprises at least one fourth opening, wherein the at least one supporting element is positioned adjacent to the at least one fourth opening, wherein particularly said second plate and said at least one supporting element are mechanically connected to each other by means of corresponding third mitres.
In certain embodiments, the pallet comprises at least one first supporting element extending along the length of the pallet and at least one second supporting element extending along the width of the pallet. Therein, the first and second supporting elements can be positioned along first and/or second openings extending along the length or width of the pallet.
This causes an increased stability and stiffness, particularly bending stiffness of the pallet.
In certain embodiments, the at least one supporting element is positioned at a rim of the first plate, wherein the at least one supporting element forms at least a partial frame, particularly a complete frame, around the circumference of the first plate. Advantageously, the core of the pallet between the first and second plate is closed from the outside by means of such a frame, in particular such that dirt is prevented from entering the pallet, and/or such that the frame forms a decorative outer surface of the pallet. In addition, the frame provides additional mechanical stability to the pallet.
In certain embodiments, the at least one supporting element comprises a first strip extending along the height of the pallet and a second strip which is parallel to the first plate and the second plate, wherein the first strip is mechanically connected to the first plate or the second plate by means of a respective third mitre, and wherein the second strip is mechanically connected to the first strip by means of a further respective mitre.
In particular, the first strip and the second strip form an L-shaped profile according to a cross-section of the pallet, wherein one arm of the L-shape is connected to the first plate or second plate.
This embodiment has the advantage that due to the second strip that is parallel to the first plate and second plate, a larger surface is available for connecting, for example gluing the supporting element to the adjacent first or second plate. This further increases the stability of the pallet.
In certain embodiments, the pallet comprises at least one pallet foot, wherein the first plate comprises at least one second opening, and wherein the at least one pallet foot at least partially protrudes through the at least one second opening. By means of the second openings, the pallet feet can be easily and stably attached to the pallet. In addition, the weight of the pallet is reduced by means of the at least one second opening.
In certain embodiments, the second plate comprises at least one third opening, wherein the at least one third opening at least partially overlaps with, particularly is aligned with, the at least one second opening of the first plate. If the second plate contains third openings overlapping with the second openings, two or more pallets can be stacked by inserting the pallet feet of the upper pallet into the third openings of the lower pallet. In addition, the weight of the pallet is reduced by means of the at least one third opening.
In certain embodiments, the at least one pallet foot, more particularly the pallet feet, each comprise/s at least two bearing elements and a base, wherein the at least two bearing elements are mechanically connected to each other by means of the base, and wherein the at least two bearing elements at least partially protrude through the at least one second opening of the first plate. In particular, the bearing elements are formed from boards of a wood material, particularly high density fiberboards.
In certain embodiments, the at least two bearing elements are mechanically connected to respective supporting elements positioned adjacent to the at least one second opening through which the at least two bearing elements at least partially protrude. Advantageously, if the supporting elements are used for attaching the pallet feet, no additional structures for attaching the pallet feet are necessary, reducing the weight and complexity of the pallet. In addition, the same supporting elements can be used to mechanically connect the first and the second plate, and provide mechanical stability to the pallet.
In certain embodiments, the at least two bearing elements comprise a first maximal extension, wherein the first maximal extension is equal to or smaller than a second maximal extension of the at least one second opening in the direction of the length and/or the width of the pallet.
Advantageously, the pallet feet can be inserted into the respective second openings from above or below and are arrested in their final position.
In certain embodiments, the at least two bearing elements and the base are integrally formed by a board, particularly comprising wood material, wherein the board comprises second mitres at the mechanical connections between the at least two bearing elements and the base. Advantageously, the pallet feet can be easily manufactured by folding the board at the mitres.
In certain embodiments, the at least two bearing elements comprise a cross-sectional area delimited by a first edge and a second edge, wherein the at least two bearing elements are mechanically connected to the base by means of the first edge, and wherein the length of the first edge is the minimal extension of the at least two bearing elements in the direction of the first edge, and wherein the length of the second edge is the first maximal extension of the at least two bearing elements in the direction of the first edge.
In certain embodiments, the base extends along a longitudinal axis and has a trapezoid shaped cross-section transversely to the longitudinal axis, wherein particularly the base is formed by a wood material, more particularly a medium density fibre board.
In certain embodiments, the base is formed by a wood material, more particularly a medium density fibre board.
Such bases are mechanically especially stable, which prevents breaking when the pallet rests on the bases of the pallet feet.
A second aspect of the invention refers to a method for manufacturing a pallet, particularly according to the first aspect of the invention, wherein a first plate and a second plate are provided, and wherein at least one first mitre is generated in the first plate, and/or wherein at least one third mitre is generated in the second plate, and wherein at least one supporting element is generated by folding a segment of the first plate at the at least one first mitre, or a segment of the second plate at the at least one third mitre, such that the at least one supporting element extends transversely to the surface of the first plate, and wherein the position of the at least one supporting element is fixed, particularly by gluing, and wherein the second plate is mechanically connected to the first plate by means of the at least one supporting element.
In certain embodiments, at least one first mitre is generated in the first plate, wherein at least one supporting element is generated by folding a segment of the first plate at the at least one first mitre.
In certain embodiments, at least one third mitre is generated in the second plate, wherein at least one supporting element is generated by folding a segment of the second plate at the at least one third mitre.
In certain embodiments, at least one first mitre is generated in the first plate, and at least one third mitre is generated in the second plate, wherein at least one supporting element is generated by folding a segment of the first plate at the at least one first mitre, and wherein at least one supporting element is generated by folding a segment of the second plate at the at least one third mitre.
In certain embodiments, at least one second opening is generated in the first plate, wherein at least one pallet foot is attached to the pallet, wherein the at least one pallet foot at least partially protrudes through the at least one second opening, and wherein at least one third opening is generated in the second plate, wherein the at least one third opening at least partially overlaps, particularly is aligned with the at least one second opening in the first plate.
The invention is further described with respect to the following figures, which are meant to illustrate the invention, but not limit its scope.
The pallet 1 further comprises pallet feet 30 which are attached to the first plate 10 as shown in detail in
The second plate 20 comprises rectangular third openings 21 extended along the length L and width W of the pallet 1, wherein the third openings 21 are arranged above the pallet feet 30, such that two pallets 1 can be stacked, wherein the pallet feet 30 of the upper pallet 1 of the stack can be inserted into the third openings 21 of the neighboring lower pallet 1 of the stack. In this manner, stacks of two or more pallets 1 can be formed in a space-saving arrangement.
The supporting elements 11 positioned along the first openings 14, the second openings 15, and the edges 13 serve as spacers between the first plate 10 and the second plate 20, and the second plate 20 is mechanically connected to the first plate 10 by means of the supporting elements 11. For example, this mechanical connection is established by gluing the supporting elements 11 to the second plate 20.
Advantageously, the supporting elements 11 form a mechanically stable core structure of the pallet 1.
The first plate 10 further comprises twelve first openings 14, wherein two parallel adjacent first openings 14 extend along the length L of the pallet 1 between the three rows of second openings 15 at either side of the central row of second openings 15. Furthermore, first openings 14 are positioned along the rim 13 of the first plate 10 in the direction of the length L between the second openings 15. Two parallel supporting elements 11 extend along the length L on opposite sides of each of the respective first openings 14.
Moreover, four first openings 14 are extended along the rim 13 of the first plate 10 along the width W of the pallet 1 between the respective second openings 15. Two parallel supporting elements 11 extend along the width W on opposite sides of these respective four first openings 14.
In addition, four supporting elements 11 are positioned at the rim 13 (around the complete rim 13) of the first plate 10. Besides serving as a mechanical connection between the first plate 10 and the second plate 20, these supporting elements 11 form a frame, such that the core of the pallet 1 formed by the supporting elements 11 is closed from the outside in the assembled pallet 1 (see
In order to form the first plate 10 shown in
As shown in the left part of
In this manner the pallet feet 30 are stably attached to the first plate 10, and the overall stability of the pallet 1 is further increased by supporting the core of the pallet 1 between the first plate 10 and the second plate 20.
In particular, the second openings 15, in which the pallet feet 30 are inserted, comprise a second maximal extension e2 along the length L of the pallet 1, wherein the first maximal extension e1 of the bearing elements 31 of the pallet foot 30 is equal to or smaller than the second maximal extension e2 of the second openings 15, such that the pallet feet 30 can be inserted into the respective second openings 15 from above (wherein the base 32 adjacent to the shorter edge of the bearing element 31 defining the minimal extension e3 is inserted first from the above) or below, and are arrested in their final position due to spreading of the bearing elements 31 with respect to the base 32.
When the second plate 20 is attached to the first plate 10 as shown in
In addition, the second plate 20 depicted in
Furthermore, the second plate 20 comprises four rectangular fourth openings 22 extending along the length L of the second plate 20. Along the fourth openings 22, additional supporting elements 11, which extend along the length L and height of the pallet 1 (transversely to the first plate 10 and the second plate 20), and which are integrally formed from the second plate 20, are positioned.
In order to form the second plate 20 shown in
Compared to the second embodiment shown in
In order to form the second plate 20 shown in
Such a staggered arrangement advantageously further increases the stability of the pallet 1.
Number | Date | Country | Kind |
---|---|---|---|
17153143 | Jan 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/051402 | 1/22/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/138037 | 8/2/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2706099 | Whalley | Apr 1955 | A |
2744713 | De Villers | May 1956 | A |
2925978 | Marso | Feb 1960 | A |
3351028 | Louis Davidson | Nov 1967 | A |
3464370 | Martin | Sep 1969 | A |
3976013 | Woodford | Aug 1976 | A |
4759295 | Nilsen | Jul 1988 | A |
4850284 | DeGroot | Jul 1989 | A |
4875419 | Helton et al. | Oct 1989 | A |
5195440 | Gottlieb | Mar 1993 | A |
5230291 | Juvik-Woods | Jul 1993 | A |
5289781 | Beckway | Mar 1994 | A |
5452667 | Lim | Sep 1995 | A |
5503085 | Rozek | Apr 1996 | A |
5520120 | Badger | May 1996 | A |
5528995 | Lim | Jun 1996 | A |
5535668 | Besaw | Jul 1996 | A |
9555924 | Olvey | Jan 2017 | B2 |
20050098067 | Sketo | May 2005 | A1 |
20050193926 | Cassidy et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
1438955 | Aug 2003 | CN |
204624120 | Sep 2015 | CN |
3217573 | Nov 1983 | DE |
202009003944 | Jun 2009 | DE |
0741083 | Nov 1996 | EP |
2087654 | Dec 1971 | FR |
2000016429 | Jan 2000 | JP |
9410051 | May 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20190375544 A1 | Dec 2019 | US |