The present cooling system relates to the food industry, and more particularly, to a pan chiller system for providing uniform cooling to food pans provided in a food well.
In the food service industry, it is important to maintain food at desired temperatures in food pans to preserve food freshness. Accordingly, pan cooling/chilling systems have been developed, such as those disclosed in U.S. Pat. Nos. 5,355,687 and 5,927,092 and commonly-owned U.S. Provisional Patent Application No. 60/860,449, which are herein incorporated by reference in their entirety.
One problem experienced by current chilling systems is damage to the electrical components or wiring located within or in close proximity to the food pans due to condensation and/or spilled food dripping on the components or on the wiring. Excessive condensation especially results in cooling energy transfer inefficiency and possible premature component failure due to the extra work needed to achieve sufficient cooling.
For example, in many current systems, the generally copper tubing cooling element is provided below the food pans. Condensation on the relatively cold tubing results in frost forming on the tubing, reducing heat transfer efficiency of the system. To remove such frost, many current systems will periodically increase the temperature of the coolant within the tubing, causing the frost to melt and drip into the bottom of the unit, requiring disassembly of the unit for cleaning, which can cause damage to the wiring and increases system down time.
Also, current chilling systems generally are based on a Freon system that requires a change of state from liquid to gas to extract heat. Accordingly, they operate at a pressure of as much as 300 psi. This relatively high operating pressure requires expensive piping and fittings. A further issue in current chilling systems is their use of Freon as the coolant, which may be considered hazardous to the ozone layer if leaked to the atmosphere.
Another problem experienced by many current chilling systems is the inability to uniformly cool the food pans. Excessive or uneven cooling may damage many types of high moisture foods if the temperature drops below the freezing point of water, especially near the wall of the pan. One attempt to resolve this issue is to include a fan located in close proximity to the food pans for circulating air around an outside of the food pans in the sub-pan cooling unit. However, in practice, condensation and food spillage can result in damage to the fan and associated components.
Many current pan chilling systems utilize a cold-wall design, in which refrigeration lines are mounted in direct contact with the interior walls of the food well, and refrigerant is pumped through the lines. As the refrigerant evaporates, these interior walls serve as a heat sink for the enclosure surrounding the food pans. However, it has been found that in a cold-wall design, generally the pans around the perimeter of the food well opening are adequately cooled, but the coolant does not adequately chill the pans located in the center of the opening. Attempts to adequately cool food located in the center of the pan and/or food well opening typically involves lowering the coolant temperature in these systems. However, while this may cool the food provided in the center of the opening, it can cause the food closer to the perimeter of the opening to freeze.
To reduce ice or frost build-up and operate efficiently, current pan chilling systems employ a defrost cycle generally once an hour or overnight. During the defrost cycle, the chilling system operates at a higher temperature to remove the frost build-up, which can reduce the performance of the system because the food pans generally need to be removed prior to the defrost cycle.
Accordingly, there is a need for an improved pan chilling system that addresses the inefficiencies caused by condensation and/or food spillage forming on the coolant lines, and that provides more uniform and efficient cooling to the entire system. In addition, there is a need for an improved chilling system employing a coolant that is relatively environmentally friendly. Further, there is a need for an improved chilling system that more efficiently cools the individual food pans. Also, there is a need for an improved chilling system that prevents condensation, ice or moisture buildup on and around the food pans and the food well. There is a further need for an improved chilling system that can be easily manufactured and modified to suit the application.
The above-listed needs are met or exceeded by the present pan chiller system with glycol, which features a possibly remote chilling system including a plurality of divider bars each configured for directly receiving a coolant without the need for piping within the divider bar. The present system provides an increased flow rate of a generally higher temperature coolant that does not change state. This provides a more consistent temperature throughout the system and decreased pressure to prevent leakage, allowing for easier assembly and use of plastic piping. Also, the present system utilizes a flooding-type, high-flow chilled glycol solution that is environmentally friendly, absorbs heat and experiences significantly smaller temperature changes than the Freon coolant that does change state and is used in many current systems, preventing ice or moisture buildup. Further, the present pan chilling system is modular and can be easily manufactured and assembled relative to current systems. In addition, the present system does not include any electrical components or wiring within the food well, therefore reducing the chances of contamination or damage to the components, and reducing capital and maintenance costs.
More specifically, the present pan chiller system preferably includes a refrigeration package having a condensing unit, a reservoir or heat exchanger, and a pump. The system further includes a pan chiller unit in communication with the refrigeration package and having an outer housing and a food well received within the outer housing. A plurality of hollow divider bars are arranged within the food well and an opening is defined between adjacent divider bars, wherein each divider bar is configured for directly receiving a coolant chilled and circulated by the refrigeration package.
Referring to
Referring to
Because there are no electrical components within the pan chiller unit 20, and because the divider bars 30 are unitarily formed unlike many current systems having divider bars formed of several components that can freeze at their attachment seams, it is contemplated that the food well 26 and divider bars 30 can easily be cleaned without causing damage to wiring or electronics, even during operation. To further ease cleaning, a wall of the food well 26 can include a drain 35 (
Referring now to
Preferably, a transverse cross-sectional profile of the divider bars 30 is trapezoidal, with a narrower width at an upper end relative to a wider lower end. This configuration provides inclined walls for the food pan opening 32 for easily accommodating the food pans 34 while keeping the walls of the divider bars 30 as close to the walls of the food pans as possible for efficient heat transfer. However, it is recognized that other shapes for the divider bars 30 may be suitable depending on the application, especially different shaped food pans 34. Preferably still, an outer shell 44 of the divider bar 30 includes a stepped groove 46 extending parallel to the longitudinal axis “L” of the divider bar. It is contemplated that the groove 46 enables the divider bar 30 to accommodate a greater variety of food pans 34, although it is recognized that other configurations may be appropriate.
It is contemplated that the present system 10 is modular, and accordingly, a length or profile of the divider bars 30 can be custom made to properly fit and accommodate different shapes/sizes of food pans 34 to obtain a close, complementary fit between the divider bar and the pans for enhanced heat transfer. Alternatively, if the divider bar 30 is not custom made, a small gap (not shown) is generally present between the bars 30 and the food pans 34. Although direct contact provides advantageous heat transfer, with the present, constant flow system, such a small gap does not significantly impede heat transfer because it leads to “sweating”, or the formation of water in the gap, which aids in heat transfer. A related advantage of the present system is that a coolant C is cycled to stay around the freezing point of water to prevent frost or ice buildup.
Referring now to
As shown in
In an alternate arrangement (not shown), the end cap 48 is manufactured from a thermoplastic material, and a suitable seal such as an O-ring or gasket is provided between the end cap and the divider bar 30. However, it is recognized that other alternate sealing arrangements may be suitable, as known in the art.
To enable the coolant C to flow through both the upper and lower channels 38, 40 and as shown in
Each channel 38, 40 is configured for directly receiving the coolant “C”, shown with arrows in
Since the divider bars 30 have a large surface area and the flow rate of the glycol is high, it can achieve sufficient cooling without having to change state. It also can flow at a higher temperature and greater flow rate than Freon, generally flowing through the divider bars 30 at a temperature between 27-33° F., which will be described in further detail below. Accordingly, glycol provides more efficient and uniform cooling throughout the system.
It is contemplated that due to the hollow, relatively unobstructed internal construction of the bar 30, the coolant C flows such that the upper and lower channels 38, 40 will remain full of coolant throughout operation, and any excess air will be purged, thus cooling the food pans 34 uniformly from top to bottom.
Specifically, and as indicated by the arrows C in
It can be appreciated that in the present system the flowing glycol coolant is in direct contact with the entire inner surface area of the divider bar. An additional feature of the present system 10 is that the coolant C is continuously flowing and accordingly maintains a steady liquid state each time it reenters the heat exchanger 16 after passing through each of the divider bars 30 and exits the pan chiller unit 20. During operation, the glycol coolant flow pressure within the divider bar 30 is generally between 5-40 psi, which is significantly lower than the as much as 300 psi pressure found in current Freon-based chilling systems, which generally require copper or similar tubing to withstand such pressure. By operating at a lower pressure in a constant liquid state, simple plastic piping and related fittings of the type used in conventional low pressure fluid flow systems can be used for the delivery system of the system 10. Also, the run time of the present refrigeration package 12 is reduced because the heat transfer efficiency of the present system 10 is relatively higher than conventional systems.
It is also contemplated that by providing a continuous flow of the steady state coolant C through the divider bars 30, the change in temperature from the first divider bar 30a to the last divider bar is relatively small. The glycol in the present system 10 is maintained by the refrigeration unit 12 at a relatively higher temperature than conventional pan chiller systems, preferably continuously cycling near the freezing point of water. Specifically, the coolant temperature continuously cycles or fluctuates above and below the freezing point of water, and most preferably between 27-33° F. The coolant C preferably peaks above the freezing point of water to provide a frost-free system. Further, with a sufficient and continuous flow of glycol, it is contemplated that the entire surface of the divider bars 30 can be maintained at a uniform temperature which is relatively higher than Freon-based systems, thus being more energy efficient and requiring less maintenance. In addition, by constantly running the pump 18 to continuously cycle the coolant C, it is contemplated that the present system is more cost efficient and easier to control than many current Freon-based systems, which generally require a compressor to regularly be turned on and off to regulate the temperature of the Freon.
To remove the frost build-up formed in many current Freon-based chiller systems and to operate at optimal conditions, defrosting is typically required for at least one hour in each 24-hour cycle, disrupting the flow of the coolant and raising the temperature within the cooling elements. Such systems also require timers and must schedule the defrosting when the unit is not in use. However, in the present system 10, it is contemplated that any light frost buildup that may form can be changed to water due to the above-described cycling of coolant. Specifically, if the glycol temperature is raised to above the freezing point of water for a short period of time, but never above the food temperature, the frost can melt yet the system continues cooling. However, due to the constant cycling of the coolant in the present system 10, the food is not heated. In the present system 10, because there is no defrost cycle, the glycol continues to flow and cool the system, and accordingly it is contemplated that the efficiency of the system remains consistent.
To further ensure uniform cooling of the food pans 34, especially in the center of the food pans, an upper peripheral wall 78 is provided at a sufficient height such that it surrounds a top periphery 80 of the pan chiller unit 20, as shown in
It is contemplated that the fin 82 acts as a heat sink to create an insulation barrier above the food pans 34 by forming a stagnant blanket of cooled air over the chilling pan unit 20. The upper peripheral wall 78 along with the fin(s) 82 aid in keeping the cooled air within the perimeter of the unit and enable proper cooling of the food pans 34, even those centrally located within the well 26. Because of the unitary formation of the divider bars 30, the fin 82 is a supplemental cooling device which does not add significant cost to the manufacturing process. To further ensure steady cooling, the fin 82 preferably extends at least as high as the top periphery 80 of the well 26, preventing escape of the cool air.
While a particular embodiment of the present pan chiller system with single state coolant has been described herein, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as described below.
Applicant claims priority benefits under 35 U.S.C. §119 on the basis of Patent Applications Nos. 60/795,517, filed Apr. 27, 2006 and 60/860,449, filed Nov. 20, 2006.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/009631 | 4/19/2007 | WO | 00 | 3/9/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/127133 | 11/8/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1932694 | Gray | Oct 1933 | A |
1968812 | Ackerman | Aug 1934 | A |
2321695 | Miller | Jun 1943 | A |
2346430 | Hauser | Apr 1944 | A |
2667761 | Sellstrom | Feb 1954 | A |
2877000 | Person | Mar 1959 | A |
3952794 | Spanoudis | Apr 1976 | A |
4280335 | Perez et al. | Jul 1981 | A |
4760711 | Kopatz et al. | Aug 1988 | A |
4856579 | Wolfe | Aug 1989 | A |
5168712 | Coelho et al. | Dec 1992 | A |
5355687 | Carpenter et al. | Oct 1994 | A |
5671808 | Kleyn | Sep 1997 | A |
5921096 | Warren | Jul 1999 | A |
5927092 | Kushen et al. | Jul 1999 | A |
6185951 | Lane et al. | Feb 2001 | B1 |
6253668 | Lee | Jul 2001 | B1 |
6313990 | Cheon | Nov 2001 | B1 |
6541739 | Shei et al. | Apr 2003 | B2 |
6963488 | Chen | Nov 2005 | B1 |
20050047083 | Kondo et al. | Mar 2005 | A1 |
20050166631 | Trujillo, Jr. et al. | Aug 2005 | A1 |
20060053805 | Flinner et al. | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090188275 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
60795517 | Apr 2006 | US | |
60860449 | Nov 2006 | US |