Panel and process for producing a panel

Information

  • Patent Grant
  • 7641963
  • Patent Number
    7,641,963
  • Date Filed
    Friday, October 31, 2003
    21 years ago
  • Date Issued
    Tuesday, January 5, 2010
    14 years ago
Abstract
A panel, in particular floor panel, having a support board made of glued and compressed fiber material to which a termination layer is applied in each case on a top side and an underside, and the termination layer of the top side has a structured surface, and to a process for producing such a panel or such a support board. The object of the invention is to provide a panel or a support board comprising binders and fillers and also a process for producing the same, by means of which surface-structured panels can be produced more quickly and cost-effectively. This object is achieved in that the density on the top side of the support board is lower than the density of the support board on the underside.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to a panel according to the preamble of claim 1 and to a process for producing a panel according to the preamble of claim 11. A support board for a panel and a process for producing such a support board also form part of the subject matter of the invention.


Such a panel or such a support board is suitable, in particular, for a floor panel.


2. Background Description


The support boards used in laminate flooring are usually HDF or MDF boards which have a stamped formation on the surface in order for it to be possible to achieve a decoration-following structure on the top side. The stamping process is carried out in parallel with a short-cycle coating operation, while a plurality of paper layers are pressed with one another and with a mat made of woodbased material, preferably fibers. The structure here is produced by pressing plates which have a negative structure. This process is expensive and is distinguished by pressing plates being subjected to high levels of wear.


SUMMARY OF THE INVENTION

The object of the invention is to provide a panel or a support board made of binders and fillers, and also a process for producing the same, by means of which surface-structured panels can be produced more quickly and cost-effectively.


This object is achieved according to the invention by a panel having the features of claim 1 and a support board and a process for producing the same according to claims 11 and 15, respectively. Advantageous configurations and developments of the invention are described in the subclaims.


The fact that the density on the top side of the support board differs from that on the underside facilitates the operation of stamping or structuring the support board on account of the lower strength, as a result of which the wear to which the stamping plates or other structuring tools are subjected is reduced. It is likewise possible for the structuring or stamping to take place more quickly, which overall results in quicker and more cost-effective production.


Designing the support board with a density of less than 700 kg/m3, while at the same time having a gluing factor of greater than 10%, results in the support board having more or less plastic-like properties in respect of weight and strength, although the amount of material used, on account of the embedded woodbased materials, preferably fibers, is considerably lower.


A development provides that the support board has a density of between 400 kg/m3 and 650 kg/m3, this resulting in optimum strength in relation to the density and the amount of material used.


Urea-formaldehyde resins (UF resins) or melamin enhanced urea-formaldehyde resins (MUF) are advantageously used for gluing the woodbased materials or fibers of the support board. It is also possible to use isocyanates as the means for gluing the fibers in the support board, the invention providing isocyanates with gluing factors of less than 20%. On account of their high heat resistance, isocyanates also make it possible to realize higher gluing factors. It is likewise the case that the addition of isocyanates maintains the strength during heat-intensive coating of the support board since, if use is made exclusively of urea-formaldehyde resins, there is a tendency for the support board to undergo a loss in strength during coating.


For appropriate production of support boards, depending on loading and use purpose, it is provided that a mixture of isocyanates and UF or MUF resins is used as the means for gluing the woodbased materials or fibers and the support board.


A development of the invention provides that the support board has a non-uniform density distribution over the cross section from the top side to the underside, the cover layer located on the underside having a density in the region of 1000 kg/m3, whereas the central layers in the cross section are compressed to 400 kg/m3-600 kg/m3. The top side has a lower density than the underside, but advantageously a greater density than in the center of the support board. The higher levels of compression on the top side and underside ensures a high resistance against vertical mechanical loading, as is necessary, for example, when used for floor panels. A panel with such a support board is provided on the top side and the underside in each case with a termination layer, which usually comprises a melamin impregnated decorative layer or counteracting layer, in order additionally to protect the support board against mechanical damage.


On account of the reduction in weight of the support boards of comparatively low relative density, the transportation costs are lowered and, furthermore, the support board achieves a hitherto unknown level of flexibility, which allows for specific profile configurations, in particular in the case of so-called click-in connections.


Furthermore, the increase in the gluing factor results in improved moisture resistance since the reduced proportion of woodbased materials in the boards reduces the inclination of the support board to swell up. The penetration of wetness into the region where two support boards or two floor panels are connected results in the support boards swelling up in this region and thus in the floor being destroyed. On account of the lesser tendency to swell up (below 5%), the support board according to the invention and a floor panel produced thereby are suitable, in particular, for use in wet rooms.


In addition, the layers of different densities within the support board result in a refraction of the sound waves at the density-transition locations, so that the footfall and room sound is markedly reduced.


The process for producing a panel, in particular a floor panel, in the case of which a support board is produced by the compression and heating of glued woodbased materials makes provision for the support board to be provided with a structured surface on a top side, and for a termination layer to be applied to the support board provided with the stamped formation. Setting different densities on the top side and the underside of the support board facilitates the stamping of the support board because the strength of the cover layer of the support board is lower on the top side than on the underside. The overall strength of the panel is only adversely affected to a slight extent since the underside has a very high density and strength and improved material values can be achieved on account of the high gluing proportions.


The single-sided reduction in the bulk density of the support board on the top side during the production process takes place either by virtue of the cover layer of the top side being ground off or by the single-sided application of good heat conductors, such as water, on the underside prior to the woodbased material being heated and compressed during the production of the support board. The supply of the heat-conducting media, for example by spraying the woodbased materials designed, for example as a fiber mat, results in the heat penetrating more quickly into the fiber mat. The adhesives are thus activated more quickly and enhanced compression takes place on one side of the fiber mat. On the opposite side, the degree of compression is correspondingly lower, with the result that this side can be used for easier surface stamping. This process maintains the fiber structure while, at the same time, having different densities on the top side and underside, which has an advantageous effect on the strength of the support board and of the panel.


As an alternative, or in addition, to the stamping operation, the structure of the support board may be produced by a grinding-off operation.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained in more detail hereinbelow with reference to the attached figures, in which:



FIG. 1 shows a cross-sectional view of a panel; and



FIG. 2 shows a density distribution over the cross section of a support board.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION


FIG. 1 shows a cross section of a floor panel having a support board 1 with a termination layer 10 applied in each case to its top side 15 and underside 5. The termination layers 10 are applied, preferably glued, to the cover layers 7, 17, forming the outer termination of the support board 1, and protect the support board 1, for example, against moisture and mechanical loading. It is likewise possible for these termination layers 10 to have a decoration and to increase the mechanical stability of the floor panel.


Locking means 2, 3 are formed on the side edges of the panel, these locking means preventing two interconnected panels from moving relative to one another both in the vertical direction V and in the transverse direction Q. The support board 1 here is produced from a fiber material which is usually used for producing HDF boards; as an alternative, or in addition, other woodbased materials are incorporated. The cover layers 7, 17 of the support board 1 have a considerably higher density than the core 20 of the support board 1, densities of up to 1000 kg/m3 being achieved in the cover layers 7 of the underside 5, while lower densities are set in the cover layer 17 of the top side 15. Within the core 20, the density decreases continuously toward the center M of the support board 1, a corresponding density distribution over the thickness d of a support board 1 being illustrated in FIG. 2. The latter shows that the lowest value for the density ρ is achieved in the center M of the support board, while the density ρ increases over the thickness d of the support board, starting from the center M, in order to reach its maximum on the surfaces of the cover layers 7, 17, the maximum value on the top side 15 being lower than the maximum value on the underside 5.


The extremely high density, in the region of 1000 kg/m3, in the cover layer 7 of the underside 5 provides the support board 1 with the necessary resistance to vertical, mechanical loading, it being possible, in conjunction with the use of UF or MUF resins, if appropriate mixed with isocyanates, to produce a particular level of flexibility within the board. The addition of isocyanates improves the moisture resistance of the support board 1, with the result that the significant properties of the support board 1 are defined by the resins used and/or the plastics introduced.



FIG. 1, furthermore, shows the structured surface of the top side 15 and of the termination layer 10 applied thereto, it being possible for the structure to be provided by a stamping operation during coating with the termination layer 10. Since the density of the cover layer 17 on the top side 15 is lower than that on the underside 5, the stamping operation is rendered easier and the wear to which the stamping plates are subjected is reduced.


As an alternative to spraying the fiber mat with water, it is also possible for other heat-conducting media to be introduced specifically into the fibers, or applied to the fibers, in order to achieve an asymmetrical density distribution over the thickness of the support board. Liquids other than water may be used. It is likewise possible for an appropriate distribution of the woodbased materials or fibers to result in the mat which is to be pressed being such that the support board has an asymmetrical density distribution, for example by the top cover layer consisting of a material which cannot be compressed to such a high extent.

Claims
  • 1. A panel having a support board made of glued and compressed woodbased material to which a termination layer is applied in each case on a top side and an underside, and the termination layer of the top side has a structured surface, wherein the density on the top side of the support board is lower than the density of the support board on the underside.
  • 2. The panel according to claim 1, wherein the support board has a density of less than 700 kg/m3.
  • 3. The panel according to claim 1, wherein a gluing factor of the support board is greater than 10%.
  • 4. The panel according to claim 1, wherein UF resins or MUF resins are used as a means for gluing fibers of the support board.
  • 5. The panel according to claim 1, wherein isocyanates are used as a means for gluing woodbased materials of the support board.
  • 6. A panel having a support board made of glued and compressed fiber material to which a termination layer is applied in each case on a top side and an underside, and the termination layer of the top side has a structured surface, wherein the density on the top side of the support board is lower than the density of the support board on the underside, andisocyanates are used as a means for gluing woodbased materials of the support board, andfurther comprising a gluing factor of less than 20% for isocyanates.
  • 7. The panel according to claim 1, further comprising a mixture of isocyanates and UF or MUF resins as a means for gluing woodbased materials of the support board.
  • 8. The panel according to claim 1, wherein the support board has a non-uniform density distribution over its cross section from the top side to the underside.
  • 9. The panel according to claim 8, wherein a density of 1000 kg/m3 is present on the underside of the support board, while a density of from 400 kg/m3 to 600 kg/m3 is present in the center of the support board.
  • 10. A process for producing a panel as recited in claim 1, comprising: compressing and heating the glued fiber material to form the support board; andapplying a stamped formation to the termination layer to provide the structured surface on the top side of the support board,wherein the density on the top side of the support board is set to be lower than the density of the support board on the underside.
  • 11. A process for producing a panel, in particular floor panel, in the case of which a support board is produced by the compression and heating of glued woodbased materials, and the support board is provided with a structured surface on a top side, and a termination layer is applied to the support board provided with a stamped formation, characterized in that the density on the top side of the support board is set to be lower than the density of the support board on the underside.
  • 12. The process according to claim 11, wherein the different densities are set by virtue of a cover layer of the top side being ground off.
  • 13. The process according to claim 11, wherein the different densities are set by the single-sided application of heat-conducting media, in particular water, to the underside prior to the woodbased material being heated.
  • 14. The process according to one of claim 11, wherein the structured surface is produced by a grinding-off and/or stamping operation.
  • 15. A process for producing a support board made of glued and compressed woodbased fiber material for a panel, in particular floor panel, in a case of which a density on a top side of the support board is lower than a density of the support board on a underside, and in the case of which the fiber material is compressed with a supply of pressure and heat, wherein the density on the top side of the support board is set to be lower than a density of the support board on the underside by a single-sided application of water to the underside prior to the woodbased material being heated and compressed.
  • 16. A panel, comprising: a support board composed of glued, compressed woodbased material, having a top side and an underside;a first termination layer provided on the top side;a second termination layer provided on the underside,wherein the density of the support board continuously decreases from the top side to a substantial midpoint of the support board, and continuously decreases from the underside to the substantial midpoint.
  • 17. The panel of claim 16, wherein the density at the top side is less than the density at the underside.
  • 18. The panel of claim 16, wherein the first termination layer comprises a decoration.
  • 19. The panel of claim 16, wherein the first termination layer comprises a structure composed of a stamping.
  • 20. The panel of claim 16, wherein a density distribution through a thickness of the support board is substantially parabolic in shape.
  • 21. The panel of claim 16, wherein the support board comprises cover layers and the first termination layer and second termination layer are glued to the cover layers.
Priority Claims (1)
Number Date Country Kind
102 52 866 Nov 2002 DE national
US Referenced Citations (307)
Number Name Date Kind
213740 Conner Apr 1879 A
623562 Rider Apr 1899 A
714987 Wolfe Dec 1902 A
753791 Fulghum Mar 1904 A
1124228 Houston Jan 1915 A
1407679 Ruthrauff Feb 1922 A
1454250 Parsons May 1923 A
1468288 Een Sep 1923 A
1477813 Daniels Dec 1923 A
1510924 Daniels et al. Oct 1924 A
1540128 Houston Jun 1925 A
1575821 Daniels Mar 1926 A
1602256 Sellin Oct 1926 A
1602267 Karwisch Oct 1926 A
1615096 Meyers Jan 1927 A
1622103 Fulton Mar 1927 A
1622104 Fulton Mar 1927 A
1637634 Carter Aug 1927 A
1644710 Crooks Oct 1927 A
1660480 Daniels Feb 1928 A
1714738 Smith May 1929 A
1718702 Pfiester Jun 1929 A
1734826 Pick Nov 1929 A
1764331 Moratz Jun 1930 A
1776188 Langb'aum Sep 1930 A
1778069 Fetz Oct 1930 A
1779729 Bruce Oct 1930 A
1787027 Wasleff Dec 1930 A
1823039 Gruner Sep 1931 A
1859667 Gruner May 1932 A
1898364 Gynn Feb 1933 A
1906411 Potvin May 1933 A
1921164 Lewis Aug 1933 A
1929871 Jones Oct 1933 A
1940377 Storm Dec 1933 A
1946648 Taylor Feb 1934 A
1953306 Moratz Apr 1934 A
1986739 Mitte Jan 1935 A
1988201 Hall Jan 1935 A
2023066 Curtis et al. Dec 1935 A
2044216 Klages Jun 1936 A
2065525 Hamilton Dec 1936 A
2123409 Elmendorf Jul 1938 A
2220606 Malarkey et al. Nov 1940 A
2276071 Scull Mar 1942 A
2280071 Hamilton Apr 1942 A
2324628 Kähr Jul 1943 A
2328051 Bull Aug 1943 A
2398632 Frost et al. Apr 1946 A
2430200 Wilson Nov 1947 A
2740167 Rowley Apr 1956 A
2894292 Gramelspacker Jul 1959 A
3045294 Livezey, Jr. Jul 1962 A
3100556 De Ridder Aug 1963 A
3125138 Bolenbach Mar 1964 A
3182769 De Ridder May 1965 A
3203149 Soddy Aug 1965 A
3204380 Smith et al. Sep 1965 A
3267630 Omholt Aug 1966 A
3282010 King, Jr. Nov 1966 A
3310919 Bue et al. Mar 1967 A
3347048 Brown et al. Oct 1967 A
3460304 Braeuninger et al. Aug 1969 A
3481810 Waite Dec 1969 A
3526420 Brancaleone Sep 1970 A
3538665 Gohner Nov 1970 A
3553919 Omholt Jan 1971 A
3555762 Costanzo, Jr. Jan 1971 A
3608258 Spratt Sep 1971 A
3639200 Elemendorf et al. Feb 1972 A
3694983 Couquet Oct 1972 A
3714747 Curran Feb 1973 A
3720027 Christensen Mar 1973 A
3731445 Hoffmann et al. May 1973 A
3759007 Thiele Sep 1973 A
3760548 Sauer et al. Sep 1973 A
3768846 Hensley et al. Oct 1973 A
3859000 Webster Jan 1975 A
3878030 Cook Apr 1975 A
3902293 Witt et al. Sep 1975 A
3908053 Hettich Sep 1975 A
3936551 Elmendorf et al. Feb 1976 A
3988187 Witt et al. Oct 1976 A
4006048 Cannady, Jr. et al. Feb 1977 A
4090338 Bourgade May 1978 A
4091136 O'Brian et al. May 1978 A
4099358 Compaan Jul 1978 A
4118533 Hipchen et al. Oct 1978 A
4131705 Kubinsky Dec 1978 A
4164832 Van Zandt Aug 1979 A
4169688 Toshio Oct 1979 A
4175105 Luck et al. Nov 1979 A
4175148 Luck et al. Nov 1979 A
4175149 Luck et al. Nov 1979 A
4175150 Luck et al. Nov 1979 A
4242390 Nemeth Dec 1980 A
4243716 Kosaka et al. Jan 1981 A
4245689 Grard et al. Jan 1981 A
4246310 Hunt et al. Jan 1981 A
4283450 Luck et al. Aug 1981 A
4290248 Kemerer et al. Sep 1981 A
4299070 Oltmanns et al. Nov 1981 A
4426820 Terbrack et al. Jan 1984 A
4431044 Bruneau Feb 1984 A
4471012 Maxwell Sep 1984 A
4501102 Knowles Feb 1985 A
4561233 Harter et al. Dec 1985 A
4585685 Forry et al. Apr 1986 A
4612745 Hovde Sep 1986 A
4641469 Wood Feb 1987 A
4653242 Ezard Mar 1987 A
4654244 Eckert et al. Mar 1987 A
4703597 Eggemar Nov 1987 A
4715162 Brightwell Dec 1987 A
4738071 Ezard Apr 1988 A
4752497 McConkey et al. Jun 1988 A
4769963 Meyerson Sep 1988 A
4819932 Trotter, Jr. Apr 1989 A
4831806 Niese et al. May 1989 A
4845907 Meek Jul 1989 A
4905442 Daniels Mar 1990 A
4947602 Pollasky Aug 1990 A
5029425 Bogataj Jul 1991 A
5103614 Kawaguchi et al. Apr 1992 A
5113632 Hanson May 1992 A
5117603 Weintraub Jun 1992 A
5136823 Pellegrino Aug 1992 A
5145732 Kyutoku et al. Sep 1992 A
5165816 Parasin Nov 1992 A
5179812 Itill Jan 1993 A
5205091 Brown Apr 1993 A
5216861 Meyerson Jun 1993 A
5251996 Hiller et al. Oct 1993 A
5253464 Nilsen Oct 1993 A
5283102 Sweet et al. Feb 1994 A
5295341 Kajiwara Mar 1994 A
5335473 Chase Aug 1994 A
5348778 Knipp et al. Sep 1994 A
5349796 Meyerson Sep 1994 A
5390457 Sjölander Feb 1995 A
5413834 Hunter et al. May 1995 A
5433806 Pasquali et al. Jul 1995 A
5474831 Nystrom Dec 1995 A
5497589 Porter Mar 1996 A
5502939 Zadok et al. Apr 1996 A
5506026 Iwata et al. Apr 1996 A
5540025 Takehara et al. Jul 1996 A
5567497 Zegler et al. Oct 1996 A
5570554 Searer Nov 1996 A
5591289 Souders et al. Jan 1997 A
5597024 Bolyard et al. Jan 1997 A
5630304 Austin May 1997 A
5653099 MacKenzie Aug 1997 A
5671575 Wu Sep 1997 A
5694734 Cercone et al. Dec 1997 A
5706621 Pervan Jan 1998 A
5736218 Iwata et al. Apr 1998 A
5736227 Sweet et al. Apr 1998 A
5768850 Chen Jun 1998 A
5797175 Schneider Aug 1998 A
5797237 Finkell, Jr. Aug 1998 A
5823240 Bolyard et al. Oct 1998 A
5827592 Van Gulik et al. Oct 1998 A
5855832 Clausi Jan 1999 A
5860267 Pervan Jan 1999 A
5935668 Smith Aug 1999 A
5943239 Shamblin et al. Aug 1999 A
5953878 Johnson Sep 1999 A
5968625 Hudson Oct 1999 A
5985397 Witt et al. Nov 1999 A
5987839 Hamar et al. Nov 1999 A
6006486 Moriau et al. Dec 1999 A
6023907 Pervan Feb 2000 A
6065262 Motta May 2000 A
6094882 Pervan Aug 2000 A
6101778 Martensson Aug 2000 A
6119423 Costantino Sep 2000 A
6134854 Stanchfield Oct 2000 A
6148884 Bolyard et al. Nov 2000 A
6168866 Clark Jan 2001 B1
6182410 Pervan Feb 2001 B1
6186703 Shaw Feb 2001 B1
6205639 Pervan Mar 2001 B1
6209278 Tychsen Apr 2001 B1
6216403 Belbeoc'h Apr 2001 B1
6216409 Roy et al. Apr 2001 B1
D442296 Külik May 2001 S
D442297 Külik May 2001 S
D442298 Külik May 2001 S
D442706 Külik May 2001 S
D442707 Külik May 2001 S
6224698 Endo May 2001 B1
6238798 Kang et al. May 2001 B1
6247285 Moebus Jun 2001 B1
D449119 Külik Oct 2001 S
D449391 Külik Oct 2001 S
D449392 Külik Oct 2001 S
6324803 Pervan Dec 2001 B1
6345481 Nelson Feb 2002 B1
6352661 Thompson et al. Mar 2002 B1
6363677 Chen et al. Apr 2002 B1
6397547 Martensson Jun 2002 B1
6418683 Martensson et al. Jul 2002 B1
6421970 Martensson et al. Jul 2002 B1
6427408 Krieger Aug 2002 B1
6436159 Safta et al. Aug 2002 B1
6438919 Knauseder Aug 2002 B1
6446405 Pervan Sep 2002 B1
6449913 Shelton Sep 2002 B1
6449918 Nelson Sep 2002 B1
6453632 Huang Sep 2002 B1
6458232 Valentinsson Oct 2002 B1
6460306 Nelson Oct 2002 B1
6461636 Arth et al. Oct 2002 B1
6465046 Hansson et al. Oct 2002 B1
6490836 Moriau et al. Dec 2002 B1
6497961 Kang et al. Dec 2002 B2
6510665 Pervan Jan 2003 B2
6516579 Pervan Feb 2003 B1
6517935 Kornfalt et al. Feb 2003 B1
6519912 Eckmann et al. Feb 2003 B1
6521314 Tychsen Feb 2003 B2
6532709 Pervan Mar 2003 B2
6533855 Gaynor et al. Mar 2003 B1
6536178 Pålsson et al. Mar 2003 B1
6546691 Peopolder Apr 2003 B2
6553724 Bigler Apr 2003 B1
6558754 Velin et al. May 2003 B1
6565919 Hansson et al. May 2003 B1
6569272 Tychsen May 2003 B2
6588166 Martensson et al. Jul 2003 B2
6591568 Palsson Jul 2003 B1
6601359 Olofsson Aug 2003 B2
6606834 Martensson et al. Aug 2003 B2
6617009 Chen et al. Sep 2003 B1
6635174 Berg et al. Oct 2003 B1
6641629 Safta et al. Nov 2003 B2
6646088 Fan et al. Nov 2003 B2
6647690 Martensson Nov 2003 B1
6649687 Gheewala et al. Nov 2003 B1
6659097 Houston Dec 2003 B1
6672030 Schulte Jan 2004 B2
6675545 Chen et al. Jan 2004 B2
6681820 Olofsson Jan 2004 B2
6682254 Olofsson et al. Jan 2004 B1
6685993 Hansson et al. Feb 2004 B1
6711864 Erwin Mar 2004 B2
6711869 Tychsen Mar 2004 B2
6715253 Pervan Apr 2004 B2
6723438 Chang et al. Apr 2004 B2
6729091 Martensson May 2004 B1
6745534 Kornfalt Jun 2004 B2
6761008 Chen et al. Jul 2004 B2
6761794 Mott et al. Jul 2004 B2
6763643 Martensson Jul 2004 B1
6766622 Thiers Jul 2004 B1
6769217 Nelson Aug 2004 B2
6769218 Pervan Aug 2004 B2
6769835 Stridsman Aug 2004 B2
6772568 Thiers et al. Aug 2004 B2
6786019 Thiers Sep 2004 B2
6803109 Qiu et al. Oct 2004 B2
6805951 Kornfält et al. Oct 2004 B2
6823638 Stanchfield Nov 2004 B2
6841023 Mott Jan 2005 B2
20010029720 Pervan Oct 2001 A1
20010034992 Pletzer et al. Nov 2001 A1
20020007608 Pervan Jan 2002 A1
20020007609 Pervan Jan 2002 A1
20020014047 Thiers Feb 2002 A1
20020020127 Thiers et al. Feb 2002 A1
20020046528 Pervan et al. Apr 2002 A1
20020056245 Thiers May 2002 A1
20020106439 Cappelle Aug 2002 A1
20020160680 Laurence et al. Oct 2002 A1
20030024200 Moriau et al. Feb 2003 A1
20030024201 Moriau et al. Feb 2003 A1
20030029115 Moriau et al. Feb 2003 A1
20030029116 Moriau et al. Feb 2003 A1
20030029117 Moriau et al. Feb 2003 A1
20030033777 Thiers et al. Feb 2003 A1
20030033784 Pervan Feb 2003 A1
20030115812 Pervan Jun 2003 A1
20030115821 Pervan Jun 2003 A1
20030159385 Thiers Aug 2003 A1
20030167717 Garcia Sep 2003 A1
20030196405 Pervan Oct 2003 A1
20030205013 Garcia Nov 2003 A1
20030233809 Pervan Dec 2003 A1
20040016196 Pervan Jan 2004 A1
20040035078 Pervan Feb 2004 A1
20040092006 Lindekens et al. May 2004 A1
20040105994 Lu et al. Jun 2004 A1
20040139678 Pervan Jul 2004 A1
20040159066 Thiers et al. Aug 2004 A1
20040177584 Pervan Sep 2004 A1
20040200165 Garcia et al. Oct 2004 A1
20040206036 Pervan Oct 2004 A1
20040237447 Thiers et al. Dec 2004 A1
20040237448 Thiers et al. Dec 2004 A1
20040241374 Thiers et al. Dec 2004 A1
20040244322 Thiers et al. Dec 2004 A1
20040250493 Thiers et al. Dec 2004 A1
20040255541 Thiers et al. Dec 2004 A1
20040258907 Kornfalt et al. Dec 2004 A1
20050003149 Kornfalt et al. Jan 2005 A1
20050016099 Thiers Jan 2005 A1
Foreign Referenced Citations (183)
Number Date Country
57133 Mar 1988 AT
005566 Aug 2002 AT
713628 May 1998 AU
200020703 Jan 2000 AU
417526 Sep 1936 BE
557844 Jun 1957 BE
557844 Mar 1960 BE
09600527 Jun 1998 BE
09700344 Oct 1998 BE
991373 Jun 1976 CA
2226286 Dec 1997 CA
2252791 May 1999 CA
2289309 Jul 2000 CA
200949 Jan 1939 CH
211877 Jan 1941 CH
562377 May 1975 CH
314207 Sep 1919 DE
531989 Aug 1931 DE
740235 Oct 1943 DE
1089966 Sep 1960 DE
1534278 Feb 1966 DE
1212225 Mar 1966 DE
1212275 Mar 1966 DE
1534802 Apr 1970 DE
7102476 Jun 1971 DE
2007129 Sep 1971 DE
1534278 Nov 1971 DE
2252643 Oct 1972 DE
2238660 Feb 1974 DE
7402354 May 1974 DE
2502992 Jul 1976 DE
2616077 Oct 1977 DE
2917025 Nov 1980 DE
7911924 Mar 1981 DE
7928703 May 1981 DE
3041781 Jun 1982 DE
3214207 Nov 1982 DE
8226153 Jan 1983 DE
3343601 Jun 1985 DE
86040049 Jun 1986 DE
3512204 Oct 1986 DE
3246376 Feb 1987 DE
4004891 Sep 1990 DE
4030586 Apr 1991 DE
4002547 Aug 1991 DE
4134452 Apr 1993 DE
4215273 Nov 1993 DE
4242530 Jun 1994 DE
4011656 Jan 1995 DE
4324137 Jan 1995 DE
4107151 Feb 1995 DE
29517128 Feb 1996 DE
4242530 Sep 1996 DE
3544845 Dec 1996 DE
29710175 Sep 1997 DE
19616510 Mar 1998 DE
19651149 Jun 1998 DE
19709641 Sep 1998 DE
19718319 Nov 1998 DE
19735189 Jun 2000 DE
20001225 Aug 2000 DE
19925248 Dec 2000 DE
199225248 Dec 2000 DE
20017461 Mar 2001 DE
20018284 Mar 2001 DE
1 0001585 Jul 2001 DE
20206460 Aug 2002 DE
101 60 316 Jun 2003 DE
20218331 May 2004 DE
0248127 Dec 1987 EP
0548758 Jun 1993 EP
0623724 Nov 1994 EP
0652340 May 1995 EP
0667936 Aug 1995 EP
0690185 Jan 1996 EP
0849416 Jun 1998 EP
0698162 Sep 1998 EP
0903451 Mar 1999 EP
0855482 Dec 1999 EP
0877130 Jan 2000 EP
0969163 Jan 2000 EP
0969164 Jan 2000 EP
0974713 Jan 2000 EP
0843763 Oct 2000 EP
1200690 May 2002 EP
0958441 Jul 2003 EP
1026341 Aug 2003 EP
1413695 Apr 2004 EP
163421 Sep 1968 ES
460194 May 1978 ES
283331 May 1985 ES
1019585 Dec 1991 ES
1019585 Jan 1992 ES
2168045 May 2002 ES
843060 Aug 1984 FI
1293043 Apr 1962 FR
2691491 Nov 1983 FR
2568295 May 1986 FR
2623544 May 1989 FR
2630149 Oct 1989 FR
2637932 Apr 1990 FR
2675174 Oct 1991 FR
2667639 Apr 1992 FR
2691491 Nov 1993 FR
2697275 Apr 1994 FR
2712329 May 1995 FR
2776956 Oct 1999 FR
2781513 Jan 2000 FR
2785633 May 2000 FR
424057 Feb 1935 GB
585205 Jan 1947 GB
599793 Mar 1948 GB
636423 Apr 1950 GB
812671 Apr 1959 GB
1033866 Jun 1966 GB
1034117 Jun 1966 GB
1044846 Oct 1966 GB
1237744 Jun 1968 GB
1127915 Sep 1968 GB
1275511 May 1972 GB
1399402 Jul 1975 GB
1430423 Mar 1976 GB
2117813 Oct 1983 GB
2126106 Mar 1984 GB
2152063 Jul 1985 GB
2238660 Jun 1991 GB
2243381 Oct 1991 GB
2256023 Nov 1992 GB
54-65528 May 1979 JP
57-119056 Jul 1982 JP
59-186336 Oct 1984 JP
3-169967 Jul 1991 JP
4-106264 Apr 1992 JP
5-148984 Jun 1993 JP
6-56310 May 1994 JP
6-146553 May 1994 JP
6-200611 Jul 1994 JP
6-320510 Nov 1994 JP
7-76923 Mar 1995 JP
7-180333 Jul 1995 JP
7-300979 Nov 1995 JP
7-310426 Nov 1995 JP
8-109734 Apr 1996 JP
8-270193 Oct 1996 JP
11 291203 Oct 1999 JP
7601773 Feb 1976 NE
157871 Feb 1988 NO
305614 Jun 1999 NO
7114900-9 Sep 1974 SE
450411 Jun 1987 SE
450141 Sep 1987 SE
501014 Oct 1994 SE
501914 Jun 1995 SE
502994 Apr 1996 SE
506254 Nov 1997 SE
509059 Nov 1998 SE
509060 Nov 1998 SE
512313 Feb 2000 SE
5122990 Feb 2000 SE
0000200-6 Aug 2001 SE
363795 Dec 1972 SU
8402155 Jun 1984 WO
8703839 Jul 1987 WO
8908539 Sep 1989 WO
9217657 Oct 1992 WO
9313280 Jul 1993 WO
9319910 Oct 1993 WO
9401628 Jan 1994 WO
9426999 Nov 1994 WO
9506176 Mar 1995 WO
9627719 Sep 1996 WO
9627721 Sep 1996 WO
9630177 Oct 1996 WO
9747834 Dec 1997 WO
9824495 Jun 1998 WO
9824994 Jun 1998 WO
9838401 Sep 1998 WO
9940273 Aug 1999 WO
9966151 Dec 1999 WO
9966152 Dec 1999 WO
0006854 Feb 2000 WO
0066856 Nov 2000 WO
0166876 Sep 2001 WO
Related Publications (1)
Number Date Country
20040126550 A1 Jul 2004 US