This invention relates to moveably securing reflective panel assemblies of a space-based power generation system.
As known, many space-based power generation systems utilize reflectors to direct solar energy. One type of power generation system uses reflectors to direct solar energy toward an arrangement of photovoltaic cells, which then produce power. Various types of devices utilize the produced power.
Some devices, such as radar and lidar devices, require relatively high levels of power. Space-based power generation systems responsible for powering these devices often incorporate concentrated photovoltaic cells to produce the higher levels of power. Managing thermal energy in the power generation systems that produce the higher levels of power is often difficult, especially in power generation systems having concentration ratios higher than 20 (i.e., 20 times the sun). The structures incorporated for thermal energy management also disadvantageously increase the mass and complexity of these power generation systems.
An example space-based power generation panel arrangement includes a first reflective panel and at least one heat pipe configured to communicate thermal energy to the first reflective panel and a second reflective panel. The heat pipe is configured to hinge the first reflective panel to the second reflective panel.
An example space power generation assembly includes a plurality of reflective panels and a plate. A plurality of conduits are configured to communicate thermal energy between the plurality of reflective panels and the plate. Some of the plurality of conduits hingeably connect the plurality of reflective panels.
An example method of moveably securing reflective panel assemblies includes communicating thermal energy to a plurality of reflective panels using a conduit and hingeably connecting the plurality of reflective panels using the conduit.
Referring to
The example reflective layer 14 includes a plurality of concentrating elements 36 that provide the panel assembly 10 with a multifaceted reflecting surface. The concentrating elements 36 project about 0.3-0.5 mm from the surrounding surface of the generally planar reflective layer 14. The example concentrating elements 36 have a low areal density.
In this example, the plurality of the heat pipes 22 are mounted to the lower surface 30 of the base portion 18 of the panel assembly 10. The heat pipes 22, a type of conduit, are configured to carry thermal energy to panel assembly 10. The panel assembly 10 facilitates radiating the thermal energy carried by the fluid within the heat pipes 22 to the space environment. In this example, the panel assembly 10 is referred to as a Radflector™ because of the combination of reflecting and radiating properties.
Referring to
In this example, the power generation systems 38 and 46 include multiple panel assemblies 10, which form a solar concentration subsystem for the power generation systems 38 and 46. The power generation systems 38 and 46 also each include multiple reflector sheets 50. Notably, the reflector sheets 50 lack the heat pipes 22 and the base portion 18 of the panel assemblies 10.
The panel assemblies 10 and reflector sheets 50 are circumferentially arranged about a cold plate 54. An array of photovoltaic cells 58 is disposed on the cold plate 54. The reflector sheet 50 and the reflective layer 14 of the panel assemblies 10 direct solar energy to a secondary reflector 62 above the cold plate 54. The secondary reflector 62 is generally planar, but has a slight hyperbolic reflecting surface that directs the solar energy downward toward the arrangement of photovoltaic cells 58, which then utilize the solar energy to generate power. The solar energy and power generation results in high levels of thermal energy near the cold plate 54. The array of photovoltaic cells 58 comprises concentrated photovoltaic cells in this example.
The power generation systems 38 and 46 transmit the generated power to the spacecraft bus device 42. An electric propulsion system 66 propels the on-orbit spacecraft 42 using the generated power from the power generation systems 38 and 46.
Referring to
Referring to
In the deployed position 74, the concentrating elements 36 of the panel assemblies 10 and the concentrating elements 36 of the reflector sheets 50 are arranged in concentric rings, which facilitate reflecting solar energy toward the secondary reflector 62. The panel assemblies 10 and the reflector sheets 50 together provide a Fresnel reflector.
As can be appreciated from the Figures, the reflective layer 14 of the panel assemblies 10 are aligned in the same plane when the power generation system 38 is in the deployed position 74. The plane established by the reflective layer 14 of the panel assemblies 10 is aligned with the secondary reflector 62 in this example. In this example, an upper surface of the reflector sheet 50 is about 1.7 m by 1.7 m, which is about the same size as the reflective layer 14 of the panel assemblies 10. The example reflector sheets 50 include a reflective portion comprising an aluminized Kapton® polyimide film.
Referring to
Referring to
The reflective layer 14 of the panel assemblies 10 is about 0.076 mm thick aluminized Kapton® polyimide film, for example, and the base portion 18 is a graphite-epoxy panel that is about 0.254 mm thick.
Referring to
A person having ordinary skill in this art, and having the benefit of this disclosure, would understand how to move the panel assemblies 10 and the reflector sheets 50 from the stowed position 70 to the deployed position 74 utilizing the mechanical hinges 82 and the flexible hose portion 86 of the heat pipes 22. Motors (not shown) are used in one example to move the panel assemblies 10 and the reflector sheets 50, as well as the secondary reflector 62, from the stowed position 70 to the deployed position 74.
The example heat pipes 22 are thermally coupled with the cold plate 54 to facilitate thermal energy transfer between the cold plate 54, the heat pipes 22, and the panel assemblies 10. A thermal spread 98 separates the heat pipes 22 thermally coupled within the cold plate 54 from other groups of the heat pipes 22 that are in a different radial position relative to the cold plate 54. The heat pipes 22 form part of the thermal energy rejection subsystem of the power generation systems 38 and 46 (
In this example, the diameter of the heat pipes 22 are about 13.7 mm, and the wall thickness is about 0.0254 cm. The heat pipes 22 include a portion embedded within the cold plate 54 that is about 0.25 m-0.85 m long. The flexible hose portion 86 of the heat pipes 22 is about 0.2 m long, and the portions of the heat pipes 22 secured to the panel assemblies 10 is about 1.7 m long.
Referring to
Features of the disclosed examples include utilizing a common support structure, motors, and hinging features to deploy a solar concentration subsystem and a thermal energy rejection subsystem. Another feature is an optical configuration that utilizes low area density Fresnel optical elements combined with a secondary concentrator to concentrate solar flux on a photovoltaic array. Yet another feature includes a multifaceted primary reflecting surface and a hyperbolic secondary reflecting surface that together provide a highly compact, defocused image providing increased tolerance for pointing and tracking errors. Yet another feature includes a power generation system that produces 130 W/kg of power, that can be scaled from 20-80 kWe.
Although a preferred embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2124146 | Miller | Jul 1938 | A |
4282394 | Lackey et al. | Aug 1981 | A |
4784700 | Stern et al. | Nov 1988 | A |
4815525 | Readman | Mar 1989 | A |
4830097 | Tanzer | May 1989 | A |
4876854 | Owens | Oct 1989 | A |
4896507 | Hosford | Jan 1990 | A |
4947825 | Moriarty | Aug 1990 | A |
5027892 | Bannon et al. | Jul 1991 | A |
5520747 | Marks | May 1996 | A |
5727619 | Yao et al. | Mar 1998 | A |
5785280 | Baghdasarian | Jul 1998 | A |
6010096 | Baghdasarian | Jan 2000 | A |
6020554 | Kaminar et al. | Feb 2000 | A |
6075200 | O'Neill | Jun 2000 | A |
6111190 | O'Neill | Aug 2000 | A |
6118067 | Lashley et al. | Sep 2000 | A |
6609683 | Bauer et al. | Aug 2003 | B2 |
6962421 | Yang | Nov 2005 | B2 |
7015873 | Talley | Mar 2006 | B1 |
20060171113 | Wu | Aug 2006 | A1 |
20080041440 | O'Connell et al. | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20110023484 A1 | Feb 2011 | US |