The present invention is generally directed to a panel assembly for mounting to a façade of a building and more particularly to a panel assembly which permits mounting of panels having no perimeter frame to facilitate energy transmission efficiency, and the reduction of environmentally undesirable building materials. The panels have openings therein which permit the insertion of fittings for supporting the panels against weather related stresses. The fittings may be hollow and are positioned on the panels in a manner which provides desired support and resistance against wind and seismic related stresses.
Modular construction of the façade of a building has typically employed panels which are mounted through perimeter frames to adjacent floors of a building. The panels typically are supported by the frame which extends along the entire perimeter of the panel. The frames are often constructed of solid supporting materials such as concrete, metal, rigid plastics and the like and therefore tend to be environmentally undesirable.
The perimeter frames have a track into which is mounted the edge portion of the panel which overlaps the panel along the edge portion. As a consequence, the edge portion represents a region of the modular construction where the solid supporting material and the panel material appear in the same general area of the façade.
The use of perimeter frames for the panels provides good support for panels as well as good alignment between adjacent panels sufficient to withstand weather-related stress (e.g. wind, rain, etc) but suffers from a number of disadvantages. A first disadvantage is the use of environmentally undesirable materials for the construction of the frame. A second disadvantage is that the perimeter frames typically require extensive use of protective coatings to minimize wear due to the extended exposure to the weather. The protective coatings are often made from environmentally undesirable materials.
A third disadvantage is the reduction in available surface area of the panels due to the covering of the edge portion thereof by the perimeter frame. As a result, the area of view throughout the panel from the inside of the building is reduced. In addition, the available surface area for light transmission through the panel to provide radiant heat and light into the building is likewise reduced.
A fourth disadvantage stems from the recent use of panels to facilitate the use of auxiliary systems (e.g. solar energy systems) to enable the façade of the building to be useful in providing a new or added function to the building. For example, solar panels have been associated with the panel construction to enable use of solar energy for supplemental heating, lighting, etc. To date, the incorporation of solar technology to panel constructions has been time-consuming and expensive, due in part to the use of perimeter frames.
There have also been employed frameless panels which typically are connected to the façade of a building at the respective corners of the panels. Such panels provide better visibility and light transmission because of the absence of perimeter frames.
The present invention is an improvement on the use of frameless panels wherein the panels are supported by fittings positioned away from the corners of the panels in which the fittings are positioned within openings in the panels. The fittings may be hollow which provides a pathway from the façade to the exterior of the panels that can be used for a variety of constructive purposes to facilitate energy transmission, ventilation, and the use of additions to the panels, including solar energy devices.
The present invention is directed to a panel assembly for mounting to the façade of a building in which the use of perimeter frames is eliminated. In one aspect of the invention there is provided a panel assembly for mounting to the façade of a building comprising:
The following drawings in which like reference characters indicate like parts are illustrative of embodiments of the invention and are not intended to limit the invention as encompassed by the claims forming part of the application.
The present invention is directed to a panel assembly for the façade of a building in which the panel members are secured to the façade in the absence of a perimeter frame.
As used herein, the term “perimeter frame” refers to a structure having a periphery in the shape of a desired panel member (e.g. rectangle, polygon, etc). The perimeter frame provides support for the panel member along the periphery thereof. The frame is attached to the façade of a building.
The term “frameless panel” refers to a panel member which is attached to the façade of a building which does not rely on a frame (as defined above) for such attachment. A frameless panel as used herein may be placed in sealed relationship to adjacent panel members through the use of a sealing component which is not a perimeter frame.
The term “façade” of a building shall refer to any portion of a building to which a panel assembly may be attached. Typically, the relevant portion of a building for attaching of a single panel assembly will be the floor of one level of the building and the floor of the next adjacent level of the building.
The term “in an area proximate to the longitudinal axis” refers to an area of the panel member (for placement of the opening and the fitting which enters the opening) which extends to either side of the longitudinal axis a distance of up to 10% of the width of the panel member, preferably no more than 5% of the width and most preferably about the longitudinal axis (i.e. a distance of no more than 1% of the width of the panel member)
The term “building” shall refer to any structure whether residential or commercial to which at least one panel assembly may be attached. A building will be comprised of at least one floor, typically multiple floors.
Referring to the drawings and first to
The panel members may be connected to a façade A shown in
The panel assembly 10 further includes a fitting 14 which directly connects the panel member 12 to the other components of the panel assembly 10 as hereinafter described to secure the panel member 12 to the façade A. The fitting 14 is operatively connected to the panel member 12 through a panel opening 16 which typically matches the shape of the fitting 14. As shown, for example, in
The fitting 14 on the interior side of the panel member 12 is operatively connected to a connection assembly 24 comprised of a stanchion 26 having an upper end 28 and a lower end 30. The upper end 28 of the stanchion 26 is operatively engaged to an upper fitting 14 through a stanchion connector 32b while the lower end 30 of stanchion 26 is operatively engaged to a lower fitting through a stanchion connector 32a. Thus, a single stanchion 26 is operatively engaged to an upper and lower panel member 12 as shown best in
The connection assembly 24 of the upper and lower panel members 12 is secured to the façade A through an anchoring assembly 34 which is described herewith regard to reference
The adjustable securing assembly 40 comprises a track 42 for receiving one or more track engaging devices 44 such as bolt assemblies which can be moved laterally within the track 42 to a variety of positions and secured therein to provide precise alignment of the anchoring assembly 34 with respect to stanchion 26.
The adjustable securing assembly 40 also provides adjustment perpendicular to the direction of the track 42 by one or more slots 46 in the second bracket portion 38 in which movement of the track engaging devices 44 within the slots 46 provides adjustment of the position of the stanchion toward or away from the façade A.
Attachment of the stanchion 26 to the second bracket portion 38 is made through any suitable connecting device such as an L-shaped connector 48 as shown in
The first bracket portion 36 as best shown in
The first bracket portion 36 includes a U-shaped bracket member 82 adapted to fit around a portion of the stanchion 26. The bracket member has a pair of slots 84 in opposed legs 86 (only one pair of legs and one pair of slots are shown). A pair of rods 88 is provided which are of sufficient size to be insertable into each of the pair of slots 84.
When making use of the U-shaped bracket to secure the stanchion to anchoring assembly 34, the stanchion 26 is provided with a pair of spaced apart sleeves 90 adapted to receive the rods 88 in advance of the rods 88 entering the second pair of slots 84. When the rods 88 are inserted into the respective pairs of slots 84 and sleeves 90, the stanchion 26 is secured in place within the anchoring assembly 34.
Vertical adjustments to the stanchion can be made through the second bracket portion 38 of the anchoring assembly 34. Referring to
Adjacent panels are secured to each other through a dual panel track system 60 in which panels are operatively secured to each other without the use of a perimeter frame. The dual panel track system also provides the ability to adjust the position of the panels to accommodate, for example, curvilinear façades as shown in
The track 62 is adapted to receive a track engaging device 64 comprised of a plate 66 insertable into the track 62 and slidable therein and a device 68 which can secure the plate 66 in the track 62 in a fixed position between adjacent panel members. The device 68 is adjustable and bears against the façade A and can be used to adjust the panel position so that the panels can accommodate a curvilinear design shown in
The dual panel track system 60, and particularly the track 62, is secured in place between upper and lower panel members through a closure device 70 which is engaged to the panel member positioned above the track 62 to provide operable engagement of the dual panel track system to the panel members without the need for a perimeter frame.
The closure device 70 shown specifically in
In an optional feature of the present invention, the fitting 14, if made at least partially hollow can provide access to the exterior surface 22 of the panel member 12 to enable such materials as electrical assemblies 75 to be passed therethrough and thereby provide the means of providing electrical energy to various additions to the panel members.
In addition, the hollow fitting can assist ventilation by providing a pathway for the flow of air into or out of the building. Still further, the hollow fitting can provide a pathway for the placement of various equipment such as hydraulic lines, etc.
As shown best in
In preferred aspects of the present invention, two fittings 14 engage each panel member in an area proximate to the longitudinal axis of the panel member as defined herein. Thus, the fittings may independently be aligned in an area within 10% of the width of the panel member from the longitudinal axis, more preferably within 5% of the width, most preferably within 1% of the width.
In addition, it is preferred to attach the upper fitting 14 of a panel member 12, a distance equivalent to between one-seventh to one-third of the length of the panel members 12 from its upper and lower edges, respectively, more preferably from one-sixth to one-quarter of the length of the panel members 12 from its upper and lower edges. The most preferred placement is one-fifth from the upper and lower edges.
The preferred panel members comprise three panels of glass separated from each other by an air space. As shown best in
A vertical seal 78 is positioned along the longitudinal abutment of adjacent panel members 12. As shown in
It will be noted that a number of features of the invention provide a panel assembly which withstands the bending forces due to wind thereby eliminating the need for a perimeter frame. The elimination of the perimeter frame also permits maximum transparency and the amount of light that may be transmitted through the panel members. The dual panel track system and the vertical seal prevent infusion of wind and rain while permitting relative panel member movement due to thermal gradients, internal floor loadings, building sway caused by wind and seismic forces. The dual panel track system stabilizes the panel members from rotation about the vertical axis thereof by transmitting uneven wind forces to the façade A.
The position of the fittings 14 as described herein and particularly the use of hollow fittings provided added benefits to the panel assembly enabling unique access between the interior to the exterior of the building.