Panel attachment and circumference adjustment systems for an orthopedic device

Information

  • Patent Grant
  • 10980657
  • Patent Number
    10,980,657
  • Date Filed
    Thursday, December 28, 2017
    6 years ago
  • Date Issued
    Tuesday, April 20, 2021
    3 years ago
  • CPC
  • Field of Search
    • CPC
    • A61F5/055
    • A61F5/05816
    • A61F5/3707
    • A61F5/012
    • A61F5/05891
    • A61F5/05883
    • A61F5/024
    • A61F5/026
    • A61F5/028
    • A61F13/12
    • A61F2007/0009
    • A61F5/00
    • A42B3/0473
    • A47C7/383
  • International Classifications
    • A61F5/02
    • Term Extension
      541
Abstract
A spinal orthosis includes posterior panels arranged with a flat spinal curvature to create a reverse three-point pressure system to the spine. The reverse three-point pressure system relieves pressure on the posterior side of the vertebrae beneficial for certain indications. Various arrangements allow for securing the posterior panel to the spinal orthosis. The spinal orthosis includes a belt member length adjustment system including belt members having end portions reducible in length and a belt panel adapted to secure to the end portion of the belt member reduced in length to form at least in part a belt circumference of the spinal orthosis.
Description
FIELD OF THE DISCLOSURE

The disclosure relates to a panel and attachment system for an orthopedic device, and more particularly to a rigid or semi-rigid panel and a system for attaching the panel to a spinal orthosis and a belt circumference system for reducing a length of belt members.


BACKGROUND

A spinal orthosis or lumbar belt is an orthopedic device designed for pain relief, protecting injured ligaments or muscles and post-surgical immobilization. A spinal orthosis is arranged to relieve pressure over the spinous processes while applying an even pressure to the paraspinal musculature to ensure comfortable and effective healing. Typical indications for lumbar supports include spinal stenosis, herniated discs, post-surgical stabilization, stable and non-displaced spinal fractures, spondylolithesis, spondylolysis, and degenerative spinal pathologies.


In a known spinal orthosis in FIGS. 1-3, such as the exemplary spinal orthosis described in U.S. Pat. No. 8,172,779, granted on May 8, 2012 and incorporated by reference, the spinal orthosis has outer and inner sides configurations 10A, 10B, with the inner side arranged to be adjacent the wearer's back. The orthosis has first and second belts 12, 14, and a compression system 16 adapted to exert pressure onto the lumbar region of a wearer's back. The compression system 16 includes tightening elements or drawstrings 18 that permit the wearer to adjust pressure over the back and a cover 20 extending over the compression system 16.


A flexible or semi-rigid back plate 22 extends over at least part of the compression system 16, and is arranged to be adjacent the back. The back plate 22 includes a posterior attachment system 24 for a rigid posterior panel 26, which includes a single hook and loop system connected at a single attachment point or flap 25 centered on the back plate 22. An anterior panel may be attached to the spinal orthosis at an anterior attachment system 29 on one of the belts.


The posterior panel provides enhanced support to satisfy the immobilization needs of the wearer. Since the immobilization needs may change over treatment, it is desirable that the posterior panel is removable if additional support is required or the support by the posterior panel is excessive such that no posterior panel is required. Posterior panels may have different shapes depending on the type and level of required support, and the size of the wearer should it change over course of treatment. In the depicted embodiment of FIG. 3, the posterior panel has lateral supports 27.


As depicted in FIG. 3, the posterior panel 26 is substantially larger than the back plate 22, and is anatomically shaped for hugging the contours of the back. The anatomically shaped panel of this example has approximately 15 degrees of lordotic curve built into the contour of the panel. This allows for the panel and the spinal orthosis to apply a three-point pressure system creating an extension moment to the spine, with two forces in the front, and one force in the center of the back.


In the exemplary prior art spinal orthosis, it has been found it is difficult to maintain rotational control of the posterior panel relative to the back plate with the known attachment system. The adjustment system does not allow for visible adjustment of the connection of the posterior panel, and it is easy to poorly adjust and ineffectively secure the posterior panel to the spinal orthosis.


Known posterior panels are ill-suited for post-operative use, particular when they are not customized for wearers. Known panels lack means to avoid incision sites on wearers that result from back operations.


SUMMARY

Under embodiments of the invention, posterior panels are arranged with a flat spinal curvature to create a reverse three-point pressure system over the prior art posterior panels that create a flexion moment to the spine. This reverse three-point pressure system is provided to relieve pressure on the posterior side of the vertebrae beneficial for certain indications such as spinal stenosis.


The embodiments are flexible in the sense that prior to placement against a wearer's back, the panel can flex in flexion or extension around the spinal area and laterally around a lateral support if provided on the panel. The panels become semi-rigid or rigid when the panel is coupled to a spinal orthosis, and placed against the lumbar region of the wearer. The compression system draws the panel firmly against the back so it conforms to the wearer's anatomy, and the panel becomes semi-rigid or rigid against the wearer's back due to the pressure exerted by the compression system and due to a cylindrical effect that occurs because of the panel being urged to conform to the anatomy of the wearer.


In a variation of the embodiment, an opening is provided around the spinal area of the posterior panels to ensure there is no risk of the panel coming into contact with a wearer's incision site or otherwise sensitive area along the spinal area.


In another variation of the embodiment, the posterior panel is provided with lateral supports with peripheral cut-out sections between the lateral supports and a main body portion. The cut-outs have the benefit of creating flexibility for the panel during compression and rigidifying the panel against the wearer to accommodate different body shapes.


An attachment system may be on a cover of a back plate that permits more user-friendly securement and rotational control of the posterior panel on the spinal orthosis. According to an embodiment of the attachment system, the cover of the back panel includes a pair of vertical slits and corresponding openings that allow for opposed straps secured to the posterior panel to couple therewith. This arrangement permits full visibility of the straps as they secure to the cover, and the provision of two attachment points inhibits rotation of the posterior panel relative to the back panel and improves the strength of the connection.


The attachment system may be similarly employed for attaching an anterior panel to a spinal orthosis by providing the attachment system along one of the belt members, and aligning the same so it centrally faces the abdomen of the wearer.


In another embodiment, the orthopedic device includes a belt circumference adjustment system permitting a reduction in the circumference of the spinal orthosis. The spinal orthosis includes a back unit, and first and second belt members connected to the back panel and having first and second end portions. Each of the first and second belt members is arranged for being reduced in length at the first and second end portions. The first and second belt members are formed a belt having a circumference with the back unit. Each of the belt members may include a belt panel having opposed sections arranged for coupling to one of the first and second end portions of at least one of the first and second belt members, and a leading section arranged for coupling one of the first and second belt members.


The back unit may include first and second tabs each defining an elongate slot through which the first and second end portions extend. The leading section of the at least one belt panel secures to a surface of a respective one of the belt members onto which the at least one panel is secured. The at least one belt panel may be extended through the elongate slot while carried by a respective one of the belt members.


In another variation, the belt panel may be secured onto a first end portion of the first belt member, and the second end portion of the first belt member securing to the back unit.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood regarding the following description, appended claims, and accompanying drawings.



FIG. 1 shows an outer side of a prior art spinal orthosis.



FIG. 2 shows an inner side of the prior art spinal orthosis of FIG. 1.



FIG. 3 is a perspective view of the prior art spinal orthosis of FIG. 1 having a posterior panel and placed on a wearer.



FIG. 4 shows an embodiment of a posterior panel.



FIG. 5 shows another posterior panel embodiment.



FIG. 6 shows a posterior panel embodiment having lateral supports.



FIG. 7 illustrates outer and inner sides of a strap for an attachment system.



FIG. 8 shows the posterior panel of FIG. 6 having the straps in FIG. 7.



FIG. 9 shows a back plate having a cover including part of an attachment system.



FIG. 10 shows the posterior panel of FIG. 5 including the straps in FIG. 7.



FIG. 11 is a schematic view showing a step of attaching the posterior panel to the back plate.



FIG. 12 is another schematic view showing a step of attaching the posterior panel to the back plate.



FIG. 13 is yet another schematic view showing a step of attaching the posterior panel to the back plate.



FIG. 14 is a schematic view showing the visibility of the attachment of the strap to the cover.



FIG. 15 is a schematic view showing the attachment of the back plate to the posterior panel with rotational control.



FIG. 16 is a schematic view showing another embodiment of a spinal orthosis.



FIG. 17 is a detailed schematic view showing the spinal orthosis of FIG. 16.



FIG. 18 is a detailed schematic view showing attachment of a belt segment of the spinal orthosis of FIG. 16.



FIG. 19 is a schematic view showing another embodiment of a spinal orthosis.



FIG. 20 is a perspective view of size adjustment of a belt segment of the spinal orthosis of FIG. 19.



FIG. 21 is a plan view showing the spinal orthosis of FIG. 19.





The drawing figures are not drawn to scale, but instead are drawn to provide a better understanding of the components, and are not intended to be limiting in scope, but rather to provide exemplary illustrations.


DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS
A. Overview

A better understanding of different embodiments of the disclosure may be had from the following description read with the accompanying drawings in which like reference characters refer to like elements.


While the disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments are in the drawings and are described below. It should be understood, however, there is no intention to limit the disclosure to the specific embodiments disclosed, but on the contrary, the intention covers all modifications, alternative constructions, combinations, and equivalents falling within the spirit and scope of the disclosure.


It will be understood that, unless a term is expressly defined in this disclosure to possess a described meaning, there is no intent to limit the meaning of such term, either expressly or indirectly, beyond its plain or ordinary meaning.


The panel embodiments described are configured for use as posterior panels for placement against the back of a wearer. It should be remembered, however, that the same concepts and methods described may be similarly used for anterior panels adapted for a spinal orthosis.


B. Embodiments of the Panel and Attachment System

In referring to FIGS. 4-6, different posterior panels may be used with a spinal orthosis. Each of these panels is preferably flexible in the sense that prior to placement against a wearer's back, the panel can flex in flexion or extension around the spinal area and laterally around a lateral support if provided on the panel. The panels become semi-rigid or rigid when the panel is coupled to a spinal orthosis, and placed against the lumbar region of the wearer. The compression system draws the panel firmly against the back so it conforms to the wearer's anatomy, and the panel become semi-rigid or rigid against the wearer's back due to the pressure exerted by the compression system and due to a cylindrical effect that occurs because of the panel being urged to conform to the anatomy of the wearer. Alternatively, the panel may be wholly rigid or fully flexible before, during and after use with the compression system.



FIG. 4 shows a flat flexible non-lateral posterior panel 28, having at least a pair of attachment strips 30. FIG. 5 shows a flat-flexible lateral posterior panel 32 having attachment strips and lateral supports. As with the panels described, each panel may include a padded cover comprising foam, textile or a combination. An example of a cover 72 is in part in reference to the schematic views of FIGS. 11-14.



FIG. 6 illustrates a posterior panel 36 having a top portion 38 tapering from a main body portion 52, a bottom portion 40 having a greater width than the top portion, and lateral supports 42 extending laterally from the main body portion 52. The panel 36 defines notches 44 including upper and lower portions and located between the lateral supports 42 and the main body portion 52. The notches 44 facilitate bending of the panel about the torso of the wearer without compromising eventual rigidity of the panel 36 when used in combination with the compression system.


The panel 36 defines an elongate central opening 46 provided around the spinal area of the panel 36 to ensure there is no risk of the panel coming into contact with a wearer's incision site or otherwise sensitive area along the spinal area. The panel also defines a plurality of apertures in part to improve ventilation of the panel when worn by the wearer. The apertures may also be improved bending of the panel about the anatomy of the wearer. The apertures are arranged in combination with the lateral supports in an arcuate configuration that allows the panel to bend in an anatomically friendly manner. The panel 36 also defines at least two vertically arranged slits 48, 50 arranged for receiving a strap.


The strap may be configured as shown in the embodiment of FIG. 7. In this embodiment, the strap 60 has a hook surface 68 and a hook-receivable surface 70. The strap 60 defines a base portion 62 have a greater width than the slits 48, 50 to prevent the base portion 62 from passing through the slits. The strap further defines an elongate arm 66, which is extended through a passageway 64 formed between the base portion 62 and the arm 66.


As depicted in FIG. 8, the arm 66 is adapted to extend through a first slit, through the passageway 64, and a second slit to secure the strap to the panel, with the hook surface 68 securable to the hook-receivable surface 70.


In reference to FIG. 9, the cover of the back plate 22 includes the attachment system 24. The attachment system 24 includes a hook receivable central segment including pair of laterally extending slits 54 for receiving a single prior art strap used to attach the posterior panel to the spinal orthosis. The attachment system 24 also includes a pair of vertically extending slits 56 and a laterally extending hook-receivable segments 74 spaced apart from one another by the central segment and having openings 76 which permit a strap to extend to the slits 56. The laterally extending segments 74 are spaced apart to accommodate panel embodiments having an elongate vertical opening as in the embodiment of FIG. 6.


Turning to FIG. 10, the panel embodiment of FIG. 5 includes the straps 60 of FIG. 7 extending through slits 58, 60.



FIGS. 11-14 depict a method for attaching the posterior panel of FIG. 10 including a cover 72 and the straps 60 to the attachment system 24 of the back plate 22 of FIG. 9. According to the first step in FIG. 11, the arm 66 of the strap is threaded through the opening 57 of the laterally extending segment 74. Next, FIG. 12 depicts the arm 66 as pulled through the vertically extending slit 56. The arm 66 is tensioned in view of the base 62 serving as an anchor and the hook surface of the arm 66 is tightly secured against the laterally extending segment 74 has a hook-receivable surface to engage the hook and hook-receivable material together.



FIG. 14 shows the hook surface of the base 62 as likewise extending along the laterally extending surface 74 and likewise preventing slippage of the strap 60 from the panel. In view of the laterally extending nature of the arm, the clinician securing the panel to the back plate can view how the arm is secured to the back plate that assures the strap is properly secured and aligned. In view of the straps being on the sides, an easier work environment is provided for the clinician when the spinal orthosis is assembled for a wearer. The panel and back plate are rotated 180 degrees and the strap on the opposite side is secured as in FIGS. 11-14.



FIG. 15 depicts how the two straps securing the posterior panel 32 to the back plate 22 prevent rotation of the panel relative to the plate. Any movement of the posterior panel is mitigated or eliminated in view of the attachment system. The hook and loop connection only works in shear since the strap base creates an anchor point to retain the strap in a lateral position and has strength to retain the strap to the posterior panel.


C. Embodiments of the Belt Member Length Adjustment System

Turning to the embodiment of FIGS. 16-18, the spinal orthosis 110 has a belt member length adjustment system enable a reduction in circumference of a belt circumference of the spinal orthosis. The belt circumference includes first and second belt segments 112, 114 arranged to be connected to one another on the anterior of the wearer, and are connected on the posterior side by a back unit, preferably including a compression system 116, to form a belt circumference.


Elongate tensioning elements 118 extend from first and second sides of the spinal orthosis, coupling to the compression system 116 and secured over the anterior of the wearer on the first and second belt segments 112, 114. A handle 128 is secured to an end of the tensioning elements 118 and is securable to the first and second belt segments. A cover 120 is provided to extend over the compression system 116.


Each of the belt segments 112, 114 is reducible in length preferably at its posterior end, and the posterior end is securable to the compression system 116 after the belt segment 112, 114 is reduced in length.


The reduced end of the belt segment 112, 114 is attached to the compression system 116 by looping a segment 122 of the belt segment 112, 114 through a slot 132 formed on a plate 134 of the compression system 116. The plate 134 is modified over the plate in U.S. Pat. No. 8,172,779, and carries a plurality of reduction elements 136, such as pulleys or posts, and at least one cable 138. The belt member 112, 114 may be reduced in length along a plurality of locations 140. The locations 140 may be identified on the belt member 112, 114 by indicia defining different lengths.


The segment 122 attaches to an outer surface of the belt member 112, 114 by a clip or belt panel having two opposed clamping sections 126, 130 clamped onto opposed sides of the segment 122, and a leading section 124 extending from the clamping sections 126, 130 and removably securing to the outer surface of the belt member 112, 114. The clamping sections 126, 130 preferably engage the segment 122 by fasteners, such as by a hook and loop wherein the clamping sections 126, 130 include hook material and the outer and an inner surface of the belt segment 112, 114 includes a loop material that is hook receivable. The leading section 128 likewise may include hook material and secure to the hook receivable surface of the belt members 112, 114.


The segment 122 may be looped through the slot 132 in either orientation, so the leading section 128 secures over the outer or inner surfaces of the belt member 112, 114.



FIGS. 19-21 illustrate another embodiment including a belt member length adjustment system wherein the spinal orthosis includes belt panels 150, 152 removably securable to the belt members 112, 114. In this embodiment, rather than reduce the length of the belt member 112, 114 at the posterior end, the belt member is reduced in length at the anterior end 164.


The belt panels 150, 152 have clamping sections 156, 160 secured to opposed sides of the belt members 112, 114 and terminate at a stitched or termination point 154 leaving a forward end 158 of the front panels 150, 152 to secure on the opposing belt panel carried by an opposing belt member. The clamping sections 156, 160 may include a fastener material 162 secured to the surface of the belt members 112, 114. A segment 166 of the belt member 112, 114 may be reduced at the anterior end 164 and removed by cutting or other appropriate means. The front panels 150, 152 may include padding or may be reinforced with rigid, semi-rigid or flexible shells.


While the foregoing embodiments have been described and shown, alternatives and modifications of these embodiments, such as those suggested by others may be made to fall within the scope of the invention. While the orthosis has been described in combination with a spinal orthosis, it will be understood that the principles described may be extended to other types of orthopedic and prosthetic devices.

Claims
  • 1. A spinal orthosis arranged for securing at least about a spinal area of a wearer, the spinal orthosis including first and second belt members, and a compression system connecting to the first and second belt members, a cover extends over at least a part of the compression system, the spinal orthosis comprising: a posterior panel defining first and second openings;first and second straps engaging the posterior panel at first and second openings, the first and second straps extending in opposed first and second lateral directions, respectively, from the first and second openings, each of said first and second straps including a hook surface on an opposite from the posterior panel;wherein the hook surface of first and second straps are arranged to engage a hook-receivable surface of the cover and to the posterior panel.
  • 2. The spinal orthosis of claim 1, wherein the posterior panel is flexible prior to placement against a back of the wearer, the posterior panel being flexible in flexion or extension around the spinal area of the wearer.
  • 3. The spinal orthosis of claim 2, wherein the posterior panel is arranged to become semi-rigid or rigid when the posterior panel is placed against the spinal area of the wearer.
  • 4. The spinal orthosis of claim 1, wherein the cover defines a pair of vertically extending slits through which the first and second straps extend, the first and second openings of the posterior panel including two vertically extending openings, each of the first and second straps connecting to a respective one of the vertically extending slits.
  • 5. The spinal orthosis of claim 4, wherein each of the first and second straps has first and second ends, the first end of each of the first and second straps securing to the cover, and the second end of each of the first and second straps retained by the posterior panel.
  • 6. The spinal orthosis of claim 1, further comprising a back plate securing to the compression system, the cover extending over the back plate.
  • 7. The spinal orthosis of claim 1, wherein the compression system is arranged to draw the posterior panel firmly against the spinal area of the wearer and to conform to anatomy of the wearer, the posterior panel configured to become semi-rigid or rigid against the wearer due to pressure exerted by the compression system.
  • 8. The spinal orthosis of claim 1, wherein the posterior panel defines an elongate opening located generally centrally at a width of the posterior panel, and extends longitudinally along a height of the posterior panel.
  • 9. The spinal orthosis of claim 1, wherein the posterior panel defines lateral supports extending from opposed sides of the posterior panel in a width direction of the posterior panel, the posterior panel further including cut-outs between a central portion of the posterior panel and the lateral supports.
  • 10. The spinal orthosis of claim 1, wherein the posterior panel is arranged with a flat spinal curvature arranged to create a reverse three-point pressure system over the spinal area.
  • 11. A spinal orthosis arranged for securing at least about a spinal area of a wearer, the spinal orthosis including first and second belt members, and a compression system connecting to the first and second belt members, the spinal orthosis comprising: a panel defining first and second openings and the panel being rigid or semi-rigid;first and second straps engaging the panel at first and second openings, the first and second straps extending in opposed first and second lateral directions, respectively, from the first and second openings, each of said first and second straps including a hook surface on an opposite from the panel;wherein the hook surface of first and second straps are arranged to connect to the compression system or the first and second belt members, and engage a surface of the panel.
  • 12. The spinal orthosis of claim 11, further comprising a cover extending over the panel and having at least one aperture corresponding to the at least one opening of the panel.
US Referenced Citations (628)
Number Name Date Kind
7916 Knapp Jan 1851 A
61487 Vollschwitz Jan 1867 A
181948 Kleinschuster Sep 1876 A
232420 Smith Sep 1880 A
321145 Spencer Jun 1885 A
321146 Spencer Jun 1885 A
328638 Battershall Oct 1885 A
368699 Zervas Aug 1887 A
386642 Mann Jul 1888 A
507172 Shelden Oct 1893 A
571749 Colton Nov 1896 A
596849 Combier Jan 1898 A
601446 Mestler Mar 1898 A
616196 Medbury Dec 1898 A
629900 Fosburgh Aug 1899 A
639072 Lyons Dec 1899 A
664250 Fitzpatrick Dec 1900 A
709055 Sheldon Sep 1902 A
714124 Adams Nov 1902 A
746563 McMahon Dec 1903 A
772926 Colton Oct 1904 A
787894 Colton Apr 1905 A
888490 Haas May 1908 A
894066 Scapra Jul 1908 A
980457 Toles Jan 1911 A
1124596 Dalpe Jan 1915 A
1316915 Meyer et al. Sep 1919 A
1393188 Whiteman Oct 1921 A
1463579 Funck Jul 1923 A
1469661 Migita Oct 1923 A
1481903 Hart Jan 1924 A
1530713 Clark Mar 1925 A
1558661 Yeganian Oct 1925 A
1607032 Whitley Nov 1926 A
1755641 Foulke Apr 1930 A
1948785 Dondelinger Feb 1934 A
1981157 Walter Nov 1934 A
2036484 Le May Apr 1936 A
2100964 Kendrick Nov 1937 A
2117309 Fritsch May 1938 A
2219475 Flaherty Oct 1940 A
2409381 Pease, Jr. Oct 1946 A
2543370 Kludt et al. Feb 1951 A
2554337 Lampert May 1951 A
2630801 Mest et al. Mar 1953 A
2696011 Galdik Dec 1954 A
2749550 Pease Jun 1956 A
2775767 Gould Jan 1957 A
2793368 Nouel May 1957 A
2808050 Ward Oct 1957 A
2815021 Freeman Dec 1957 A
2828737 Hale Apr 1958 A
2904040 Hale Sep 1959 A
2906260 Myers Sep 1959 A
2906261 Craig Sep 1959 A
3095875 Davidson et al. Jul 1963 A
3096760 Nelkin Jul 1963 A
3128514 Parker et al. Apr 1964 A
3274996 Jewett Sep 1966 A
3282264 Connelly Nov 1966 A
3351053 Stuttle Nov 1967 A
3371351 Allain Mar 1968 A
3434469 Swift Mar 1969 A
3480012 Smithers et al. Nov 1969 A
3509875 Richter May 1970 A
3548817 Mittasch Dec 1970 A
3563431 Pletz Feb 1971 A
3570480 Stubbs Mar 1971 A
3578773 Schultz May 1971 A
3600717 McKeehan Aug 1971 A
3601819 Herrmann Aug 1971 A
3603316 Lehman Sep 1971 A
3762421 Sax, Sr. Oct 1973 A
3771513 Velazquez Nov 1973 A
3793749 Gertsch et al. Feb 1974 A
3808644 Schoch May 1974 A
3812850 Reiman May 1974 A
3816211 Haigh Jun 1974 A
3834048 Maurer Sep 1974 A
3889664 Heuser et al. Jun 1975 A
3902503 Gaylord, Jr. Sep 1975 A
3920008 Lehman Nov 1975 A
3926182 Stabholz Dec 1975 A
3927665 Wax Dec 1975 A
3945376 Kuehnegger Mar 1976 A
4042433 Hardy et al. Aug 1977 A
4055168 Miller et al. Oct 1977 A
4071387 Schlaepfer Jan 1978 A
4099524 Cueman et al. Jul 1978 A
4114788 Zufich Sep 1978 A
4162672 Yazaki Jul 1979 A
4173973 Hendricks Nov 1979 A
4175553 Rosenberg Nov 1979 A
4182338 Stanulis Jan 1980 A
4230101 Gold Oct 1980 A
4261081 Lott Apr 1981 A
4285336 Debser et al. Aug 1981 A
4308861 Kelly Jan 1982 A
4322092 Feucht et al. Mar 1982 A
4383523 Schurman May 1983 A
4392489 Wagner, Sr. Jul 1983 A
4433456 Baggio Feb 1984 A
RE31564 Hendricks Apr 1984 E
4475543 Brooks et al. Oct 1984 A
4479495 Isaacson Oct 1984 A
4494536 Latenser Jan 1985 A
4502471 Owens Mar 1985 A
4508110 Modglin Apr 1985 A
4531515 Rolfes Jul 1985 A
4555830 Petrini et al. Dec 1985 A
4559933 Batard et al. Dec 1985 A
4569336 Wheeler Feb 1986 A
4574500 Aldinio et al. Mar 1986 A
4574789 Forster Mar 1986 A
4574790 Wellershaus Mar 1986 A
4590939 Sakowski May 1986 A
4608971 Borschneck Sep 1986 A
4616524 Bidoia Oct 1986 A
4619657 Keates et al. Oct 1986 A
4628913 Lerman Dec 1986 A
4631839 Bonetti et al. Dec 1986 A
4631840 Gamm Dec 1986 A
4635626 Lerman Jan 1987 A
4640269 Goins Feb 1987 A
4648390 Friddle Mar 1987 A
4649574 Michels Mar 1987 A
4654985 Chalmers Apr 1987 A
4655201 Pirmantgen Apr 1987 A
4658807 Swain Apr 1987 A
4660302 Arieh et al. Apr 1987 A
4677699 Barabe Jul 1987 A
4677969 Calabrese Jul 1987 A
4680878 Pozzobon et al. Jul 1987 A
4691696 Farfan De Los Godos Sep 1987 A
4696291 Tyo Sep 1987 A
4697583 Mason et al. Oct 1987 A
4697592 Maddux et al. Oct 1987 A
4716898 Chauve et al. Jan 1988 A
4719670 Kurt Jan 1988 A
4719709 Vaccari Jan 1988 A
4761834 Kolb Aug 1988 A
4796610 Cromartie Jan 1989 A
4799297 Baggio et al. Jan 1989 A
4802291 Sartor Feb 1989 A
4805605 Glassman Feb 1989 A
4807605 Mattingly Feb 1989 A
4811503 Iwama Mar 1989 A
4843688 Ikeda Jul 1989 A
4862878 Davison et al. Sep 1989 A
4870761 Tracy Oct 1989 A
4905678 Cumins et al. Mar 1990 A
4923474 Klasson et al. May 1990 A
4937952 Olivieri Jul 1990 A
4961544 Bidoia Oct 1990 A
4963208 Muncy et al. Oct 1990 A
4976257 Akin et al. Dec 1990 A
4986263 Dickerson et al. Jan 1991 A
4997438 Nipper Mar 1991 A
5027482 Torppey Jul 1991 A
5072725 Miller Dec 1991 A
5074288 Miller Dec 1991 A
5092321 Spademan Mar 1992 A
5098770 Paire Mar 1992 A
5105828 Grant Apr 1992 A
5111807 Spann et al. May 1992 A
5117567 Berger Jun 1992 A
5120288 Sinaki Jun 1992 A
5121741 Bremer et al. Jun 1992 A
5127897 Roller Jul 1992 A
5135470 Reeves Aug 1992 A
5135471 Houswerth Aug 1992 A
5154690 Shiono Oct 1992 A
5157813 Carroll Oct 1992 A
5170505 Rohrer Dec 1992 A
5171296 Herman Dec 1992 A
5176131 Votel et al. Jan 1993 A
5177882 Berger Jan 1993 A
5181331 Berger Jan 1993 A
5183036 Spademan Feb 1993 A
D334063 Dewall Mar 1993 S
5199940 Morris et al. Apr 1993 A
5201074 Dicker Apr 1993 A
5203765 Friddle, Jr. Apr 1993 A
5215518 Rosen Jun 1993 A
5226874 Heinz et al. Jul 1993 A
5230698 Garth Jul 1993 A
5259831 Lebron Nov 1993 A
5259833 Barnett Nov 1993 A
5267928 Barile et al. Dec 1993 A
5295947 Muncy Mar 1994 A
5295996 Blair Mar 1994 A
5307521 Davis May 1994 A
5313952 Hoch May 1994 A
5318575 Chesterfield et al. Jun 1994 A
5327662 Hallenbeck Jul 1994 A
5334135 Grim et al. Aug 1994 A
5342289 Munny Aug 1994 A
5346461 Heinz et al. Sep 1994 A
5363863 Lelli et al. Nov 1994 A
5365947 Bonutti Nov 1994 A
5368552 Williamson et al. Nov 1994 A
5376129 Faulkner et al. Dec 1994 A
5383893 Daneshvar Jan 1995 A
5387245 Fay et al. Feb 1995 A
5399151 Smith Mar 1995 A
5421809 Rise Jun 1995 A
5423852 Daneshvar Jun 1995 A
5429587 Gates Jul 1995 A
5433648 Frydman Jul 1995 A
5433697 Cox Jul 1995 A
5435015 Ellis-Brewer Jul 1995 A
5437614 Grim Aug 1995 A
5437617 Heinz et al. Aug 1995 A
5437619 Malewicz et al. Aug 1995 A
5449338 Trudell Sep 1995 A
5450858 Zablotsky et al. Sep 1995 A
5466214 Calderon-Garciduenas Nov 1995 A
5484395 Deroche Jan 1996 A
5499965 Sanchez Mar 1996 A
5500959 Yewer, Jr. Mar 1996 A
5502902 Sussmann Apr 1996 A
5503314 Fiscus Apr 1996 A
5503620 Danzger Apr 1996 A
5507681 Smith et al. Apr 1996 A
5507834 Laghi Apr 1996 A
5520619 Martin May 1996 A
5522792 Bassett et al. Jun 1996 A
5531669 Varnau Jul 1996 A
5536246 Saunders Jul 1996 A
5539020 Bracken et al. Jul 1996 A
5548843 Chase et al. Aug 1996 A
5551950 Oppen Sep 1996 A
5556374 Grace et al. Sep 1996 A
5558628 Bzoch Sep 1996 A
5569171 Muncy Oct 1996 A
5571355 Kornylo Nov 1996 A
5599287 Beczak, Sr. et al. Feb 1997 A
5599288 Shirley et al. Feb 1997 A
5603122 Kania Feb 1997 A
5620412 Modglin Apr 1997 A
5622529 Calabrese Apr 1997 A
5632724 Lerman et al. May 1997 A
5634891 Beczak, Sr. et al. Jun 1997 A
5638588 Jungkind Jun 1997 A
5669116 Jungkind Sep 1997 A
5674187 Zepf Oct 1997 A
5681270 Klearman et al. Oct 1997 A
5685830 Bonutti Nov 1997 A
5685831 Floyd Nov 1997 A
5688137 Bustance Nov 1997 A
5690260 Aikins et al. Nov 1997 A
5690609 Heinze, III Nov 1997 A
5695452 Grim et al. Dec 1997 A
5695520 Bruckner et al. Dec 1997 A
5704904 Dunfee Jan 1998 A
5704937 Martin Jan 1998 A
5708977 Morkunas Jan 1998 A
5718670 Bremer Feb 1998 A
5722940 Gaylord, Jr. et al. Mar 1998 A
5724993 Dunfee Mar 1998 A
5725139 Smith Mar 1998 A
5728054 Martin Mar 1998 A
5728168 Laghi et al. Mar 1998 A
5732483 Cagliari Mar 1998 A
5735807 Cropper Apr 1998 A
5737854 Sussmann Apr 1998 A
5746218 Edge May 1998 A
5752640 Proulx May 1998 A
5778565 Holt et al. Jul 1998 A
5782782 Miller Jul 1998 A
5795316 Gaylord Aug 1998 A
RE35940 Heinz et al. Oct 1998 E
5816251 Glisan Oct 1998 A
5819378 Doyle Oct 1998 A
5823981 Grim et al. Oct 1998 A
5826766 Aftanas Oct 1998 A
5827211 Sellinger Oct 1998 A
5830167 Jung Nov 1998 A
5836493 Grunsted et al. Nov 1998 A
5840050 Lerman Nov 1998 A
5840051 Towsley Nov 1998 A
5848979 Bonutti et al. Dec 1998 A
5853378 Modglin Dec 1998 A
5853379 Ostojic Dec 1998 A
5857988 Shirley Jan 1999 A
5868292 Stephens et al. Feb 1999 A
5890640 Thompson Apr 1999 A
5891061 Kaiser Apr 1999 A
5893871 Tanaka Apr 1999 A
5911697 Biedermann et al. Jun 1999 A
5916070 Donohue Jun 1999 A
5938629 Bloedau Aug 1999 A
5950628 Dunfee Sep 1999 A
5954250 Hall et al. Sep 1999 A
5954253 Swetish Sep 1999 A
5967998 Modglin Oct 1999 A
5968002 Morrisseau Oct 1999 A
5993403 Martin Nov 1999 A
6007503 Berger et al. Dec 1999 A
6010472 Schiller Jan 2000 A
6027466 Diefenbacher et al. Feb 2000 A
6029273 McCrane Feb 2000 A
6036664 Martin, Sr. et al. Mar 2000 A
6039707 Crawford et al. Mar 2000 A
6063047 Minne May 2000 A
6066108 Lundberg May 2000 A
6070776 Furnary et al. Jun 2000 A
6090057 Collins et al. Jul 2000 A
6099490 Turtzo Aug 2000 A
6110138 Shirley Aug 2000 A
6117096 Hassard Sep 2000 A
RE36905 Noble et al. Oct 2000 E
6125792 Gee Oct 2000 A
6129638 Davis Oct 2000 A
6129691 Ruppert Oct 2000 A
6156001 Frangi et al. Dec 2000 A
6159248 Gramnas Dec 2000 A
6182288 Kibbee Feb 2001 B1
6189538 Thorpe Feb 2001 B1
6190343 Heinz et al. Feb 2001 B1
D438624 Reina Mar 2001 S
6206932 Johnson Mar 2001 B1
6213968 Heinz et al. Apr 2001 B1
6227937 Principe May 2001 B1
6245033 Martin Jun 2001 B1
6254561 Borden Jul 2001 B1
6256798 Egolf et al. Jul 2001 B1
6267390 Maravetz et al. Jul 2001 B1
6282729 Oikawa et al. Sep 2001 B1
6289558 Hammerslag Sep 2001 B1
6315746 Garth et al. Nov 2001 B1
6322529 Chung Nov 2001 B1
6325023 Elnatan Dec 2001 B1
6338723 Carpenter et al. Jan 2002 B1
6375632 Albrecht et al. Apr 2002 B1
6401786 Tedeschi et al. Jun 2002 B1
6413232 Townsend et al. Jul 2002 B1
6416074 Maravetz et al. Jul 2002 B1
6419652 Slautterback Jul 2002 B1
6425876 Frangi et al. Jul 2002 B1
6428493 Pior et al. Aug 2002 B1
6432073 Pior et al. Aug 2002 B2
6471665 Milbourn et al. Oct 2002 B1
6478759 Modglin et al. Nov 2002 B1
6494853 Rossi et al. Dec 2002 B1
6502577 Bonutti Jan 2003 B1
6503213 Bonutti Jan 2003 B2
6517502 Heyman et al. Feb 2003 B2
6540703 Lerman Apr 2003 B1
6589195 Schwenn et al. Jul 2003 B1
6602214 Heinz et al. Aug 2003 B2
6605052 Cool et al. Aug 2003 B1
6609642 Heinz et al. Aug 2003 B2
6623419 Smith et al. Sep 2003 B1
6652596 Smith et al. Nov 2003 B2
6656144 Coligado Dec 2003 B1
6676617 Miller Jan 2004 B1
6676620 Schwenn et al. Jan 2004 B2
6688943 Nagaoka Feb 2004 B2
6689080 Castillo Feb 2004 B2
6702770 Bremer et al. Mar 2004 B2
6711750 Yoo Mar 2004 B1
6711787 Jungkind et al. Mar 2004 B2
6726643 Martin Apr 2004 B1
6769155 Hess et al. Aug 2004 B2
6770047 Bonutti Aug 2004 B2
6773411 Alvarez Aug 2004 B1
6790191 Hendricks Sep 2004 B1
6802442 Thompson Oct 2004 B1
D499806 Machin et al. Dec 2004 S
6827653 Be Dec 2004 B2
D501078 Cabana Jan 2005 S
6893098 Kohani May 2005 B2
6893411 Modglin May 2005 B1
6913585 Salmon et al. Jul 2005 B2
6921375 Kihara Jul 2005 B2
6921377 Bonutti Jul 2005 B2
6923780 Price et al. Aug 2005 B2
6926685 Modglin Aug 2005 B1
6936021 Smith Aug 2005 B1
6942630 Behan Sep 2005 B2
6951547 Park et al. Oct 2005 B1
6962572 Zahiri Nov 2005 B1
6964644 Garth Nov 2005 B1
6991611 Rhee Jan 2006 B2
7001348 Garth et al. Feb 2006 B2
7001350 Grosso Feb 2006 B2
7025737 Modglin Apr 2006 B2
7028873 Collier et al. Apr 2006 B1
7034251 Child et al. Apr 2006 B1
7048707 Schwenn et al. May 2006 B2
7074204 Fujii et al. Jul 2006 B2
7083584 Coligado Aug 2006 B2
7083585 Latham Aug 2006 B2
7087032 Ikeda Aug 2006 B1
7101348 Garth et al. Sep 2006 B2
7118543 Telles et al. Oct 2006 B2
7128724 Marsh Oct 2006 B2
7134224 Elkington et al. Nov 2006 B2
7137973 Plauche et al. Nov 2006 B2
7140691 Kohani Nov 2006 B2
7166083 Bledsoe Jan 2007 B2
7186229 Schwenn et al. Mar 2007 B2
7198610 Ingimundarson et al. Apr 2007 B2
7201727 Schwenn et al. Apr 2007 B2
7235059 Mason et al. Jun 2007 B2
7281341 Reagan et al. Oct 2007 B2
7306571 Schwenn et al. Dec 2007 B2
7306573 Bonutti Dec 2007 B2
7309304 Stewart et al. Dec 2007 B2
7316660 Modglin Jan 2008 B1
7320670 Modglin Jan 2008 B1
7322950 Modglin Jan 2008 B2
7329231 Frank Feb 2008 B2
7331126 Johnson Feb 2008 B2
7351368 Abrams Apr 2008 B2
7389547 Wiens Jun 2008 B1
7402147 Allen Jul 2008 B1
7404804 Bonutti Jul 2008 B2
7416565 Al-Turaikl Aug 2008 B1
7438698 Daiju Oct 2008 B2
7473235 Schwenn et al. Jan 2009 B2
7476185 Drennan Jan 2009 B2
7513018 Koenig et al. Apr 2009 B2
7549970 Tweardy Jun 2009 B2
7578798 Rhee Aug 2009 B2
7591050 Hammerslag Sep 2009 B2
7597671 Baumgartner et al. Oct 2009 B2
7597672 Kruijsen et al. Oct 2009 B2
7600660 Kasper et al. Oct 2009 B2
7615021 Nordt, III et al. Nov 2009 B2
7618386 Nordt, III et al. Nov 2009 B2
7618389 Nordt, III et al. Nov 2009 B2
7654972 Alleyne Feb 2010 B2
7662121 Zours Feb 2010 B2
7670306 Nordt, III et al. Mar 2010 B2
7682219 Falla Mar 2010 B2
7699797 Nordt, III et al. Apr 2010 B2
7704219 Nordt, III et al. Apr 2010 B2
7727048 Gransberry Jun 2010 B2
7727174 Chang et al. Jun 2010 B2
7757307 Wong Jul 2010 B2
7775999 Brown Aug 2010 B2
7806842 Stevenson et al. Oct 2010 B2
7815585 Vollbrecht Oct 2010 B2
7819831 Dellanno Oct 2010 B2
7833182 Hughes Nov 2010 B2
7842000 Lai et al. Nov 2010 B2
7857776 Frisbie Dec 2010 B2
7862529 Brown Jan 2011 B2
7862621 Kloos et al. Jan 2011 B2
7871388 Brown Jan 2011 B2
7878998 Nordt, III et al. Feb 2011 B2
7887500 Nordt, III et al. Feb 2011 B2
7914473 Josey Mar 2011 B2
D636494 Garth et al. Apr 2011 S
7922680 Nordt, III et al. Apr 2011 B2
7950112 Hammerslag et al. May 2011 B2
7954204 Hammerslag et al. Jun 2011 B2
7959591 Powers et al. Jun 2011 B2
7993296 Nordt, III et al. Aug 2011 B2
8002724 Hu et al. Aug 2011 B2
8006877 Lowry et al. Aug 2011 B2
8038635 Dellanno Oct 2011 B2
8038637 Bonutti Oct 2011 B2
8047893 Fenske Nov 2011 B2
8048014 Brown Nov 2011 B2
8066161 Green et al. Nov 2011 B2
8066654 Sandifer et al. Nov 2011 B2
8091182 Hammerslag et al. Jan 2012 B2
8142377 Garth et al. Mar 2012 B2
8162194 Gleason Apr 2012 B2
8162864 Kruijsen et al. Apr 2012 B2
8172779 Ingimundarson et al. May 2012 B2
8214926 Brown Jul 2012 B2
8216167 Garth et al. Jul 2012 B2
8303528 Ingimundarson et al. Nov 2012 B2
8308669 Nace Nov 2012 B2
8308670 Sandifer et al. Nov 2012 B2
8308869 Gardner et al. Nov 2012 B2
8372023 Garth et al. Feb 2013 B2
8381314 Takamoto et al. Feb 2013 B2
8556840 Burke et al. Oct 2013 B2
8597222 Lucero et al. Dec 2013 B2
8657769 Ingimundarson et al. Feb 2014 B2
8728019 Kruijsen et al. May 2014 B2
8795215 Rossi Aug 2014 B2
8893312 Takamoto et al. Nov 2014 B2
8956315 Garth et al. Feb 2015 B2
9370440 Ingimundarson et al. Jun 2016 B2
9468554 Petursson et al. Oct 2016 B2
9554935 Ingimundarson et al. Jan 2017 B2
9572705 Ingimundarson et al. Feb 2017 B2
9795500 Ingimundarson et al. Oct 2017 B2
20010020144 Heinz et al. Sep 2001 A1
20010031936 Pior et al. Oct 2001 A1
20020032397 Coligado Mar 2002 A1
20020068890 Schwenn et al. Jun 2002 A1
20020148461 Heinz et al. Oct 2002 A1
20020158097 Beale Oct 2002 A1
20030000986 Smith Jan 2003 A1
20030028952 Fujii et al. Feb 2003 A1
20030125650 Grosso Jul 2003 A1
20030125705 Ruman et al. Jul 2003 A1
20030139698 Hyson Jul 2003 A1
20030220594 Halvorson et al. Nov 2003 A1
20030229301 Coligado Dec 2003 A1
20040024340 Schwenn et al. Feb 2004 A1
20040050391 Kiwala et al. Mar 2004 A1
20040082895 Price et al. Apr 2004 A1
20040097857 Reinecke et al. May 2004 A1
20040108350 Warren Jun 2004 A1
20040116260 Drennan Jun 2004 A1
20040132380 Kihara Jul 2004 A1
20040133138 Modglin Jul 2004 A1
20040143204 Salmon et al. Jul 2004 A1
20040162582 Banziger Aug 2004 A1
20040254505 Begley et al. Dec 2004 A1
20050054960 Telles et al. Mar 2005 A1
20050059917 Garth et al. Mar 2005 A1
20050067816 Buckman Mar 2005 A1
20050081339 Sakabayashi Apr 2005 A1
20050131323 Bledsoe Jun 2005 A1
20050137508 Miller Jun 2005 A1
20050154337 Meyer Jul 2005 A1
20050160627 Dalgaard et al. Jul 2005 A1
20050165338 Iglesias et al. Jul 2005 A1
20050228325 Zours et al. Oct 2005 A1
20050240134 Brown Oct 2005 A1
20050251074 Latham Nov 2005 A1
20050267390 Garth et al. Dec 2005 A1
20050273025 Houser Dec 2005 A1
20060011690 Bareno Jan 2006 A1
20060052733 Schwenn et al. Mar 2006 A1
20060064048 Stano Mar 2006 A1
20060074365 Brown Apr 2006 A1
20060079821 Rauch Apr 2006 A1
20060129077 Parizot Jun 2006 A1
20060135900 Ingimundarson et al. Jun 2006 A1
20060135901 Ingimundarson et al. Jun 2006 A1
20060135903 Ingimundaron et al. Jun 2006 A1
20060155229 Ceriani et al. Jul 2006 A1
20060156517 Hammerslag et al. Jul 2006 A1
20060206992 Godshaw et al. Sep 2006 A1
20060254598 Saul Nov 2006 A1
20060260620 Kazerooni et al. Nov 2006 A1
20070152007 Kauss et al. Jul 2007 A1
20070167895 Gramza et al. Jul 2007 A1
20070179417 Schwenn Aug 2007 A1
20070185425 Einarsson et al. Aug 2007 A1
20080045873 Zours Feb 2008 A1
20080091132 Bonutti Apr 2008 A1
20080195010 Lai et al. Aug 2008 A1
20080208090 Vollbrecht Aug 2008 A1
20080208091 Vollbrecht et al. Aug 2008 A1
20080249448 Stevenson et al. Oct 2008 A1
20080262401 Wagner et al. Oct 2008 A1
20080302839 Murdoch et al. Dec 2008 A1
20080319362 Joseph Dec 2008 A1
20090025115 Duffy et al. Jan 2009 A1
20090030353 Bonutti et al. Jan 2009 A1
20090030359 Wikenheiser et al. Jan 2009 A1
20090062704 Brown et al. Mar 2009 A1
20090082707 Rumsey Mar 2009 A1
20090100649 Bar et al. Apr 2009 A1
20090124948 Ingimundarson et al. May 2009 A1
20090127308 Mori et al. May 2009 A1
20090182253 Grim et al. Jul 2009 A1
20090192425 Garth et al. Jul 2009 A1
20090198166 Shlomovitz Aug 2009 A1
20090275871 Liu Nov 2009 A1
20090287128 Ingimundarson et al. Nov 2009 A1
20100010568 Brown Jan 2010 A1
20100037369 Reichert Feb 2010 A1
20100139057 Soderberg et al. Jun 2010 A1
20100204630 Sandifer et al. Aug 2010 A1
20100205713 Takamoto et al. Aug 2010 A1
20100217167 Ingimundarson et al. Aug 2010 A1
20100228170 Imai Sep 2010 A1
20100256717 Brown Oct 2010 A1
20100268139 Garth Oct 2010 A1
20100268141 Bannister Oct 2010 A1
20100274364 Pacanowsky et al. Oct 2010 A1
20100292622 Weissleder et al. Nov 2010 A1
20100299959 Hammerslag et al. Dec 2010 A1
20100318010 Sandifer et al. Dec 2010 A1
20110000005 Brown Jan 2011 A1
20110009793 Lucero et al. Jan 2011 A1
20110046528 Stevenson et al. Feb 2011 A1
20110082402 Oddou et al. Apr 2011 A1
20110098618 Fleming Apr 2011 A1
20110105971 Ingimundarson et al. May 2011 A1
20110137221 Brown Jun 2011 A1
20110144551 Johnson Jun 2011 A1
20110152737 Burke et al. Jun 2011 A1
20110178448 Einarsson Jul 2011 A1
20110184326 Ingimundarson et al. Jul 2011 A1
20110266384 Goodman et al. Nov 2011 A1
20120010547 Hinds Jan 2012 A1
20120022420 Sandifer et al. Jan 2012 A1
20120029404 Weaver, II et al. Feb 2012 A1
20120078151 Cropper Mar 2012 A1
20120197167 Kruijsen et al. Aug 2012 A1
20120204381 Ingimundarson et al. Aug 2012 A1
20120220910 Gaylord et al. Aug 2012 A1
20120232450 Garth et al. Sep 2012 A1
20120245502 Garth et al. Sep 2012 A1
20120323154 Ingimundarson et al. Dec 2012 A1
20130006158 Ingimundarson et al. Jan 2013 A1
20130007946 Brown Jan 2013 A1
20130012853 Brown Jan 2013 A1
20130158457 Garth Jun 2013 A1
20130174326 Takamoto et al. Jul 2013 A1
20130184628 Ingimundarson et al. Jul 2013 A1
20130190670 Von Zieglauer Jul 2013 A1
20130211302 Brown Aug 2013 A1
20130237891 Fryman et al. Sep 2013 A1
20130281901 Ochoa Oct 2013 A1
20130298914 Shibaya et al. Nov 2013 A1
20140081189 Ingimundarson et al. Mar 2014 A1
20140116452 Ingimundarson et al. May 2014 A1
20140135672 Joseph et al. May 2014 A1
20140207040 Ingimundarson et al. Jun 2014 A1
20140200121 Von Hoffmann et al. Jul 2014 A1
20140207041 Ingimundarson et al. Jul 2014 A1
20140336020 Von Hoffmann et al. Nov 2014 A1
20160228279 Modglin et al. Aug 2016 A1
20160250061 Ingimundarson et al. Sep 2016 A1
Foreign Referenced Citations (86)
Number Date Country
20 1027 10 20 Feb 2012 AU
20 1027 10 20 Feb 2012 AU
20 1028 68 51 Mar 2012 AU
20 1028 68 51 May 2012 AU
2 112 789 Aug 1994 CA
2 114 387 Aug 1994 CA
2 767 353 Jan 2011 CA
2 772 296 Mar 2011 CA
577 282 Jul 1976 CH
612 076 Jul 1979 CH
624 001 Jul 1981 CH
1311648 Sep 2001 CN
1461190 Dec 2003 CN
201101603 Aug 2008 CN
101444443 Jun 2009 CN
101820783 Sep 2010 CN
102470040 May 2012 CN
1 197 192 Jul 1965 DE
88 04 683 Jun 1988 DE
38 22 113 Jan 1990 DE
93 15 776 Feb 1995 DE
295 03 552 Apr 1995 DE
199 45 045 Mar 2001 DE
202 04 747 Jul 2002 DE
103 29 454 Jan 2005 DE
20 2004 015 328 Feb 2005 DE
20 2005 007 124 Jun 2005 DE
20 2009 004 817 Sep 2010 DE
0 393 380 Sep 1992 EP
0 589 233 Mar 1994 EP
0 614 624 Sep 1994 EP
0 614 625 Sep 1994 EP
0 657 149 Jun 1995 EP
0 589 232 Nov 1995 EP
0 693 260 Sep 1998 EP
0 651 954 Feb 1999 EP
1016351 Jul 2000 EP
1 159 940 Dec 2001 EP
1 236 412 Sep 2002 EP
1 342 423 Sep 2003 EP
1 588 678 Oct 2005 EP
1 743 608 Jan 2007 EP
1 985 264 Oct 2008 EP
2 200 545 Jun 2010 EP
2 451 412 May 2012 EP
2 473 072 Jul 2012 EP
1 104 562 Nov 1955 FR
2 757 073 Jun 1998 FR
2 952 807 May 2011 FR
826 041 Dec 1959 GB
909 970 Nov 1962 GB
2 133 289 Jul 1984 GB
3031760 Dec 1996 JP
H09-273582 Oct 1997 JP
H10-237708 Sep 1998 JP
2000-290331 Oct 2000 JP
2001-204851 Jul 2001 JP
2003-175063 Jun 2003 JP
2004-016732 Jan 2004 JP
2004-041666 Feb 2004 JP
2004-209050 Jul 2004 JP
2007-291536 Nov 2007 JP
3142546 Jun 2008 JP
2009-082697 Apr 2009 JP
2012-011550 Jan 2012 JP
2013-503268 Jan 2013 JP
2013-536010 Sep 2013 JP
9401496 Jan 1994 WO
9503720 Feb 1995 WO
9703581 Feb 1997 WO
0053045 Sep 2000 WO
2004110197 Dec 2004 WO
2005086752 Apr 2005 WO
2005086752 Sep 2005 WO
2006121413 Nov 2006 WO
2007003148 Jan 2007 WO
2009017499 Feb 2009 WO
2009017949 Feb 2009 WO
2009052031 Apr 2009 WO
2009068503 Jun 2009 WO
2011005430 Jan 2011 WO
2011025675 Mar 2011 WO
2011066323 Jun 2011 WO
2012029917 Mar 2012 WO
2013-016670 Jan 2013 WO
2016138215 Sep 2016 WO
Non-Patent Literature Citations (12)
Entry
International Search Report from PCT Application No. PCT/US2018/049969, dated Nov. 16, 2018.
Pamphlet—“Bledsoe Phillippon K.A.F. Positioning Kit, Application Instructions (CP020205 Rev B Apr. 2007), New Hip Arthroscopy Padding and Positioning Kit”, Council Directive 93/42/EEC of Jun. 14, 1993 concerning Medical Devices, 2 pages.
Mehlman, Charles T. et al., “Hyphenated History: Knight-Taylor Spinal Orthosis”; American Journal of Orthopedics; Jun. 2000; pp. 479-483, vol. 29, Issue 6.
Pamphlet—“Bledsoe Phillippon K.A.F. Positioning Kit”, Bledsoe Brace Systems, Medical Technology Inc., 2004, 2 pages.
Posture Control Brace. Soft Form, Orthopaedic by Design, FLA Orthopedics, Inc., 1 page; 2004. http://www.flaorthopedics.com.
Michael Pfiefer, MD et al., “Effects of a New Spinal Orthosis on Posture, Trunk Strength, and Quality of Life in Women with Postmenopausal Osteoporosis—a Randomized Trial”, American Journal of Physical Medicine & Rehabilitation, vol. 83, No. 3, Mar. 2004, USA, pp. 177-186.
Scoliosis Specialists. About the SpineCor Brace; 2006-2012; http://www.scoliosisspecialists.com/aboutspinecorbrace.html. Retrieved from Internet on Aug. 1, 2013.
Hsu et al., “Principles and Components of Spinal Orthoses”, AAOS Atlas of Orthoses and Assistive Devices, 4th Ed., Chapter 7, 2008, pp. 89-111.
Bledsoe Products, “Philippon K.A.F. Positioning Kit”. Http://bledsoebrace.com/products/kaf.asp [retrieved from the internet May 10, 2012].
Spinomed Brochure—Spinal Orthosis for Vertebral Extension in Osteoporosis; Stellar Orthotics and Prosthetics Group, 2 pages, retrieved from Internet Sep. 23, 2013. http://www.stellaroandp.com/spotlight.html.
Sato, Ena et al., “Effect of the WISH-type hip brace on functional mobility in patients with osteoarthritis of the hip: evaluation using the timed UP & GO Test”, Prosthetics and Orthotics International 2012 36:25 originally published online Nov. 17, 2011, http://poi.sagepub.com/content/36/125 [retrieved from internet on Jan. 22, 2014].
Silosheath Brochure, Soft Socket Gel Liner, 4 pages, 1994.
Related Publications (1)
Number Date Country
20180116856 A1 May 2018 US
Provisional Applications (1)
Number Date Country
61702906 Sep 2012 US
Continuations (1)
Number Date Country
Parent 14031092 Sep 2013 US
Child 15856366 US