Panel attachment system

Information

  • Patent Grant
  • 6202377
  • Patent Number
    6,202,377
  • Date Filed
    Wednesday, December 23, 1998
    26 years ago
  • Date Issued
    Tuesday, March 20, 2001
    23 years ago
Abstract
A wall system comprising a plurality of rectangular rigid prefinished panels mounted on a wall support structure with main runners and cross runners. The main runners serve to lock the panels onto the support structure and with the cross runners serve to prevent the panels from warping due to adverse moisture conditions. The main runners are configured to space the panels from the wall support structure to encourage uniform humidity conditions at the front and rear of the panels. Clips that secure the panels to the main runners are fixed adjacent the top and bottom panel edges at different set-offs to obtain an advantageous nesting of panels for reduced packaging volume.
Description




BACKGROUND OF THE INVENTION




The invention relates to wall construction and, in particular, to a wall system formed of an array of prefinished rectangular panels mechanically held on a wall framework.




PRIOR ART




It is known to construct a wall surface for a room or other structure with a plurality of prefinished rectangular panels. (As used herein, the term “rectangular” includes “square”.) Such constructions using a real wood veneer, for example, can achieve a custom high-quality appearance with moderate material and labor costs. Under varied circumstances, prior art panels such as those with a particle board core have exhibited a tendency to warp after installation. This warpage detracts from the appearance of the installation and if severe enough, can require remedial work. It is believed that warpage can be induced by moisture in adhesives used to hold the panels on a substrate or support wall and/or by different moisture levels between the front and rear faces of a panel where air circulation is limited at the back of the panels.




SUMMARY OF THE INVENTION




The invention provides a method and components for an improved wall construction of the type comprising an array of prefinished rectangular panels. In accordance with the invention, the panels are mechanically attached to a supporting wall frame or other structure and the attachment elements are arranged to constrain the panels against warpage.




In a preferred embodiment, the panels are stiffened by rigid runners, preferably made of suitable metal elements, extending substantially along the full length of their edges. The upper and lower edges of the panels are positively secured to the wall frame or other support structure by horizontal runners while the vertical panel edges are located to the wall frame indirectly by the close proximity of the ends of vertical runners to the horizontal runners.




More specifically, elongated panel mounting clips, preferably roll formed members of steel or other suitable metal, are factory attached to the rear or back side of each panel adjacent its upper and lower edges. The clips have a “Z”-like cross section to provide a flange that with the adjacent surface area of the panel forms a groove. These groove constructions at the top and bottom of a panel tightly receive flanges of corresponding main runners to fix the panel in its desired location on the wall framework.




As disclosed, the “Z” clips or brackets at the upper and lower panel edges are preferably at different offsets from their respective edges. This arrangement has the advantage of minimizing shipping bulk and, consequently, cost. The cross runners that stabilize the vertical panel edges in the disclosed embodiment are formed as splines that each tightly fit as a tongue into opposed grooves of adjacent panels. The cross runners or splines thus, in addition to reducing the tendency of the panel to warp also align the edges of adjacent panels to one another to improve the appearance of the installation.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a fragmentary perspective view of a wall constructed in accordance with the invention;





FIG. 2

is an enlarged end view of a main runner;





FIG. 3

is an enlarged end view of a cross runner and portions of adjacent panels;





FIG. 4

is a cross sectional view of the wall of

FIG. 1

taken in a vertical plane;





FIG. 5

is a cross sectional view taken in a horizontal plane at an inside and an outside corner of a wall constructed like that of

FIG. 1

;





FIG. 6

is a cross sectional view taken in a horizontal plane of an end of a wall constructed like that of

FIG. 1

;





FIG. 7

is an end view of a plurality of panels stacked for shipment and/or storage;





FIG. 7A

is a plan view on a reduced scale showing the rear face of a panel having clips mounted thereto;





FIG. 8

is an end view of an alternative main runner; and





FIG. 9

is an end view of an alternative cross runner.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now to the drawings, a wall system


10


constructed in accordance with the invention includes a plurality of rigid rectangular panels


11


attached to a wall support structure or framework


12


represented by vertical studs


13


covered by gypsum board or drywall


14


. The panels


11


are mechanically attached to the framework studs


13


with elongated clips


16


that grip horizontal runners


17


. Adjacent vertical edges of the panels


11


are mutually aligned by cross runners


18


.




The panels


11


, which can be identical for the most part, are an assembly of a flat, rigid board-like unit


19


and a pair of the clips


16


attached to a rear face


22


of the board


19


. A panel board


19


can comprise any suitable construction material and in the preferred embodiment comprises a laminate of two outer face layers


26


and


27


and an intermediate core


28


. The core can be commercially available particle board that consists primarily of wood particles bonded together with known materials. This particle board and similar cellulose based materials are particularly suited for the present invention since they afford both economy and adequate tensile and compressive strength. An exterior or front surface


29


of the face


27


typically has a final finish when it leaves the panel factory. For example, where the face or layer


27


is a wood veneer, it can be sanded, stained, and lacquered or otherwise prefinished before shipment from the factory where the panel


11


, as described, is manufactured. The panels


11


have nominal common face dimensions of, for example, 2 foot×2 foot square, or 2 foot high×4 foot wide. It will be understood, however, other suitable dimensions are envisioned.




Referring to

FIGS. 7 and 7A

, clips


16


fixed to the rear faces


22


of the panel board


19


can be roll formed sheet steel or aluminum, for example. In the illustrated construction, the clips


16


are identical at both the top and bottom edges of a panel board


19


and have a length equal to or slightly shorter than the horizontal length of the panel board. The cross section of a clip


16


, as shown in

FIG. 7

, is “Z”-shaped albeit somewhat shortened and broadened with generally planar flanges


31


,


32


and an intermediate web


33


. One flange


31


is secured against the panel board


19


either directly abutting it or adhered to it. The clips


16


are fixed to the rear panel face


22


with suitable means such as mechanical fasteners in the form of screws, staples or the like and/or an adhesive fastening medium. The other flange


32


has its edge remote from the web


33


bent outwardly slightly forming a lip


34


which facilitates assembly with a main runner


17


as explained below. At an upper edge


36


of a panel board


19


, the clip


16


is closely adjacent the edge while at a lower edge


37


the clip is adjacent but spaced a predetermined distance from this edge.




Vertical edges


38


of the panel boards


19


are provided with a groove


39


running their full length and preferably centered in the thickness of the board and having a round bottom to reduce any tendency of a stress induced fracture in this area. By way of example, the panel boards


19


can have representative thicknesses of ¾″, ⅝″, or ½″ with the thicker dimensions being preferred where greater strength is required. The grooves


39


can be ⅛″ wide and approximately {fraction (9/16)}″ deep.




The illustrated main horizontal runners


17


are extruded aluminum members with an irregular, asymmetrical cross section. This cross section, with particular reference to

FIG. 2

, includes a central channel section


41


with a web


42


and flanges


43


. The flanges have extended portions


44


,


46


that project oppositely of one another in a common plane parallel to but spaced from the plane of the web


42


. The main runner cross section also includes an extension


47


of a lower one of the flanges


43


. The extension has ribs


48


,


49


that are useful in gauging the vertical gap between adjacent panels


11


. The main runners


17


have a length preferably at least equal to the combined horizontal length of two panels


11


, and can be, for example, 8, 10 or 12 feet long.





FIG. 3

illustrates an end view of a cross runner


18


. As shown, the cross runner


18


has an irregular cruciform shape in section. One part


51


of the cruciform has corrugations


52


while another part


53


has ribs


54


,


55


. The illustrated cross runner


18


is made as an aluminum extrusion. The cross runners


18


have lengths generally equal to the vertical height of a panel


11


.




The panels


11


are installed on the wall support structure


12


by assembling a first row of panels


11


, typically starting at floor level, along the base of the supporting wall structure with a cross runner


18


assembled in the opposed vertical slots or grooves


39


of adjacent panels


11


. The horizontal spacing between the panels


11


is determined by abutting the panel edges


38


against the cross runner ribs


54


. The panels


11


are mechanically locked in position relative to the support structure


12


by positioning the lower flange portion or extension


46


of a main runner


17


into a groove or slot


56


formed by the clips


16


adjacent the upper edges


36


of the panel boards


19


and then securing the main runner to the support structure. In the illustrated case, this is accomplished by driving a self-tapping screw


61


through the web


42


into each of the studs


13


. A shallow groove


62


can be formed in the profile of the inside of the channel


41


to locate and stabilize the screw


61


as it is driven. The lower edges


37


of the first course or row of panels


11


can be secured to the support structure by suitable mechanical or adhesive means or other known fastening means. If desired, a “Z” strip with the proportions of the main runner channel


41


and upper flange portion or extension


44


can be used for this purpose. It should be understood that where desired, the main runners


17


can be secured directly to an open framework made up of studs or other elements not covered by gypsum board or other board material.




After a sufficient length of a main runner or runners


17


has been set and fixed to the wall support structure


12


with the lower flange area


46


received in the slot or groove


56


formed by the clips


16


and adjacent rear face areas


22


of the panel boards


19


, a second course or row of panels


11


is installed above the first row. This is accomplished by manipulating the panels


11


to cause the upper flange


44


of the main runner to be received in a slot or groove


57


formed between the lower clip


16


and the rear faces


22


adjacent the lower edges


37


of the second row of panels


11


. Each panel


11


is forced downwardly until the upper flange


44


of the main runner


17


is fully received in the groove


57


created between the clip


16


and panel board


19


and the lower edge


37


contacts the rib


48


of the main runner. As before, a cross runner


18


is inserted in the opposed vertical grooves


39


of adjacent panel boards


19


. When this second course of panels


11


has been put in place, the process of securing it to the wall structure with a main runner


17


at the upper panel edges


36


is repeated. In the same manner, subsequent rows or courses of panels


11


are positioned on the wall with cross runners


18


disposed between the panels and main runners


17


located at the lower and upper edges


36


,


37


of the panels. This process is repeated until the wall support structure


12


is covered by the panels


11


to the extent desired.




The effective thickness of the cross runner part


51


that is received in a groove


39


is proportioned to provide an interference with the groove to ensure a tight fit therewith. It will be seen that the cross runners


18


serve to align adjacent panel edges


38


to one another. As shown in

FIG. 7

, the clips


16


can be made with the flange


32


, in its free state, close to the rear face


22


so that a somewhat tight interference fit is achieved between this flange and the main runner flange


44


. Inspection of

FIG. 4

reveals that the channel-like structure of the main runner


17


serves to space the panels


11


away from any subwall such as that represented by the gypsum board


14


. This spacing ensures that adequate air circulation exists around the panels so that any tendency of a differential in moisture content between the front and back of the panels


11


is reduced and, consequently, a tendency for the panels to warp from moisture conditions is reduced. It will be understood that panels such as the illustrated panels


11


, formed of wood or similar cellulose based materials, can be particularly susceptible to moisture-induced warping. The disclosed wall system


10


is effective in overcoming the problem of warpage of such panels since the main and cross runners


17


,


18


which are relatively rigid and free of moisture related warpage, engage substantially the full perimeter of each panel and serve to maintain the corresponding edges of the panel in a common plane thereby preventing visually distracting warpage.





FIG. 5

is a cross section of a wall system constructed in accordance with the invention taken in a horizontal plane to illustrate metal corner accessories


63


,


64


at inside and outside corners, respectively. The accessories,


63


,


64


can be aluminum extrusions and can include channel structures


66


,


67


to appropriately space the panels


11


from the subwall.

FIG. 6

similarly illustrates an aluminum extrusion accessory


68


for the end of a wall.




With reference to

FIG. 7

, the offset of one of the clips


16


from its adjacent edge


37


allows a pair of panels


11


to be stacked rear face to rear face and offset clip to non offset clip so as to reduce the effective bulk of the panels and thereby reduce storage and shipping expense.





FIGS. 8 and 9

illustrate modified forms of a main runner


117


and a cross runner


118


. In these arrangements, a flange extension


147


and cruciform part


153


have channels


71


,


72


, respectively, which exist between edges of associated panels


11


and are adapted to receive the stem of a decorative strip having a T-shaped cross section as is known in the art.




It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the fair scope of the teaching contained in this disclosure. The invention is therefore not limited to particular details of this disclosure except to the extent that the following claims are necessarily so limited.



Claims
  • 1. A finished wall construction comprising a plurality of rectangular generally planar panels arranged in a vertical plane with their edges lying in vertical and horizontal orientations and runners adjacent the edges of the panels, the panels having a front face and a rear face and being constructed of a material selected from wood material and material which is susceptible to warping because of ambient humidity conditions, the runners being formed of a material selected from metal and relatively stiff structural material that is substantially free of a tendency to warp due to ambient humidity conditions, the runners being attached adjacent each of the four edges of the panels, each panel having outwardly opening horizontal grooves adjacent their horizontal edges formed by clips secured to rear faces of the panels and extending along substantially the full horizontal length of their panels, each panel having a pair of said runners on opposite edges attached to a supporting wall in a manner that permits such runners to hold the panel in place relative to the supporting structure with adjacent horizontal panel edges vertically spaced apart and in a manner that prevents removal of a panel while another panel is installed above it.
  • 2. A finished wall construction as set forth in claim 1, wherein said pair of runners are main runners having lengths substantially greater than the dimensions of the panels.
  • 3. A finished wall construction as set forth in claim 2, wherein the runners on edges perpendicular to said pair of runners are cross runners and have lengths generally equal to the lengths of said perpendicular edges.
  • 4. A finished wall construction as set forth in claim 1, wherein said panels have a thickness substantially less than their major dimensions.
  • 5. A finished wall construction as set forth in claim 4, wherein said perpendicular edges are formed with a groove within the thickness of the panel and said cross runners associated with said edges are disposed in said grooves with a relatively close fit.
  • 6. A finished wall construction as set forth in claim 5, wherein a single cross runner is assembled in opposed grooves of adjacent panels.
  • 7. A finished wall construction as set forth in claim 1, wherein said attached runners comprise main runners that are arranged horizontally on said support structure.
  • 8. A finished wall construction as set forth in claim 7, wherein said clips are z-shaped metal clips and said main runners are mechanically locked in said horizontal grooves by said z-shaved clips coacting with said rear faces of said panel.
  • 9. A finished wall construction as set forth in claim 1, wherein said main runners include portions received within said horizontal grooves and an extension projecting between said adjacent horizontal panel edges.
  • 10. A finished wall construction as set forth in claim 9, wherein said clips are configured to grip the received portions of the main runners.
  • 11. A kit for constructing a prefinished wall comprising a plurality of rectangular panels, a plurality of relatively rigid main runners having lengths greater than that of horizontal edges of the panels, and a plurality of relatively rigid cross runners having lengths generally equal to the length of the vertical edges of the panels, the vertical panel edges having outwardly opening grooves formed therein and the horizontal edges having associated clips attached to the adjacent margins of the rear panel face forming outwardly opening horizontal grooves therewith, the main runners having a lower flange area adapted to be received in the horizontal grooves adjacent the upper panel edges and an upper flange adapted to be received in the horizontal grooves adjacent the lower panel edges, the cross runners each being adapted to be received in the opposed vertical grooves of an adjacent pair of panels, the main runners being adapted to be secured to a wall structure to thereby hold the panels in a rectangular array in a vertical plane parallel to the wall structure, the cross runners being arranged to avoid interference with the main runners when the main and cross runners are installed in their respective grooves, and whereby the main and cross runners when installed in the respective horizontal and vertical grooves serve to stabilize the associated panels against warpage.
  • 12. A kit as set forth in claim 11, wherein said runners and grooves are proportioned to produce an interference fit therebetween when such runners are assembled into such grooves.
  • 13. A kit as set forth in claim 11, wherein the main runners have a configuration that causes the panels to be spaced from a wall support structure when the panels and runners are assembled on the wall support structure.
  • 14. A kit as set forth in claim 11, wherein said runners are formed of metal.
  • 15. A kit as set forth in claim 11, wherein the main and cross runners are extruded aluminum members.
  • 16. A kit as set forth in claim 13, wherein the main runner has a channel-like cross section including a web and opposed flanges with oppositely extending coplanar portions parallel to a plane of said web.
  • 17. A kit as set forth in claim 12, wherein the cross runners have longitudinally corrugated flanges adapted to be received in the vertical grooves of the panels with an interference fit.
  • 18. A kit as set forth in claim 11, wherein said clips extend along substantially the full horizontal length of their panels.
  • 19. A kit as set forth in claim 18, wherein said clips are metal elements attached to said panels.
  • 20. A kit as set forth in claim 18, wherein said clips on said panels have different spacing from the adjacent edges to permit the panels to be stacked with their rear faces confronting one another and the clips being offset to reduce the volume taken up by a pair of panels.
  • 21. A method of assembling a prefinished wall comprising the steps of assembling a row of rectangular panels alongside a wall structure, each of said panels having a front face, a rear face and upper and lower edges, securing a clip to the rear face of each panel of a first row to form an upper groove adjacent an upper edge of each panel of the first row, securing the upper edge area of the panels of the first row to the wall structure with a horizontally disposed runner that has a length greater than the individual panels, the runner having a portion that is received in said upper groove formed on the panel adjacent its upper edge and a portion that overlies said upper edge, securing the runner with mechanical fasteners after it is received in said upper grooves, assembling successive rows of panels above a preceding row of panels by engaging a lower groove on each panel of the successive row adjacent its lower edge over a portion of the runner of the preceding row of panels whereby the overlying portions of the runners are adapted to space adjacent panels vertically from one another.
  • 22. A method as set forth in claim 21, wherein the panels are provided with grooves on their vertical edges and adjacent panels are interconnected by a tongue element in said vertical grooves.
  • 23. A method as set forth in claim 22, wherein both vertical edges of each of said panels are provided with said groove.
  • 24. A method as set forth in claim 21, wherein said lower groove is formed by securing a second clip to the rear face adjacent the lower edge of each panel of successive rows.
  • 25. A method as set forth in claim 24, wherein said first mentioned clip and second clip are substantially identical.
  • 26. A finished wall construction comprising a plurality of rectangular generally planar panels arranged in rows and columns in a vertical plane with their edges lying in vertical and horizontal orientations and runners adjacent the edges of the panels, the panels having a front face and a rear face and being constructed of material selected from wood material and material which is susceptible to warping because of ambient humidity conditions, the runners being formed of a material selected from metal and relatively stiff structural material that is substantially free of a tendency to warp due to ambient humidity conditions, the panels each having grooves along substantially the full length of each of its edges, the runners being received in the grooves of the four edges of the panels, along substantially the full length of the respective grooves, each panel having clips mounted to its rear face adjacent the upper and lower edges to form the groove adjacent the upper panel edge and the groove adjacent the lower panel edge, each panel having a pair of said runners on opposite edges attached to a supporting wall in a manner that permits such runners to hold the panel in place relative to the supporting structure.
  • 27. A finished wall as set forth in claim 26, wherein said clips each extend along substantially the full horizontal length of their panels.
  • 28. A finished wall as set forth in claim 27, wherein said pair of runners include portions received within said upper and lower grooves, edges perpendicular to said pair of runners having a thickness and a groove therein, and cross runners having lengths generally equal to the lengths of said perpendicular edges receiving portions of said cross runners in said grooves, said runner portions received within said grooves extending about substantially the full perimeter of the panel to tend to maintain the corresponding edges of the panels in a common plane.
US Referenced Citations (17)
Number Name Date Kind
3412515 Finon Nov 1968
3530633 Scott Sep 1970
3621635 Lange Nov 1971
3803789 Gibson Apr 1974
4553366 Guerin Nov 1985
4685263 Ting Aug 1987
4765111 Osawa Aug 1988
4783941 Loper et al. Nov 1988
5069014 Kubbutat Dec 1991
5107651 Menchetti et al. Apr 1992
5301484 Jansson Apr 1994
5398473 Chan Mar 1995
5417020 Dobija May 1995
5555689 Gilmore Sep 1996
5590502 Wendt Jan 1997
5829216 Newcomb et al. Nov 1998
5979124 Branan Nov 1999
Foreign Referenced Citations (1)
Number Date Country
8701061 Dec 1988 NL