Panel bootstraping architectures for in-cell self-capacitance

Abstract
A self-capacitance touch screen. In some examples, the touch screen comprises a plurality of display pixels, a first display pixel of the plurality of display pixels including a first touch electrode of a plurality of touch electrodes, and a gate line coupled to the first display pixel, wherein the gate line is configured such that a voltage at the gate line substantially follows a voltage at the first touch electrode. In some examples, the gate line is coupled to a resistor, the resistor being configured to decouple the gate line from ground. In some examples, the gate line is coupled to an AC voltage source.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Phase application under 35 U.S.C. § 371 of International Application No. PCT/US2014/039245, filed May 22, 2014, the contents of which is hereby incorporated by reference in its entirety for all intended purposes.


FIELD OF THE DISCLOSURE

This relates generally to touch sensor panels that are integrated with displays, and more particularly, to integrated touch screens in which a self-capacitance touch sensor is utilized to detect the presence of an object in contact with or in close proximity to a touch sensor panel.


BACKGROUND OF THE DISCLOSURE

Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, joysticks, touch sensor panels, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation as well as their declining price. Touch screens can include a touch sensor panel, which can be a clear panel with a touch-sensitive surface, and a display device such as a liquid crystal display (LCD) that can be positioned partially or fully behind the panel so that the touch-sensitive surface can cover at least a portion of the viewable area of the display device. Touch screens can allow a user to perform various functions by touching the touch sensor panel using a finger, stylus or other object at a location often dictated by a user interface (UI) being displayed by the display device. In general, touch screens can recognize a touch and the position of the touch on the touch sensor panel, and the computing system can then interpret the touch in accordance with the display appearing at the time of the touch, and thereafter can perform one or more actions based on the touch. In the case of some touch sensing systems, a physical touch on the display is not needed to detect a touch. For example, in some capacitive-type touch sensing systems, fringing electrical fields used to detect touch can extend beyond the surface of the display, and objects approaching near the surface may be detected near the surface without actually touching the surface.


Capacitive touch sensor panels can be formed by a matrix of substantially transparent conductive plates made of materials such as Indium Tin Oxide (ITO). It is due in part to their substantial transparency that capacitive touch sensor panels can be overlaid on a display to form a touch screen, as described above. Some touch screens can be formed by partially integrating touch sensing circuitry into a display pixel stackup (i.e., the stacked material layers forming the display pixels).


SUMMARY OF THE DISCLOSURE

Some capacitive touch sensor panels can be formed by a matrix of substantially transparent conductive plates made of materials such as Indium Tin Oxide (ITO), and some touch screens can be formed by partially integrating touch sensing circuitry into a display pixel stackup (i.e., the stacked material layers forming the display pixels). Touch events can be sensed on the above touch screens by detecting changes in the self-capacitance of the above conductive plates. However, in some examples, one or more capacitances resulting from the integration of touch sensing circuitry into display pixel stackups can cause offsets in the self-capacitance measurements that can reduce the dynamic range of corresponding sensing circuits, and can make touch detection difficult. The examples of the disclosure provide various techniques for reducing the offset effects of such capacitances.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C illustrate an example mobile telephone, an example media player, and an example portable computing device that each include an exemplary touch screen according to examples of the disclosure.



FIG. 2 is a block diagram of an exemplary computing system that illustrates one implementation of an example touch screen according to examples of the disclosure.



FIG. 3 illustrates an exemplary self-capacitance touch sensor panel having row and column electrodes, and sense channels, according to examples of the disclosure.



FIG. 4 illustrates an exemplary touch sensor circuit corresponding to a self-capacitance touch pixel electrode and sensing according to examples of the disclosure.



FIG. 5 illustrates an example configuration in which common electrodes can form portions of the touch sensing circuitry of a touch sensing system.



FIG. 6 shows a partial circuit diagram of some of the touch sensing circuitry within a display pixel of an example touch screen according to examples of the disclosure.



FIG. 7 illustrates an exemplary electrical circuit corresponding to a self-capacitance touch sensor electrode and sensing circuit according to examples of the disclosure.



FIG. 8 illustrates an exemplary electrical circuit corresponding to a self-capacitance touch sensor electrode and sensing circuit according to examples of the disclosure.



FIG. 9 illustrates an exemplary electrical circuit corresponding to a self-capacitance touch sensor electrode and sensing circuit according to examples of the disclosure.



FIG. 10 illustrates an exemplary electrical circuit corresponding to a self-capacitance touch sensor electrode and sensing circuit according to examples of the disclosure.





DETAILED DESCRIPTION

In the following description of examples, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the disclosed examples.


Some capacitive touch sensor panels can be formed by a matrix of substantially transparent conductive plates made of materials such as Indium Tin Oxide (ITO), and some touch screens can be formed by partially integrating touch sensing circuitry into a display pixel stackup (i.e., the stacked material layers forming the display pixels). Additionally, some capacitive touch sensor panels can be formed by rows and columns of substantially transparent conductive lines made of materials such as ITO, and can similarly form touch screens with touch sensing circuitry partially integrated into a display pixel stackup. Touch events can be sensed on the above touch screens by detecting changes in the self-capacitance of the above conductive plates and/or lines. However, in some examples, one or more capacitances resulting from the integration of touch sensing circuitry into display pixel stackups can cause offsets in the self-capacitance measurements that can reduce the dynamic range of corresponding sensing circuits, and can make touch detection difficult. The examples of the disclosure provide various techniques for reducing the offset effects of such capacitances.



FIGS. 1A-1C show example systems in which a touch screen according to examples of the disclosure may be implemented. FIG. 1A illustrates an example mobile telephone 136 that includes a touch screen 124. FIG. 1B illustrates an example digital media player 140 that includes a touch screen 126. FIG. 1C illustrates an example portable computing device 144 that includes a touch screen 128. Touch screens 124, 126, and 128 can be based on self-capacitance. A self-capacitance based touch system can include small plates of conductive material that can be called a touch pixel or a touch pixel electrode. During operation, the touch pixel can be stimulated with an AC waveform and the self-capacitance of the touch pixel can be measured. As an object approaches the touch pixel, the self-capacitance of the touch pixel can change. This change in the self-capacitance of the touch pixel can be detected and measured by the touch sensing system to determine the positions of multiple objects when they touch, or come in proximity to, the touch screen. In some examples, the electrodes of a self-capacitance based touch system can be formed from rows and columns of conductive material, and changes in the self-capacitance of the rows and columns can be detected, similar to above. In some examples, a touch screen can be multi-touch, single touch, projection scan, full-imaging multi-touch, capacitive touch, etc.



FIG. 2 is a block diagram of an example computing system 200 that illustrates one implementation of an example touch screen 220 according to examples of the disclosure. Computing system 200 can be included in, for example, mobile telephone 136, digital media player 140, portable computing device 144, or any mobile or non-mobile computing device that includes a touch screen, including a wearable device. Computing system 200 can include a touch sensing system including one or more touch processors 202, peripherals 204, a touch controller 206, and touch sensing circuitry (described in more detail below). Peripherals 204 can include, but are not limited to, random access memory (RAM) or other types of memory or storage, watchdog timers and the like. Touch controller 206 can include, but is not limited to, one or more sense channels 208 and channel scan logic 210. Channel scan logic 210 can access RAM 212, autonomously read data from sense channels 208 and provide control for the sense channels. In addition, channel scan logic 210 can control sense channels 208 to generate stimulation signals at various frequencies and phases that can be selectively applied to the touch pixels of touch screen 220, as described in more detail below. In some examples, touch controller 206, touch processor 202 and peripherals 204 can be integrated into a single application specific integrated circuit (ASIC), and in some examples can be integrated with touch screen 220 itself.


Touch screen 220 can include touch sensing circuitry that can include a capacitive sensing medium having a plurality of touch pixels 222. It is understood that while touch screen 220 is described here as including touch pixels 222, the touch screen can similarly include rows and columns of conductive material (e.g., electrodes 302 in FIG. 3); the operation and functions of such a touch screen would be similar to those described here. Touch pixels 222 can be coupled to sense channels 208 in touch controller 206, can be driven by stimulation signals from the sense channels through drive/sense interface 225, and can be sensed by the sense channels through the drive/sense interface as well, as described above. Labeling the conductive plates used to detect touch (i.e., touch pixels 222) as “touch pixels” can be particularly useful when touch screen 220 is viewed as capturing an “image” of touch. In other words, after touch controller 206 has determined an amount of touch detected at each touch pixel 222 in touch screen 220, the pattern of touch pixels in the touch screen at which a touch occurred can be thought of as an “image” of touch (e.g., a pattern of fingers touching the touch screen).


Computing system 200 can also include a host processor 228 for receiving outputs from touch processor 202 and performing actions based on the outputs. For example, host processor 228 can be connected to program storage 232 and a display controller, such as an LCD driver 234. The LCD driver 234 can provide voltages on select (gate) lines to each pixel transistor and can provide data signals along data lines to these same transistors to control the pixel display image as described in more detail below. Host processor 228 can use LCD driver 234 to generate an image on touch screen 220, such as an image of a user interface (UI), and can use touch processor 202 and touch controller 206 to detect a touch on or near touch screen 220. The touch input can be used by computer programs stored in program storage 232 to perform actions that can include, but are not limited to, moving an object such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device connected to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 228 can also perform additional functions that may not be related to touch processing.


Note that one or more of the functions described above, including the configuration of switches, can be performed by firmware stored in memory (e.g., one of the peripherals 204 in FIG. 2) and executed by touch processor 202, or stored in program storage 232 and executed by host processor 228. The firmware can also be stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium (excluding signals) that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device. The computer-readable storage medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, a portable computer diskette (magnetic), a random access memory (RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable read-only memory (EPROM) (magnetic), a portable optical disc such a CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like.


The firmware can also be propagated within any transport medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “transport medium” can be any medium that can communicate, propagate or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The transport medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic or infrared wired or wireless propagation medium.



FIG. 3 illustrates an exemplary self-capacitance touch sensor panel 300 having row 302 and column 303 electrodes, and sense channels 308, according to examples of the disclosure. Similar to touch pixels 222 described above, row 302 and column 303 electrodes can be coupled to sense channels 308, which can be included in a touch controller such as touch controller 206. In some examples, sense channels 308 can correspond to sense channels 208 in FIG. 2. Row 302 and column 303 electrodes can each have a self-capacitance to ground. The operation of touch sensor panel 300 can be similar to the operation of touch screen 220 described above—row 302 and column 303 electrodes can be driven by stimulation signals from sense channels 308, and the self-capacitance of the row and column electrodes can be sensed by the sense channels. Specifically, when an object touches or is in close proximity to row 302 and/or column 303 electrodes, an additional capacitance can be formed between the respective electrodes and ground through the object, which can increase the self-capacitance of the respective electrodes. This change in the self-capacitance of the row 302 and/or column 303 electrodes can be detected by sense channels 308. An “image” of touch can thus be captured.



FIG. 4 illustrates an exemplary touch sensor circuit 400 corresponding to a self-capacitance touch pixel electrode 402 and sensing circuit 414 according to examples of the disclosure. Touch pixel electrode 402 can correspond to touch pixel 222. Touch pixel electrode 402 can have an inherent self-capacitance to ground associated with it, and also an additional self-capacitance to ground that is formed when an object, such as finger 405, is in proximity to or touching the electrode. The total self-capacitance to ground of touch pixel electrode 402 can be illustrated as capacitance 404. Touch pixel electrode 402 can be coupled to sensing circuit 414. Sensing circuit 414 can include an operational amplifier 408, feedback resistor 412, feedback capacitor 410 and an input voltage source 406, although other configurations can be employed. For example, feedback resistor 412 can be replaced by a switched capacitor resistor in order to minimize any parasitic capacitance effect caused by a variable feedback resistor. Touch pixel electrode 402 can be coupled to the inverting input of operational amplifier 408. An AC voltage source 406 (Vac) can be coupled to the non-inverting input of operational amplifier 408. Touch sensor circuit 400 can be configured to sense changes in the total self-capacitance 404 of the touch pixel electrode 402 induced by a finger or object either touching or in proximity to the touch sensor panel. Output 420 can be used by a processor to determine the presence of a proximity or touch event, or the output can be inputted into a discrete logic network to determine the presence of a touch or proximity event. It is understood that one or more of the operations described above with reference to touch pixel electrode 402 can similarly be performed with respect to a row/column electrode such as row 302 and column 303 electrodes in FIG. 3.


Referring back to FIG. 2, in some examples, touch screen 220 can be an integrated touch screen in which touch sensing circuit elements of the touch sensing system can be integrated into the display pixel stackups of a display. The circuit elements in touch screen 220 can include, for example, elements that can exist in LCD or other displays, such as one or more pixel transistors (e.g., thin film transistors (TFTs)), gate lines, data lines, pixel electrodes and common electrodes. In any given display pixel, a voltage between a pixel electrode and a common electrode can control a luminance of the display pixel. The voltage on the pixel electrode can be supplied by a data line through a pixel transistor, which can be controlled by a gate line. It is noted that circuit elements are not limited to whole circuit components, such as a whole capacitor, a whole transistor, etc., but can include portions of circuitry, such as only one of the two plates of a parallel plate capacitor. FIG. 5 illustrates an example configuration in which common electrodes 502 can form portions of the touch sensing circuitry of a touch sensing system—in some examples of this disclosure, the common electrodes can form touch pixels used to detect an image of touch on touch screen 500, as described above. Each common electrode 502 (i.e., touch pixel region) can include a plurality of display pixels 501, and each display pixel 501 can include a portion of a common electrode 502, which can be a circuit element of the display system circuitry in the pixel stackup (i.e., the stacked material layers forming the display pixels) of the display pixels of some types of LCD or other displays that can operate as part of the display system to display an image.


In the example shown in FIG. 5, each common electrode 502 can serve as a multi-function circuit element that can operate as display circuitry of the display system of touch screen 500 and can also operate as touch sensing circuitry of the touch sensing system. In this example, each common electrode 502 can operate as a common electrode of the display circuitry of the touch screen 500, as described above, and can also operate as touch sensing circuitry of the touch screen. For example, a common electrode 502 can operate as a capacitive part of a touch pixel of the touch sensing circuitry during the touch sensing phase. Other circuit elements of touch screen 500 can form part of the touch sensing circuitry by, for example, switching electrical connections, etc. More specifically, in some examples, during the touch sensing phase, a gate line can be connected to a power supply, such as a charge pump, that can apply a voltage to maintain TFTs in display pixels included in a touch pixel in an “off” state. Stimulation signals can be applied to common electrode 502. Changes in the total self-capacitance of common electrode 502 can be sensed through an operational amplifier, as previously discussed. The change in the total self-capacitance of common electrode 502 can depend on the proximity of a touch object, such as finger 405, to the common electrode. In this way, the measured change in total self-capacitance of common electrode 502 can provide an indication of touch on or near the touch screen.


In general, each of the touch sensing circuit elements may be either a multi-function circuit element that can form part of the touch sensing circuitry and can perform one or more other functions, such as forming part of the display circuitry, or may be a single-function circuit element that can operate as touch sensing circuitry only. Similarly, each of the display circuit elements may be either a multi-function circuit element that can operate as display circuitry and perform one or more other functions, such as operating as touch sensing circuitry, or may be a single-function circuit element that can operate as display circuitry only. Therefore, in some examples, some of the circuit elements in the display pixel stackups can be multi-function circuit elements and other circuit elements may be single-function circuit elements. In other examples, all of the circuit elements of the display pixel stackups may be single-function circuit elements.


In addition, although examples herein may describe the display circuitry as operating during a display phase, and describe the touch sensing circuitry as operating during a touch sensing phase, it should be understood that a display phase and a touch sensing phase may be operated at the same time, e.g., partially or completely overlap, or the display phase and touch sensing phase may operate at different times. Also, although examples herein describe certain circuit elements as being multi-function and other circuit elements as being single-function, it should be understood that the circuit elements are not limited to the particular functionality in other examples. In other words, a circuit element that is described in one example herein as a single-function circuit element may be configured as a multi-function circuit element in other examples, and vice versa.


The common electrodes 502 (i.e., touch pixels) and display pixels 501 of FIG. 5 are shown as rectangular or square regions on touch screen 500. However, it is understood that the common electrodes 502 and display pixels 501 are not limited to the shapes, orientations, and positions shown, but can include any suitable configurations according to examples of the disclosure.



FIG. 6 shows a partial circuit diagram 600 of some of the touch sensing circuitry within a display pixel of an example touch screen according to examples of the disclosure. For the sake of clarity, only one display pixel structure is shown. However, it is understood that other display pixels of the touch screen can include the same or similar touch sensing circuitry as described below for display pixel 601. Thus, the description of the operation of display pixel 601 can be considered a description of the operation of the touch panel, in general.


Display pixel 601 can include TFT 607, gate line 611, data line 613, pixel electrode 615, and common electrode 617. Common electrode 617 can correspond to any one of touch pixels 222 in FIG. 2, row 302 or column 303 electrodes in FIG. 3, touch pixel electrodes 402 in FIG. 4 and/or common electrodes 502 in FIG. 5. Gate line 611 can supply one or more voltages to the gate terminal of TFT 607 to control the operational state of the TFT (e.g., “on” or “off), and data line 613 can supply one or more voltages for setting the voltage on pixel electrode 615. In some examples, gate line 611 can be shared by more than one display pixel (i.e., the gate line can be connected to the gate terminal of more than one display TFT), though a single display pixel is shown for simplicity. Storage capacitance 619 can exist between common electrode 617 and pixel electrode 615, and can store a charge—set by the voltage difference between data line 613 and common electrode 617—for controlling a luminance of display pixel 601. In some examples, offset capacitance 621 (or “parasitic capacitance”) can exist between the drain terminal of TFT 607 and the gate terminal of the TFT. Offset capacitance 621 can vary based on the voltage difference between gate line 611 and pixel electrode 615, and can include capacitances such as the gate-to-drain capacitance of TFT 607 and/or other capacitances due to the layout of various components of the touch screen. Operational amplifier 608 can be configured to sense changes in the total self-capacitance of common electrode 617, as described above, to determine the presence of a proximity or touch event at the common electrode. Although display pixel 601 has been described as including a single TFT (i.e., TFT 607), in some examples, the display pixel may include more than a single TFT. For example, display pixel 601 can include two TFTs connected in series, the gate terminals of which both can be connected to gate line 611. The operation of such display pixels can be substantially the same as the operation of the display pixel of FIG. 6. For ease of description, the examples of the disclosure will be described with reference to the display pixel configuration of FIG. 6, although it is understood that the scope of the disclosure is not so limited.


During a touch sensing phase of the touch screen, gate line 611 can supply a voltage to the gate of TFT 607 for turning “off” the TFT. Operational amplifier 608 can sense changes in the total self-capacitance of common electrode 617. As described above, this total self-capacitance can include a touch capacitance 604 due to an object, such as finger 605, being in proximity to or touching common electrode 617, as well as any other capacitance that may be seen at the common electrode. In some examples, the total self-capacitance seen at common electrode 617 can include storage capacitance 619 in series with offset capacitance 621. In some examples, storage capacitance 619 can be much larger than offset capacitance 621, and can thus dominate the non-touch-related total capacitance seen at common electrode 617. As such, the total self-capacitance seen at common electrode 617 can be approximately a combination of touch capacitance 604 and offset capacitance 621.



FIG. 7 illustrates an exemplary electrical circuit 700 corresponding to a self-capacitance touch sensor electrode 717 and sensing circuit 714 according to examples of the disclosure. As discussed above, in some examples, storage capacitance 619 can be much larger than offset capacitance 621. Thus, the total self-capacitance seen at common electrode 617 can be approximated as a combination of touch capacitance 604 and offset capacitance 621. Ignoring touch capacitance 704, the gain of operational amplifier in the configuration illustrated can be expressed as:

A=1+Cgp/Cfb  (1)

where A can represent the gain, Cfb can correspond to feedback capacitance 710, and Cgp can correspond to offset capacitance 721. In some examples, offset capacitance 721 can be on the order of nanofarads (˜1 nF, in some examples), and feedback capacitance 710 can be on the order of picofarads (˜10 pF, in some examples). In such cases, the gain of operational amplifier 708 due only to offset capacitance 721 can be approximately 101. In other words, an input voltage of 1V provided by AC voltage source 706 at the non-inverting input of operational amplifier 708 can result in an output voltage of 101V at the output of the operational amplifier. With such a large offset due simply to offset capacitance 721, it can be difficult to detect changes in the output voltage of operational amplifier 708 resulting from changes in touch capacitance 704, and thus it can be difficult to detect touch and/or proximity events. Additionally, the dynamic range of sensing circuit 714 can be significantly reduced due to the offset effect, and in some examples may render the sensing circuit inoperable.


In some examples, in order to reduce the effect of offset capacitance 621 in FIG. 6 on the output voltage of operational amplifier 608, a resistor with a large AC impedance can be added to the end of gate line 611 so that the gate line can be effectively floating. FIG. 8 illustrates an exemplary electrical circuit 800 corresponding to a self-capacitance touch sensor electrode 817 and sensing circuit 814 according to examples of the disclosure. Circuit 800 can be substantially that of FIG. 7; however, resistor 823 can be added between offset capacitance 821 and ground. Resistor 823 in circuit 800 can correspond to a resistor added somewhere on gate line 611 in FIG. 6; in some examples, the resistor can be added to the end of the gate line. The end of gate line 611 can be a portion of the gate line that can exist outside of a portion of the gate line that can include all connections between the gate line and the gate terminals of the display pixels to which the gate line is connected. In some examples, the end of gate line 611 can be in a border region (i.e., non-visible region) of the touch screen of the disclosure, and resistor 823 can be added to the gate line in the border region of the touch screen. Resistor 823 can have a sufficiently large AC impedance (or resistance) such that the terminal of offset capacitance 821 coupled to resistor 823 (i.e., node A) can be effectively floating with respect to AC signals (i.e., node A can be a high impedance node, an open circuit node, and/or decoupled from ground). However, the DC voltage at node A (i.e., the gate line) can still be controlled for proper display pixel operation, as described above. If node A is effectively floating, the voltage at node A can effectively follow (or shadow) the voltage at touch sensor electrode 817. As such, current flow into offset capacitance 821 can be virtually eliminated, and the effect of offset capacitance 821 on the total self-capacitance seen at touch sensor electrode 817 can be substantially reduced. As a result, changes in touch capacitance 804, and the effect of the touch capacitance on the output voltage of operational amplifier 808, can be more readily detected, and thus touch and/or proximity events can be more easily sensed.


In some examples, the effect of offset capacitance 621 can be reduced as a result of circuitry—in or coupled to the touch screen—that is configured to apply substantially similar voltage signals at gate line 611 and common electrode 617, as will be described with reference to FIGS. 9-10. In some examples, the effect of offset capacitance 621 can be reduced by driving gate line 611 in FIG. 6 with the same AC voltage as is used to drive the non-inverting input of operational amplifier 608. FIG. 9 illustrates an exemplary electrical circuit 900 corresponding to a self-capacitance touch sensor electrode 917 and sensing circuit 914 according to examples of the disclosure. Circuit 900 can be substantially that of FIG. 7, except that node A of offset capacitance 921, instead of being grounded, can be driven by the same AC signal as is driving the non-inverting input of operational amplifier 908. Such a configuration can be the result of driving gate line 611 of FIG. 6 with AC voltage source 606, for example. In some examples, gate line 611 can be driven with AC voltage source 606 on top of any DC voltage that may be applied to the gate line to allow for proper touch screen operation, as described in this disclosure. In such an arrangement, the voltage at common electrode 917 can be virtually the same as the voltage provided by AC voltage source 906 (and the voltage at the non-inverting input of operational amplifier 908) due to the operational characteristics of operational amplifier 908. The voltage at node A can also be virtually the same as the voltage provided by AC voltage source 906 because node A can be directly coupled to the AC voltage source. Thus, the voltage and/or changes in the voltage across offset capacitance 921 can be effectively zero, and current flow into the offset capacitance can be virtually eliminated. As a result, similar to the discussion above with respect to FIG. 8, the effect of offset capacitance 921 on the total self-capacitance seen at touch sensor electrode 917 can be substantially reduced. As such, changes in touch capacitance 904, and the effect of the touch capacitance on the output voltage of operational amplifier 908, can be more readily detected, and thus touch and/or proximity events can be more easily sensed. In some examples, node A can be driven by AC voltage source 906 at all times, and in other examples, node A can be driven by the AC voltage source only during certain times, such as during the touch sensing phase of the touch screen of the disclosure.


In some examples, a combination of adding a high AC impedance resistor to gate line 611 of FIG. 6, and driving the gate line with the same AC voltage source as is driving the non-inverting input of operational amplifier 608, can be used to reduce the effect of offset capacitance 621 on the output voltage of the operational amplifier. FIG. 10 illustrates an exemplary electrical circuit 1000 corresponding to a self-capacitance touch sensor electrode 1017 and sensing circuit 1014 according to examples of the disclosure. Circuit 1000 can be substantially that of FIG. 7, except that resistor 1023 can be coupled to node A of offset capacitance 1021, and node B of the resistor can be driven by AC voltage source 1006, which can also drive the non-inverting input of operational amplifier 1008. The configuration of circuit 1000 can correspond to adding resistor 1023 to gate line 611 in FIG. 6, as described above, and driving the end of the gate line with AC voltage source 606, also as described above. Such a configuration can reduce the effect of offset capacitance 1021 on the output voltage of operational amplifier 1008 in two ways, as discussed above: 1) resistor 1023 can have a sufficiently large AC impedance so as to contribute to the effect of making node A virtually floating with respect to AC signals, and 2) driving node B with AC voltage source 1006 can further contribute to the voltage at node A following the voltage at touch sensor electrode 1017. Together, these effects can contribute to virtually eliminating the voltage and/or changes in the voltage across offset capacitance 1021. Additionally, adding resistor 1023 can help increase the AC load that AC voltage source 1006 sees when driving offset capacitance 1021 and operational amplifier 1008, and thus can make it easier for the AC voltage source to drive the various components to which it is connected. As a result of the above, the effect of offset capacitance 1021 on the total self-capacitance seen at touch sensor electrode 1017 can be substantially reduced. As such, changes in touch capacitance 1004, and the effect of the touch capacitance on the output voltage of operational amplifier 1008, can be more readily detected, and thus touch and/or proximity events can be more easily sensed. In some examples, node B can be driven by AC voltage source 1006 at all times, and in other examples, node B can be driven by the AC voltage source only during certain times, such as during the touch sensing phase of the touch screen of the disclosure.


Thus, the examples of the disclosure provide one or more configurations for reducing the effects of offset capacitances on the dynamic range of sensing circuitry in the touch screens of the disclosure, making it easier to detect touch and/or proximity events at the touch screen.


Therefore, according to the above, some examples of the disclosure are directed a self-capacitance touch screen, the touch screen comprising: a plurality of display pixels, a first display pixel of the plurality of display pixels including a first touch electrode of a plurality of touch electrodes; and a gate line coupled to the first display pixel, wherein the gate line is configured such that a voltage at the gate line substantially follows a voltage at the first touch electrode. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the touch screen is configured to enable an AC voltage to be present at both the gate line and the first touch electrode. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the gate line is coupled to a resistor, the resistor being configured to decouple the gate line from ground. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the resistor is in a border region of the touch screen. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the resistor is coupled to an AC voltage source. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the AC voltage source is coupled to sense circuitry, and the sense circuitry is coupled to the first touch electrode. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the gate line is coupled to an AC voltage source. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the touch screen further comprises sense circuitry coupled to the first touch electrode, and the AC voltage source. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the gate line is further coupled to a DC voltage source. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the gate line is coupled to a transistor in the display pixel. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the gate line is further coupled to a second display pixel of the plurality of display pixels.


Some examples of the disclosure are directed to a method for operating a self-capacitance touch screen, the method comprising: coupling a gate line to a first display pixel of a plurality of display pixels, the first display pixel including a first touch electrode of a plurality of touch electrodes; and operating the gate line such that a voltage at the gate line substantially follows a voltage at the first touch electrode. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the voltage at the gate line and the voltage at the first touch electrode comprise an AC voltage. Additionally or alternatively to one or more of the examples disclosed above, in some examples, operating the gate line comprises coupling the gate line to a resistor, the resistor being configured to decouple the gate line from ground. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the resistor is in a border region of the touch screen. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the method further comprises coupling the resistor to an AC voltage source. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the method further comprises coupling the AC voltage source to sense circuitry; and coupling the sense circuitry to the first touch electrode. Additionally or alternatively to one or more of the examples disclosed above, in some examples, operating the gate line comprises coupling the gate line to an AC voltage source. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the method further comprises coupling the first touch electrode and the AC voltage source to sense circuitry. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the method further comprises coupling the gate line to a DC voltage source. Additionally or alternatively to one or more of the examples disclosed above, in some examples, coupling the gate line to the first display pixel comprises coupling the gate line to a transistor in the first display pixel. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the method further comprises coupling the gate line to a second display pixel of the plurality of display pixels.


Some examples of the disclosure are directed to a self-capacitance touch screen, the touch screen comprising: a plurality of display pixels, a first display pixel of the plurality of display pixels including a first touch electrode of a plurality of touch electrodes; a gate line coupled to the first display pixel; and circuitry configured to apply substantially similar voltage signals at the gate line and the first touch electrode. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the gate line is further coupled to a second display pixel of the plurality of display pixels. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the circuitry comprises an AC voltage source coupled to the gate line and to sense circuitry, the sense circuitry being coupled to the first touch electrode. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the sense circuitry comprises an operational amplifier, the AC voltage source is coupled to a non-inverting input of the operational amplifier, and the first touch electrode is coupled to an inverting input of the operational amplifier. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the circuitry further comprises a resistor through which the AC voltage source is coupled to the gate line.


Although examples of this disclosure have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of examples of this disclosure as defined by the appended claims.

Claims
  • 1. A self-capacitance touch screen, the touch screen comprising: a plurality of display pixels, a first display pixel of the plurality of display pixels including a first touch electrode of a plurality of touch electrodes; anda gate line coupled to the first display pixel, wherein the gate line is coupled to a resistor that: decouples the gate line from ground with respect to one or more AC signals such that a voltage difference between the gate line and the first touch electrode remains substantially unchanged while a self-capacitance of the first touch electrode is being sensed, which includes driving the first touch electrode at an AC voltage; andallows one or more DC signals for operating the first display pixel to pass onto the gate line during a touch mode of the touch screen.
  • 2. The touch screen of claim 1, wherein the touch screen is configured to enable an AC voltage to be present at both the gate line and the first touch electrode.
  • 3. The touch screen of claim 1, wherein the resistor is in a border region of the touch screen.
  • 4. The touch screen of claim 1, wherein the resistor is coupled to an AC voltage source.
  • 5. The touch screen of claim 4, wherein: the AC voltage source is coupled to sense circuitry, andthe sense circuitry is coupled to the first touch electrode.
  • 6. The touch screen of claim 1, wherein the gate line is coupled to an AC voltage source.
  • 7. The touch screen of claim 6, further comprising sense circuitry coupled to: the first touch electrode, and the AC voltage source.
  • 8. The touch screen of claim 6, wherein the gate line is further coupled to a DC voltage source.
  • 9. The touch screen of claim 1, wherein the gate line is coupled to a transistor in the first display pixel.
  • 10. The touch screen of claim 1, wherein the gate line is further coupled to a second display pixel of the plurality of display pixels.
  • 11. A method for operating a self-capacitance touch screen, the method comprising: coupling a gate line to: a first display pixel of a plurality of display pixels, the first display pixel including a first touch electrode of a plurality of touch electrodes; anda resistor that: decouples the gate line from ground with respect to one or more AC signals;allows one or more DC signals for operating the first display pixel to pass onto the gate line during a touch mode of the touch screen; andoperating the gate line such that a voltage difference between the gate line and the first touch electrode remains substantially unchanged while a self-capacitance of the first touch electrode is being sensed, which includes driving the first touch electrode at an AC voltage.
  • 12. The method of claim 11, wherein the voltage at the gate line and the voltage at the first touch electrode comprise an AC voltage.
  • 13. The method of claim 11, wherein the resistor is in a border region of the touch screen.
  • 14. The method of claim 11, further comprising coupling the resistor to an AC voltage source.
  • 15. The method of claim 14, further comprising: coupling the AC voltage source to sense circuitry; andcoupling the sense circuitry to the first touch electrode.
  • 16. The method of claim 11, wherein operating the gate line comprises coupling the gate line to an AC voltage source.
  • 17. The method of claim 16, further comprising coupling the first touch electrode and the AC voltage source to sense circuitry.
  • 18. The method of claim 16, further comprising coupling the gate line to a DC voltage source.
  • 19. The method of claim 11, wherein coupling the gate line to the first display pixel comprises coupling the gate line to a transistor in the first display pixel.
  • 20. The method of claim 11, further comprising coupling the gate line to a second display pixel of the plurality of display pixels.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/039245 5/22/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/178920 11/26/2015 WO A
US Referenced Citations (591)
Number Name Date Kind
4087625 Dym et al. May 1978 A
4090092 Serrano May 1978 A
4304976 Gottbreht et al. Dec 1981 A
4475235 Graham Oct 1984 A
4550221 Mabusth Oct 1985 A
4659874 Landmeier Apr 1987 A
5194862 Edwards Mar 1993 A
5317919 Awtrey Jun 1994 A
5483261 Yasutake Jan 1996 A
5488204 Mead et al. Jan 1996 A
5631670 Tomiyoshi et al. May 1997 A
5825352 Bisset et al. Oct 1998 A
5835079 Shieh Nov 1998 A
5841078 Miller et al. Nov 1998 A
5841427 Teterwak Nov 1998 A
5844506 Binstead Dec 1998 A
5847690 Boie et al. Dec 1998 A
5880411 Gillespie et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5914465 Allen et al. Jun 1999 A
5923997 Mitanaga Jul 1999 A
6025647 Shenoy et al. Feb 2000 A
6057903 Colgan et al. May 2000 A
6137427 Binstead Oct 2000 A
6163313 Aroyan et al. Dec 2000 A
6188391 Seely et al. Feb 2001 B1
6204897 Colgan et al. Mar 2001 B1
6239788 Nohno et al. May 2001 B1
6310610 Beaton et al. Oct 2001 B1
6323846 Westerman et al. Nov 2001 B1
6329044 Inoue et al. Dec 2001 B1
6452514 Philipp Sep 2002 B1
6456952 Nathan Sep 2002 B1
6587358 Yasumura Jul 2003 B1
6690387 Zimmerman et al. Feb 2004 B2
6730863 Gerpheide et al. May 2004 B1
6844673 Bernkopf Jan 2005 B1
6847354 Vranish Jan 2005 B2
6970160 Mulligan et al. Nov 2005 B2
7015894 Morohoshi Mar 2006 B2
7030860 Hsu et al. Apr 2006 B1
7129935 Mackey Oct 2006 B2
7138686 Banerjee et al. Nov 2006 B1
7180508 Kent et al. Feb 2007 B2
7184026 Gordon et al. Feb 2007 B2
7184064 Zimmerman et al. Feb 2007 B2
7337085 Soss Feb 2008 B2
7395717 DeAngelis et al. Jul 2008 B2
7412586 Rajopadhye et al. Aug 2008 B1
7504833 Seguine Mar 2009 B1
7538760 Hotelling et al. May 2009 B2
7548073 Mackey et al. Jun 2009 B2
7639234 Orsley Dec 2009 B2
7663607 Hotelling et al. Feb 2010 B2
7701539 Shih et al. Apr 2010 B2
7719523 Hillis May 2010 B2
7898122 Andrieux et al. Mar 2011 B2
7907126 Yoon et al. Mar 2011 B2
7932898 Philipp et al. Apr 2011 B2
8026904 Westerman Sep 2011 B2
8040321 Peng et al. Oct 2011 B2
8040326 Hotelling et al. Oct 2011 B2
8045783 Lee et al. Oct 2011 B2
8058884 Betancourt Nov 2011 B2
8068097 GuangHai Nov 2011 B2
8120371 Day et al. Feb 2012 B2
8125312 Orr Feb 2012 B2
8149002 Ossart et al. Apr 2012 B2
8169421 Wright et al. May 2012 B2
8223133 Hristov Jul 2012 B2
8258986 Makovetskyy Sep 2012 B2
8259078 Hotelling et al. Sep 2012 B2
8264428 Nam Sep 2012 B2
8283935 Liu et al. Oct 2012 B2
8339286 Cordeiro Dec 2012 B2
8355887 Harding et al. Jan 2013 B1
8441464 Lin et al. May 2013 B1
8479122 Hotelling et al. Jul 2013 B2
8484838 Badaye et al. Jul 2013 B2
8507811 Hotelling et al. Aug 2013 B2
8508495 Hotelling et al. Aug 2013 B2
8525756 Kwon Sep 2013 B2
8537126 Yousefpor et al. Sep 2013 B2
8542208 Krah et al. Sep 2013 B2
8552994 Simmons Oct 2013 B2
8576193 Hotelling Nov 2013 B2
8593410 Hong et al. Nov 2013 B2
8593425 Hong et al. Nov 2013 B2
8614688 Chang Dec 2013 B2
8633915 Hotelling et al. Jan 2014 B2
8665237 Koshiyama et al. Mar 2014 B2
8680877 Lee et al. Mar 2014 B2
8760412 Hotelling et al. Jun 2014 B2
8766950 Morein et al. Jul 2014 B1
8773146 Hills et al. Jul 2014 B1
8773351 Rekimoto Jul 2014 B2
8810543 Kurikawa Aug 2014 B1
8884917 Seo Nov 2014 B2
8902172 Peng et al. Dec 2014 B2
8917256 Roziere Dec 2014 B2
8922521 Hotelling et al. Dec 2014 B2
8957874 Elias Feb 2015 B2
8976133 Yao et al. Mar 2015 B2
8982096 Hong et al. Mar 2015 B2
8982097 Kuzo et al. Mar 2015 B1
9000782 Roziere Apr 2015 B2
9001082 Rosenberg et al. Apr 2015 B1
9024913 Jung May 2015 B1
9035895 Bussat et al. May 2015 B2
9075463 Pyo et al. Jul 2015 B2
9086774 Hotelling et al. Jul 2015 B2
9151791 Roziere Oct 2015 B2
9189119 Liao et al. Nov 2015 B2
9250757 Roziere Feb 2016 B2
9261997 Chang et al. Feb 2016 B2
9268427 Yousefpor et al. Feb 2016 B2
9292137 Kogo Mar 2016 B2
9329674 Lee et al. May 2016 B2
9329723 Benbasat et al. May 2016 B2
9372576 Westerman Jun 2016 B2
9423897 Bae Aug 2016 B2
9442330 Huo Sep 2016 B2
9448675 Morein et al. Sep 2016 B2
9535547 Roziere Jan 2017 B2
9582131 Elias Feb 2017 B2
9640991 Blondin et al. May 2017 B2
9690397 Shepelev et al. Jun 2017 B2
9785295 Yang et al. Oct 2017 B2
9804717 Schropp, Jr. Oct 2017 B2
9857925 Morein et al. Jan 2018 B2
9874975 Benbasat et al. Jan 2018 B2
9880655 O'Connor Jan 2018 B2
9886141 Yousefpor Feb 2018 B2
9904427 Co et al. Feb 2018 B1
9996175 Hotelling et al. Jun 2018 B2
10001888 Hong et al. Jun 2018 B2
10061433 Imai et al. Aug 2018 B2
10120520 Krah et al. Nov 2018 B2
10175832 Roziere Jan 2019 B2
10289251 Shih et al. May 2019 B2
10365764 Korapati et al. Jul 2019 B2
10386962 Jin et al. Aug 2019 B1
10459587 Krah et al. Oct 2019 B2
20020015024 Westerman et al. Feb 2002 A1
20020152048 Hayes Oct 2002 A1
20030075427 Caldwell Apr 2003 A1
20030076325 Thrasher Apr 2003 A1
20030164820 Kent Sep 2003 A1
20030210235 Roberts Nov 2003 A1
20040017362 Mulligan et al. Jan 2004 A1
20040061687 Kent et al. Apr 2004 A1
20040090429 Geaghan et al. May 2004 A1
20040119701 Mulligan et al. Jun 2004 A1
20040140993 Geaghan et al. Jul 2004 A1
20040188151 Gerpheide et al. Sep 2004 A1
20040239650 Mackey Dec 2004 A1
20040241920 Hsiao Dec 2004 A1
20040243747 Rekimoto Dec 2004 A1
20050007353 Smith et al. Jan 2005 A1
20050012724 Kent Jan 2005 A1
20050069718 Voss-Kehl et al. Mar 2005 A1
20050073507 Richter et al. Apr 2005 A1
20050083307 Aufderheide et al. Apr 2005 A1
20050104867 Westerman et al. May 2005 A1
20050126831 Richter et al. Jun 2005 A1
20050146509 Geaghan et al. Jul 2005 A1
20050219228 Alameh et al. Oct 2005 A1
20050239532 Inamura Oct 2005 A1
20050270039 Mackey Dec 2005 A1
20050270273 Marten Dec 2005 A1
20050280639 Taylor et al. Dec 2005 A1
20060001640 Lee Jan 2006 A1
20060017710 Lee et al. Jan 2006 A1
20060026521 Hotelling et al. Feb 2006 A1
20060038791 Mackey Feb 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060097992 Gitzinger et al. May 2006 A1
20060132463 Lee et al. Jun 2006 A1
20060146484 Kim et al. Jul 2006 A1
20060161871 Hotelling et al. Jul 2006 A1
20060197753 Hotelling Sep 2006 A1
20060202969 Hauck Sep 2006 A1
20060203403 Schediwy et al. Sep 2006 A1
20060227115 Fry Oct 2006 A1
20060238522 Westerman et al. Oct 2006 A1
20060267953 Peterson et al. Nov 2006 A1
20060278444 Binstead Dec 2006 A1
20060279548 Geaghan Dec 2006 A1
20060284639 Reynolds Dec 2006 A1
20060293864 Soss Dec 2006 A1
20070008299 Hristov Jan 2007 A1
20070012665 Nelson et al. Jan 2007 A1
20070023523 Onishi Feb 2007 A1
20070074914 Geaghan et al. Apr 2007 A1
20070075982 Morrison et al. Apr 2007 A1
20070216637 Ito Sep 2007 A1
20070216657 Konicek Sep 2007 A1
20070229468 Peng et al. Oct 2007 A1
20070229470 Snyder et al. Oct 2007 A1
20070247443 Philipp Oct 2007 A1
20070262963 Xiao-Ping et al. Nov 2007 A1
20070262969 Pak Nov 2007 A1
20070268273 Westerman et al. Nov 2007 A1
20070268275 Westerman et al. Nov 2007 A1
20070279395 Philipp et al. Dec 2007 A1
20070279619 Chang Dec 2007 A1
20070283832 Hotelling Dec 2007 A1
20070285365 Lee Dec 2007 A1
20070296709 Guanghai Dec 2007 A1
20080006454 Hotelling Jan 2008 A1
20080007533 Hotelling Jan 2008 A1
20080012835 Rimon et al. Jan 2008 A1
20080018581 Park et al. Jan 2008 A1
20080024456 Peng et al. Jan 2008 A1
20080036742 Garmon Feb 2008 A1
20080042985 Katsuhito et al. Feb 2008 A1
20080042986 Westerman et al. Feb 2008 A1
20080042987 Westerman et al. Feb 2008 A1
20080042992 Kim Feb 2008 A1
20080047764 Lee et al. Feb 2008 A1
20080061800 Reynolds et al. Mar 2008 A1
20080062140 Hotelling et al. Mar 2008 A1
20080062147 Hotelling et al. Mar 2008 A1
20080062148 Hotelling et al. Mar 2008 A1
20080062151 Kent Mar 2008 A1
20080074398 Wright Mar 2008 A1
20080100572 Boillot May 2008 A1
20080136787 Yeh et al. Jun 2008 A1
20080136792 Peng et al. Jun 2008 A1
20080142281 Geaghan Jun 2008 A1
20080158145 Westerman Jul 2008 A1
20080158146 Westerman Jul 2008 A1
20080158167 Hotelling et al. Jul 2008 A1
20080158172 Hotelling et al. Jul 2008 A1
20080158174 Land et al. Jul 2008 A1
20080158181 Hamblin et al. Jul 2008 A1
20080158182 Westerman Jul 2008 A1
20080158185 Westerman Jul 2008 A1
20080162996 Krah et al. Jul 2008 A1
20080174321 Kang et al. Jul 2008 A1
20080180365 Ozaki Jul 2008 A1
20080188267 Sagong Aug 2008 A1
20080224962 Kasai et al. Sep 2008 A1
20080231292 Ossart et al. Sep 2008 A1
20080238871 Tam Oct 2008 A1
20080246496 Hristov et al. Oct 2008 A1
20080264699 Chang et al. Oct 2008 A1
20080277259 Chang Nov 2008 A1
20080283175 Hagood et al. Nov 2008 A1
20080303022 Tai et al. Dec 2008 A1
20080303964 Lee Dec 2008 A1
20080309626 Westerman et al. Dec 2008 A1
20080309627 Hotelling et al. Dec 2008 A1
20080309629 Westerman et al. Dec 2008 A1
20080309632 Westerman et al. Dec 2008 A1
20080309633 Hotelling et al. Dec 2008 A1
20080309635 Matsuo Dec 2008 A1
20090002337 Chang Jan 2009 A1
20090009485 Bytheway Jan 2009 A1
20090019344 Yoon et al. Jan 2009 A1
20090020343 Rothkopf et al. Jan 2009 A1
20090070681 Dawes et al. Mar 2009 A1
20090073138 Lee et al. Mar 2009 A1
20090085894 Gandhi et al. Apr 2009 A1
20090091546 Joo et al. Apr 2009 A1
20090091551 Hotelling et al. Apr 2009 A1
20090109192 Liu et al. Apr 2009 A1
20090114456 Wisniewski May 2009 A1
20090128516 Rimon et al. May 2009 A1
20090135157 Harley May 2009 A1
20090141046 Rathnam et al. Jun 2009 A1
20090160787 Westerman et al. Jun 2009 A1
20090174676 Westerman Jul 2009 A1
20090174688 Westerman Jul 2009 A1
20090179868 Ayres et al. Jul 2009 A1
20090182189 Lira Jul 2009 A1
20090184937 Grivna Jul 2009 A1
20090194344 Harley et al. Aug 2009 A1
20090205879 Halsey, IV et al. Aug 2009 A1
20090212642 Krah Aug 2009 A1
20090213090 Mamba et al. Aug 2009 A1
20090236151 Yeh et al. Sep 2009 A1
20090238012 Tatapudi et al. Sep 2009 A1
20090242283 Chiu Oct 2009 A1
20090251427 Hung et al. Oct 2009 A1
20090267902 Nambu et al. Oct 2009 A1
20090267903 Cady et al. Oct 2009 A1
20090273577 Chen et al. Nov 2009 A1
20090277695 Liu et al. Nov 2009 A1
20090303189 Grunthaner et al. Dec 2009 A1
20090309850 Yang Dec 2009 A1
20090309851 Bernstein Dec 2009 A1
20090315854 Matsuo Dec 2009 A1
20090322702 Chien et al. Dec 2009 A1
20100001973 Hotelling Jan 2010 A1
20100004029 Kim Jan 2010 A1
20100006350 Elias Jan 2010 A1
20100007616 Jang Jan 2010 A1
20100013745 Kim et al. Jan 2010 A1
20100013791 Haga et al. Jan 2010 A1
20100019779 Kato et al. Jan 2010 A1
20100031174 Kim Feb 2010 A1
20100039396 Ho et al. Feb 2010 A1
20100059294 Elias et al. Mar 2010 A1
20100060608 Yousefpor Mar 2010 A1
20100079384 Grivna Apr 2010 A1
20100079401 Staton Apr 2010 A1
20100090964 Soo et al. Apr 2010 A1
20100097346 Sleeman Apr 2010 A1
20100102027 Liu et al. Apr 2010 A1
20100110035 Selker May 2010 A1
20100117985 Wadia May 2010 A1
20100123667 Kim et al. May 2010 A1
20100139991 Philipp et al. Jun 2010 A1
20100143848 Jain et al. Jun 2010 A1
20100149127 Fisher et al. Jun 2010 A1
20100156810 Barbier et al. Jun 2010 A1
20100156846 Long et al. Jun 2010 A1
20100182018 Hazelden Jul 2010 A1
20100182278 Li et al. Jul 2010 A1
20100194695 Hotelling et al. Aug 2010 A1
20100194696 Chang et al. Aug 2010 A1
20100194697 Hotelling et al. Aug 2010 A1
20100194698 Hotelling et al. Aug 2010 A1
20100194707 Hotelling et al. Aug 2010 A1
20100201635 Klinghult et al. Aug 2010 A1
20100245286 Parker Sep 2010 A1
20100253638 Yousefpor et al. Oct 2010 A1
20100259503 Yanase Oct 2010 A1
20100265187 Chang et al. Oct 2010 A1
20100265188 Chang et al. Oct 2010 A1
20100277418 Huang et al. Nov 2010 A1
20100321305 Chang et al. Dec 2010 A1
20100328228 Elias Dec 2010 A1
20100328248 Mozdzyn Dec 2010 A1
20100328262 Huang et al. Dec 2010 A1
20100328263 Lin Dec 2010 A1
20110001491 Huang et al. Jan 2011 A1
20110006832 Land et al. Jan 2011 A1
20110006999 Chang et al. Jan 2011 A1
20110007020 Hong et al. Jan 2011 A1
20110007021 Bernstein et al. Jan 2011 A1
20110007030 Mo et al. Jan 2011 A1
20110025623 Lin Feb 2011 A1
20110025629 Grivna et al. Feb 2011 A1
20110025635 Lee Feb 2011 A1
20110061949 Krah et al. Mar 2011 A1
20110074705 Yousefpor Mar 2011 A1
20110080391 Brown et al. Apr 2011 A1
20110096016 Yilmaz Apr 2011 A1
20110134050 Harley Jun 2011 A1
20110157068 Parker et al. Jun 2011 A1
20110157093 Bita et al. Jun 2011 A1
20110169783 Wang et al. Jul 2011 A1
20110199105 Otagaki et al. Aug 2011 A1
20110210941 Reynolds et al. Sep 2011 A1
20110227874 Fahraeus et al. Sep 2011 A1
20110231139 Yokota et al. Sep 2011 A1
20110234523 Chang et al. Sep 2011 A1
20110241907 Cordeiro Oct 2011 A1
20110248949 Chang et al. Oct 2011 A1
20110254795 Chen Oct 2011 A1
20110261005 Joharapurkar et al. Oct 2011 A1
20110261007 Joharapurkar et al. Oct 2011 A1
20110282606 Ahed et al. Nov 2011 A1
20110298727 Yousefpor Dec 2011 A1
20110310033 Liu et al. Dec 2011 A1
20110310064 Keski-Jaskari et al. Dec 2011 A1
20120026099 Harley Feb 2012 A1
20120044199 Karpin et al. Feb 2012 A1
20120050206 Welland Mar 2012 A1
20120050214 Kremin et al. Mar 2012 A1
20120050216 Kremin et al. Mar 2012 A1
20120050217 Noguchi Mar 2012 A1
20120054379 Leung et al. Mar 2012 A1
20120056662 Wilson et al. Mar 2012 A1
20120056851 Chen et al. Mar 2012 A1
20120075239 Azumi et al. Mar 2012 A1
20120092288 Wadia Apr 2012 A1
20120098776 Chen et al. Apr 2012 A1
20120113047 Hanauer et al. May 2012 A1
20120132006 Roziere May 2012 A1
20120146726 Huang et al. Jun 2012 A1
20120146920 Lin Jun 2012 A1
20120146942 Kamoshida et al. Jun 2012 A1
20120154324 Wright et al. Jun 2012 A1
20120162121 Chang Jun 2012 A1
20120162133 Chen et al. Jun 2012 A1
20120162134 Chen et al. Jun 2012 A1
20120169652 Chang Jul 2012 A1
20120169653 Chang Jul 2012 A1
20120169655 Chang Jul 2012 A1
20120169656 Chang Jul 2012 A1
20120169664 Milne Jul 2012 A1
20120182251 Krah Jul 2012 A1
20120187965 Roziere Jul 2012 A1
20120188200 Roziere Jul 2012 A1
20120188201 Binstead Jul 2012 A1
20120211264 Milne Aug 2012 A1
20120242597 Hwang et al. Sep 2012 A1
20120249401 Omoto Oct 2012 A1
20120262395 Chan Oct 2012 A1
20120262410 Lim Oct 2012 A1
20120274603 Kim et al. Nov 2012 A1
20120287068 Colgate et al. Nov 2012 A1
20120313881 Ge et al. Dec 2012 A1
20120320385 Mu et al. Dec 2012 A1
20130015868 Peng Jan 2013 A1
20130021291 Kremin et al. Jan 2013 A1
20130027118 Ho et al. Jan 2013 A1
20130027346 Yarosh et al. Jan 2013 A1
20130038573 Chang et al. Feb 2013 A1
20130057511 Shepelev et al. Mar 2013 A1
20130069911 You Mar 2013 A1
20130076647 Yousefpor et al. Mar 2013 A1
20130076648 Krah Mar 2013 A1
20130093712 Liu et al. Apr 2013 A1
20130100071 Wright et al. Apr 2013 A1
20130120303 Hong et al. May 2013 A1
20130127739 Guard et al. May 2013 A1
20130141343 Yu et al. Jun 2013 A1
20130141383 Woolley Jun 2013 A1
20130154996 Trend et al. Jun 2013 A1
20130170116 In et al. Jul 2013 A1
20130173211 Hoch et al. Jul 2013 A1
20130176271 Sobel et al. Jul 2013 A1
20130176273 Li et al. Jul 2013 A1
20130176276 Shepelev Jul 2013 A1
20130181943 Bulea et al. Jul 2013 A1
20130194229 Sabo et al. Aug 2013 A1
20130215049 Lee Aug 2013 A1
20130215075 Lee et al. Aug 2013 A1
20130224370 Cok et al. Aug 2013 A1
20130234964 Kim et al. Sep 2013 A1
20130257785 Brown et al. Oct 2013 A1
20130257797 Wu et al. Oct 2013 A1
20130257798 Tamura et al. Oct 2013 A1
20130265276 Obeidat et al. Oct 2013 A1
20130271427 Benbasat et al. Oct 2013 A1
20130278447 Kremin Oct 2013 A1
20130278498 Jung et al. Oct 2013 A1
20130278525 Lim et al. Oct 2013 A1
20130278543 Hsu et al. Oct 2013 A1
20130307821 Kogo Nov 2013 A1
20130308031 Theuwissen Nov 2013 A1
20130314342 Kim Nov 2013 A1
20130320994 Brittain Dec 2013 A1
20130321289 Dubery et al. Dec 2013 A1
20130328759 Al-Dahle Dec 2013 A1
20130335342 Kim et al. Dec 2013 A1
20130342479 Pyo et al. Dec 2013 A1
20140002406 Cormier et al. Jan 2014 A1
20140009438 Liu et al. Jan 2014 A1
20140022186 Hong et al. Jan 2014 A1
20140022201 Boychuk et al. Jan 2014 A1
20140043546 Yamazaki et al. Feb 2014 A1
20140049507 Shepelev et al. Feb 2014 A1
20140070823 Roziere Mar 2014 A1
20140071084 Sugiura Mar 2014 A1
20140078096 Tan et al. Mar 2014 A1
20140078097 Shepelev et al. Mar 2014 A1
20140098051 Hong et al. Apr 2014 A1
20140103712 Blondin et al. Apr 2014 A1
20140104194 Davidson et al. Apr 2014 A1
20140104225 Davidson et al. Apr 2014 A1
20140104228 Chen et al. Apr 2014 A1
20140111496 Gomez et al. Apr 2014 A1
20140118270 Moses et al. May 2014 A1
20140125357 Blondin et al. May 2014 A1
20140125628 Yoshida et al. May 2014 A1
20140132534 Kim May 2014 A1
20140132560 Huang et al. May 2014 A1
20140132860 Hotelling et al. May 2014 A1
20140145997 Tiruvuru May 2014 A1
20140152615 Chang et al. Jun 2014 A1
20140160058 Chen et al. Jun 2014 A1
20140168540 Wang et al. Jun 2014 A1
20140204058 Huang et al. Jul 2014 A1
20140210779 Katsuta Jul 2014 A1
20140225838 Gupta et al. Aug 2014 A1
20140232955 Roudbari Aug 2014 A1
20140240291 Nam Aug 2014 A1
20140247245 Lee Sep 2014 A1
20140253470 Havilio Sep 2014 A1
20140267070 Shahparnia et al. Sep 2014 A1
20140267146 Chang et al. Sep 2014 A1
20140267165 Roziere Sep 2014 A1
20140285469 Wright et al. Sep 2014 A1
20140306924 Lin et al. Oct 2014 A1
20140333582 Huo Nov 2014 A1
20140347321 Roziere Nov 2014 A1
20140347574 Tung et al. Nov 2014 A1
20140362029 Mo et al. Dec 2014 A1
20140362030 Mo et al. Dec 2014 A1
20140362034 Mo et al. Dec 2014 A1
20140368436 Abzarian et al. Dec 2014 A1
20140368460 Mo et al. Dec 2014 A1
20140375598 Shen et al. Dec 2014 A1
20140375603 Hotelling et al. Dec 2014 A1
20140375903 Westhues et al. Dec 2014 A1
20150002176 Kwon et al. Jan 2015 A1
20150002448 Brunet et al. Jan 2015 A1
20150002464 Nishioka et al. Jan 2015 A1
20150002752 Shepelev et al. Jan 2015 A1
20150009421 Choi et al. Jan 2015 A1
20150015528 Vandermeijden Jan 2015 A1
20150026398 Kim Jan 2015 A1
20150035768 Shahpamia et al. Feb 2015 A1
20150035787 Shahpamia et al. Feb 2015 A1
20150035797 Shahparnia Feb 2015 A1
20150042600 Lukanc et al. Feb 2015 A1
20150042607 Takanohashi Feb 2015 A1
20150049043 Yousefpor Feb 2015 A1
20150049044 Yousefpor et al. Feb 2015 A1
20150077375 Hotelling et al. Mar 2015 A1
20150084911 Stronks et al. Mar 2015 A1
20150091587 Shepelev et al. Apr 2015 A1
20150091843 Ludden Apr 2015 A1
20150091849 Ludden Apr 2015 A1
20150103047 Hanauer et al. Apr 2015 A1
20150116263 Kim Apr 2015 A1
20150123939 Kim et al. May 2015 A1
20150194470 Hwang Jul 2015 A1
20150227240 Hong et al. Aug 2015 A1
20150242028 Roberts et al. Aug 2015 A1
20150248177 Maharyta Sep 2015 A1
20150253907 Elias Sep 2015 A1
20150268789 Liao et al. Sep 2015 A1
20150268795 Kurasawa et al. Sep 2015 A1
20150277648 Small Oct 2015 A1
20150309610 Rabii et al. Oct 2015 A1
20150324035 Yuan et al. Nov 2015 A1
20150338937 Shepelev et al. Nov 2015 A1
20150370387 Yamaguchi et al. Dec 2015 A1
20150378465 Shih et al. Dec 2015 A1
20160018348 Yau et al. Jan 2016 A1
20160022218 Hayes et al. Jan 2016 A1
20160034102 Roziere et al. Feb 2016 A1
20160041629 Rao et al. Feb 2016 A1
20160048234 Chandran et al. Feb 2016 A1
20160062533 O'Connor Mar 2016 A1
20160077667 Chiang et al. Mar 2016 A1
20160098114 Pylvas Apr 2016 A1
20160117017 Kremin et al. Apr 2016 A1
20160139728 Jeon et al. May 2016 A1
20160154505 Chang et al. Jun 2016 A1
20160154529 Westerman Jun 2016 A1
20160170533 Roziere Jun 2016 A1
20160188040 Shin et al. Jun 2016 A1
20160211808 Lee et al. Jul 2016 A1
20160224177 Krah Aug 2016 A1
20160224189 Yousefpor et al. Aug 2016 A1
20160246403 Zhao et al. Aug 2016 A1
20160246423 Fu Aug 2016 A1
20160253034 Gupta et al. Sep 2016 A1
20160253041 Park et al. Sep 2016 A1
20160259448 Guarneri Sep 2016 A1
20160266676 Wang et al. Sep 2016 A1
20160266679 Shahparnia et al. Sep 2016 A1
20160282980 Chintalapoodi et al. Sep 2016 A1
20160283023 Shin et al. Sep 2016 A1
20160299603 Tsujioka et al. Oct 2016 A1
20160320898 Tang et al. Nov 2016 A1
20160357344 Benbasat et al. Dec 2016 A1
20170090619 Yousefpor et al. Mar 2017 A1
20170090644 Yao et al. Mar 2017 A1
20170097703 Lee Apr 2017 A1
20170108968 Roziere Apr 2017 A1
20170168619 Yang et al. Jun 2017 A1
20170168626 Konicek Jun 2017 A1
20170220156 Blondin et al. Aug 2017 A1
20170229502 Liu et al. Aug 2017 A1
20170262121 Kurasawa et al. Sep 2017 A1
20170269729 Chintalapoodi Sep 2017 A1
20170285804 Yingxuan et al. Oct 2017 A1
20170315646 Roziere Nov 2017 A1
20170351378 Wang et al. Dec 2017 A1
20170357371 Kim et al. Dec 2017 A1
20180032176 Krah et al. Feb 2018 A1
20180067584 Zhu et al. Mar 2018 A1
20180074633 Kida et al. Mar 2018 A1
20180107309 Endo et al. Apr 2018 A1
20180275824 Li et al. Sep 2018 A1
20180307374 Shah et al. Oct 2018 A1
20180307375 Shah et al. Oct 2018 A1
20180314385 Gupta et al. Nov 2018 A1
20190034032 Westerman Jan 2019 A1
20190073061 Krah et al. Mar 2019 A1
20190087051 Yao et al. Mar 2019 A1
20190138152 Yousefpor et al. May 2019 A1
20200019265 Krah et al. Jan 2020 A1
Foreign Referenced Citations (180)
Number Date Country
1202254 Dec 1998 CN
1246638 Mar 2000 CN
1527274 Sep 2004 CN
1672119 Sep 2005 CN
1689677 Nov 2005 CN
1711520 Dec 2005 CN
1739083 Feb 2006 CN
1782837 Jun 2006 CN
1818842 Aug 2006 CN
1864124 Nov 2006 CN
1945516 Apr 2007 CN
101046720 Oct 2007 CN
101071354 Nov 2007 CN
101122838 Feb 2008 CN
101349957 Jan 2009 CN
101419516 Apr 2009 CN
201218943 Apr 2009 CN
101840293 Sep 2010 CN
101859215 Oct 2010 CN
102023768 Apr 2011 CN
102411460 Apr 2012 CN
102483659 May 2012 CN
102483673 May 2012 CN
102760405 Oct 2012 CN
102804114 Nov 2012 CN
103049148 Apr 2013 CN
103052930 Apr 2013 CN
103135815 Jun 2013 CN
103221910 Jul 2013 CN
103258492 Aug 2013 CN
103294321 Sep 2013 CN
103365506 Oct 2013 CN
103577008 Feb 2014 CN
103809810 May 2014 CN
103885627 Jun 2014 CN
104020880 Sep 2014 CN
104020908 Sep 2014 CN
104142757 Nov 2014 CN
104252266 Dec 2014 CN
105045446 Nov 2015 CN
102648446 Jan 2016 CN
105278739 Jan 2016 CN
105474154 Apr 2016 CN
112008001245 Mar 2010 DE
102011089693 Jun 2013 DE
112012004912 Aug 2014 DE
853230 Jul 1998 EP
1192585 Apr 2002 EP
1391807 Feb 2004 EP
1455264 Sep 2004 EP
1573706 Sep 2005 EP
1573706 Sep 2005 EP
1192585 Dec 2005 EP
1644918 Apr 2006 EP
1717677 Nov 2006 EP
1745356 Jan 2007 EP
1455264 Mar 2007 EP
1717677 Jan 2008 EP
1986084 Oct 2008 EP
2077489 Jul 2009 EP
2 144 146 Jan 2010 EP
2148264 Jan 2010 EP
2224277 Sep 2010 EP
2256606 Dec 2010 EP
1455264 May 2011 EP
2756048 May 1998 FR
2 896 595 Jul 2007 FR
2949008 Feb 2011 FR
3004551 Oct 2014 FR
1546317 May 1979 GB
2144146 Feb 1985 GB
2428306 Jan 2007 GB
2437827 Nov 2007 GB
2450207 Dec 2008 GB
10-505183 May 1998 JP
2000-163031 Jun 2000 JP
2002-342033 Nov 2002 JP
2003-066417 Mar 2003 JP
2004-503835 Feb 2004 JP
2004-526265 Aug 2004 JP
2005-84128 Mar 2005 JP
2005-301373 Oct 2005 JP
2006-251927 Sep 2006 JP
2007-18515 Jan 2007 JP
2008-510251 Apr 2008 JP
2008-117371 May 2008 JP
2008-225415 Sep 2008 JP
2009-86240 Apr 2009 JP
2009-157373 Jul 2009 JP
2010-528186 Aug 2010 JP
10-2004-0002983 Jan 2004 KR
10-2004-0091728 Oct 2004 KR
10-2007-0002327 Jan 2007 KR
10-2008-00 19125 Mar 2008 KR
10-2008-0041278 May 2008 KR
10-2010-0054899 May 2010 KR
10-2011-0044670 Apr 2011 KR
10-2012-0085737 Aug 2012 KR
10-2013-0054463 May 2013 KR
10-20 13-0094495 Aug 2013 KR
10-2013-0117499 Oct 2013 KR
10-2014-0043395 Apr 2014 KR
10-2014-0074454 Jun 2014 KR
10-1609992 Apr 2016 KR
200715015 Apr 2007 TW
200826032 Jun 2008 TW
200835294 Aug 2008 TW
M341273 Sep 2008 TW
M344522 Nov 2008 TW
M344544 Nov 2008 TW
M352721 Mar 2009 TW
201115442 May 2011 TW
201203069 Jan 2012 TW
201401129 Jan 2014 TW
201419071 May 2014 TW
1997018508 May 1997 WO
1999035633 Jul 1999 WO
1999035633 Sep 1999 WO
2000073984 Dec 2000 WO
2001097204 Dec 2001 WO
2002080637 Oct 2002 WO
2003079176 Sep 2003 WO
2004013833 Feb 2004 WO
2004013833 Aug 2004 WO
2004114265 Dec 2004 WO
2005114369 Dec 2005 WO
2005114369 Jan 2006 WO
2006020305 Feb 2006 WO
2006023147 Mar 2006 WO
2006023147 May 2006 WO
2006104745 Oct 2006 WO
2006126703 Nov 2006 WO
2006130584 Dec 2006 WO
2007012899 Feb 2007 WO
2007034591 Mar 2007 WO
2006020305 May 2007 WO
2006104745 May 2007 WO
2006130584 May 2007 WO
2007054018 May 2007 WO
2007058727 May 2007 WO
2007066488 Jun 2007 WO
2007089766 Aug 2007 WO
2007115032 Oct 2007 WO
2007146780 Dec 2007 WO
2007146785 Dec 2007 WO
2007115032 Jan 2008 WO
2008000964 Jan 2008 WO
2008007118 Jan 2008 WO
2008030780 Mar 2008 WO
2008047990 Apr 2008 WO
2007146785 May 2008 WO
2008076237 Jun 2008 WO
2008007118 Aug 2008 WO
2008076237 Aug 2008 WO
2007089766 Sep 2008 WO
2007146780 Sep 2008 WO
2008108514 Sep 2008 WO
2008135713 Nov 2008 WO
2009103946 Aug 2009 WO
2010088659 Aug 2010 WO
2010117882 Oct 2010 WO
2011015795 Feb 2011 WO
2011028451 Mar 2011 WO
2011071784 Jun 2011 WO
2011015795 Jul 2011 WO
2011137200 Nov 2011 WO
2013093327 Jun 2013 WO
2013158570 Oct 2013 WO
WO-2014127716 Aug 2014 WO
2015023410 Feb 2015 WO
WO-2015017196 Feb 2015 WO
WO-2015072722 May 2015 WO
WO-2015107969 Jul 2015 WO
2015178920 Nov 2015 WO
WO-2016048269 Mar 2016 WO
2016069642 May 2016 WO
WO-2016066282 May 2016 WO
WO-2016126525 Aug 2016 WO
WO-2016144437 Sep 2016 WO
WO-2017058415 Apr 2017 WO
Non-Patent Literature Citations (230)
Entry
Gibilisco, The Illustrated Dictionary of Electronics, Eighth Edition, p. 173, 2001 (Year: 2001).
O'Connor, mTouchTM Projected Capacitive Touch Screen Sensing Theory of Operation, Microchip TB3064, 2010, pp. 1-16 Year: 2010).
Lowe, “Electronics Components: How to Use an Op Amp as a Voltage Comparator”, 2012 10 pages downloaded from https://www.dummies.com/programming/electronics/components/electronics-components-how-to-use-an-op-amp-as-a-voltage-comparator/ Apr. 20, 2020 (Year: 2012).
Non-Final Office Action dated Dec. 14, 2016, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, eight pages.
Notice of Allowance dated Dec. 2, 2016, for U.S. Appl. No. 14/615,186, filed Feb. 5, 2015, seven pages.
Final Office Action dated May 14, 2018, for U.S. Appl. No. 15/006,987, filed Jan. 26, 2016, 11 pages.
Final Office Action dated May 17, 2018, for U.S. Appl. No. 15/017,463, filed Feb. 5, 2016, 22 pages.
Non-Final Office Action dated Sep. 14, 2017 , for U.S. Appl. No. 15/017,463, filed Feb. 5, 2016, 22 pages.
Notice of Allowance dated Sep. 20, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, eight pages.
Notice of Allowance dated Sep. 20, 2017, for U.S. Appl. No. 15/144,706, filed May 2, 2016, nine pages.
Non-Final Office Action dated Apr. 3, 2018, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, twelve pages.
Notice of Allowance dated Mar. 1, 2018, for U.S. Appl. No. 14/645,120, filed Mar. 11, 2015, five pages.
Final Office Action dated Aug. 16, 2018, for U.S. Appl. No. 14/993,017, filed Jan. 11, 2016, 35 pages.
European Search Report dated Jan. 31, 2018, for EP Application No. 17183937.6, four pages.
Non-Final Office Action dated Jan. 22, 2018 , for U.S. Appl. No. 15/097,179, filed Apr. 12, 2016, 11 pages.
Notice of Allowance dated Feb. 9, 2018, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, 11 pages.
Non-Final Office Action dated Dec. 16, 2016, for U.S. Appl. No. 14/645,120, filed Mar. 11, 2015, ten pages.
Non-Final Office Action dated Dec. 19, 2016, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, eleven pages.
Non-Final Office Action dated Jun. 20, 2018, for U.S. Appl. No. 15/009,774, filed Jan. 28, 2016, 17 pages.
Final Office Action dated Jul. 27, 2018, for U.S. Appl. No. 15/097,179, filed Apr. 12, 2016, 11 pages.
Non-Final Office Action dated Mar. 13, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 20 pages.
Non-Final Office Action dated Apr. 7, 2017, for U.S. Appl. No. 15/144,706, filed May 2, 2016, eight pages.
Final Office Action dated Dec. 5, 2017, for U.S. Appl. No. 15/006,987, filed Jan. 26, 2016, 16 pages.
Non-Final Office Action dated Dec. 22, 2017 , for U.S. Appl. No. 14/993,017, filed Jan. 11, 2016, 23 pages.
Non-Final Office Action dated Jun. 14, 2017, for U.S. Appl. No. 15/006,987, filed Jan. 26, 2016, 14 pages.
Notice of Allowance dated Oct. 3, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, nine pages.
Notice of Allowance dated Oct. 13, 2017, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, eight pages.
Advisory Action received for U.S. Appl. No. 11/818,498, dated May 17, 2013, 5 pages.
Advisory Action received for U.S. Appl. No. 11/818,498, dated Oct. 14, 2011, 5 pages.
Advisory Action received for U.S. Appl. No. 12/206,680, dated Apr. 16, 2012, 3 pages.
Advisory Action received for U.S. Appl. No. 12/238,333, dated Dec. 17. 2013, 3 pages.
Advisory Action received for U.S. Appl. No. 12/238,333, dated Oct. 21. 2015, 4 pages.
Advisory Action received for U.S. Appl. No. 12/500,911, dated May 17, 2013, 3 pages.
Advisory Action received for U.S. Appl. No. 12/642,466, dated May 23, 2013, 2 pages.
Advisory Action received for U.S. Appl. No. 14/082,003, dated Mar. 10, 2016, 3 pages.
Advisory Action received for U.S. Appl. No. 14/645,120, dated Nov. 25, 2016, 3 pages.
Advisory Action received for U.S. Appl. No. 15/017,463, dated Aug. 8, 2018, 3 pages.
Cassidy, R., “The Tissot T-Touch Watch—A Groundbreaking Timepiece”, Available online at: <http://ezinearticles.com/?The-Tissot-T-Touch-Watch---A-Groundbreakin!-Timepiece&id . . . >, Feb. 23, 2007, 2 pages.
Decision to Grant received for European Patent Application No. 16704768.7, dated May 23, 2019, 1 page.
Extended European Search report received for European Patent Application No. 08022505.5, dated Apr. 25, 2012, 12 pages.
Extended European Search Report received for European Patent Application No. 10151969.2, dated Jul. 21, 2010, 6 pages.
Extended European Search Report received for European Patent Application No. 12162177.5, dated Dec. 3, 2012, 7 pages.
Extended European Search Report received for European Patent Application No. 12192450.0, dated Feb. 13, 2013, 6 pages.
Extended European Search Report received for European Patent Application No. 15166813.4, dated Aug. 31, 2015, 8 pages.
Final Office Action received for U.S. Appl. No. 11/818,498, dated Jan. 3, 2013, 17 pages.
Final Office Action received for U.S. Appl. No. 11/818,498, dated Jun. 10, 2011. 16 pages.
Final Office Action received for U.S. Appl. No. 12/206,680, dated Jan. 27, 2014, 20 pages.
Final Office Action received for U.S. Appl. No. 12/206,680, dated Jan. 5, 2012, 16 pages.
Final Office Action received for U.S. Appl. No. 12/206,680, dated May 22, 2013, 16 pages.
Final Office Action received for U.S. Appl. No. 12/238,333, dated Apr. 22, 2015, 23 pages.
Final Office Action received for U.S. Appl. No. 12/238,333, dated Aug. 12, 2013, 19 pages.
Final Office Action received for U.S. Appl. No. 12/238,342, dated Aug. 13, 2013, 14 pages.
Final Office Action received for U.S. Appl. No. 12/238,342, dated Oct. 22. 2014, 16 pages.
Final Office Action received for U.S. Appl. No. 12/494,173, dated Apr. 30, 2013, 7 pages.
Final Office Action received for U.S. Appl. No. 12/500,911, dated Feb. 5, 2013, 16 pages.
Final Office Action received for U.S. Appl. No. 12/545,604, dated Jul. 16, 2014, 18 pages.
Final Office Action received for U.S. Appl. No. 12/545,604, dated Jul. 19, 2013, 18 pages.
Final Office Action received for U.S. Appl. No. 12/545,754, dated Jun. 21, 2013, 6 pages.
Final Office Action received for U.S. Appl. No. 12/642,466, dated Feb. 1, 2013, 10 pages.
Final Office Action received for U.S. Appl. No. 12/642,466, dated Jan. 29, 2016, 10 pages.
Final Office Action received for U.S. Appl. No. 12/642,466, dated May 9, 2014, 13 pages.
Final Office Action received for U.S. Appl. No. 12/847,987, dated Apr. 23, 2014, 16 pages.
Final Office Action received for U.S. Appl. No. 13/448,182, dated Jun. 11, 2015, 13 pages.
Final Office Action received for U.S. Appl. No. 13/448,182, dated Oct. 22, 2014, 12 pages.
Final Office Action received for U.S. Appl. No. 13/899,391, dated Apr. 8, 2016, 10 pages.
Final Office Action received for U.S. Appl. No. 14/082,003, dated Jan. 4, 2016, 26 pages.
Final Office Action received for U.S. Appl. No. 14/082,003, dated Nov. 4, 2016, 19 pages.
Final Office Action received for U.S. Appl. No. 14/082,074, dated Nov. 12, 2015, 23 pages.
Final Office Action received for U.S. Appl. No. 14/318,157, dated Jul. 26, 2017, 10 pages.
Final Office Action received for U.S. Appl. No. 14/318,157, dated May 9, 2016, 10 pages.
Final Office Action received for U.S. Appl. No. 14/550,686, dated Aug. 21, 2017, 12 pages.
Final Office Action received for U.S. Appl. No. 14/550,686, dated Jun. 14, 2016, 11 pages.
Final Office Action received for U.S. Appl. No. 14/558,529, dated Sep. 29, 2016, 23 pages.
Final Office Action received for U.S. Appl. No. 14/645,120, dated Aug. 10, 2017, 13 pages.
Final Office Action received for U.S. Appl. No. 14/645,120, dated May 27, 2016, 13 pages.
Final Office Action received for U.S. Appl. No. 14/997,031, dated Jun. 14, 2018, 19 pages.
Final Office Action received for U.S. Appl. No. 15/009,774, dated Feb. 6, 2019, 16 pages.
Final Office Action received for U.S. Appl. No. 15/507,722, dated Sep. 13, 2019, 18 pages.
Final Office Action received for U.S. Appl. No. 15/522,737, dated Sep. 12, 2019,15 pages.
Final Office Action received for U.S. Appl. No. 16/201,730, dated Nov. 1, 2019, 11 pages.
First Action Interview Office Action received for U.S. Appl. No. 15/686,969, dated Aug. 19, 2019, 7 pages.
Intention to Grant received for European Patent Application No. 15166813.4, dated Sep. 20, 2019, 8 pages.
International Search Report received for PCT Patent Application No. PCT/US2010/022868, dated Mar. 10, 2010, 4 pages.
International Search Report received for PCT Patent Application No. PCT/US2010/029698, dated Jan. 14, 2011, 4 pages.
International Search Report received for PCT Patent Application No. PCT/US2010/058988, dated May 2, 2011, 4 pages.
International Search Report received for PCT Patent Application No. PCT/US2013/036662, dated Aug. 6, 2013, 3 pages.
International Search Report received for PCT Patent Application No. PCT/US2014/039245, dated Sep. 24, 2014, 3 pages.
International Search Report received for PCT Patent Application No. PCT/US2014/047888, dated Jan. 29, 2015, 6 pages.
International Search Report received for PCT Patent Application No. PCT/US2014/056795, dated Dec. 12, 2014, 3 pages.
International Search Report received for PCT Patent Application No. PCT/US2015/057644, dated Jan. 8, 2016, 3 pages.
International Search Report received for PCT Patent Application No. PCT/US2016/015479, dated May 9, 2016, 3 pages.
International Search Report received for PCT Patent Application No. PCT/US2016/016011, dated May 11, 2016, 4 pages.
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25.
Malik et al., “Visual Touch pad: A Two-Handed Gestural Input Device”, Proceedings of the 6th International Conference on Multimodal Interfaces, State College, PA, ICMI '04, ACM, Oct. 13-15, 2004, pp. 289-296.
Non-Final Office Action received for U.S. Appl. No. 11/818,498, dated Dec. 13, 2010, 16 pages.
Non-Final Office Action received for U.S. Appl. No. 11/818,498, dated May 25, 2012, 17 pages.
Non-Final Office Action received for U.S. Appl. No. 12/206,680, dated Jun. 9, 2011, 14 pages.
Non-Final Office Action received for U.S. Appl. No. 12/206,680, dated Sep. 26, 2012, 14 pages.
Non-Final Office Action received for U.S. Appl. No. 12/206,680, dated Sep. 30, 2013, 19 pages.
Non-Final Office Action received for U.S. Appl. No. 12/238,333, dated Jan. 7, 2013, 21 pages.
Non-Final Office Action received for U.S. Appl. No. 12/238,333, dated May 3, 2012, 22 pages.
Non-Final Office Action received for U.S. Appl. No. 12/238,333, dated Sep. 18, 2014, 22 pages.
Non-Final Office Action received for U.S. Appl. No. 12/238,342, dated Feb. 15, 2013, 18 pages.
Non-Final Office Action received for U.S. Appl. No. 12/238,342, dated Mar. 12, 2014, 17 pages.
Non-Final Office Action received for U.S. Appl. No. 12/238,342, dated Mar. 9, 2012, 27 pages.
Non-Final Office Action received for U.S. Appl. No. 12/494,173, dated Nov. 28, 2012, 7 pages.
Non-Final Office Action received for U.S. Appl. No. 12/500,911, dated Jun. 7, 2012, 17 pages.
Non-Final Office Action received for U.S. Appl. No. 12/545,557, dated Jan. 3, 2014, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 12/545,557, dated Nov. 23, 2012, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 12/545,604, dated Dec. 19. 2013, 17 pages.
Non-Final Office Action received for U.S. Appl. No. 12/545,604, dated Jan. 7, 2013, 13 pages.
Non-Final Office Action received for U.S. Appl. No. 12/545,754, dated Jan. 2, 2014, 12 pages.
Non-Final Office Action received for U.S. Appl. No. 12/545,754, dated Oct. 5, 2012, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 12/545,754, dated Sep. 10, 2013, 6 pages.
Non-Final Office Action received for U.S. Appl. No. 12/642,466, dated Aug. 28, 2012, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 12/642,466, dated May 4, 2015, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 12/642,466, dated Nov. 8, 2013, 13 pages.
Non-Final Office Action received for U.S. Appl. No. 12/847,987, dated Sep. 6, 2013, 16 pages.
Non-Final Office Action received for U.S. Appl. No. 13/448,182, dated Jan. 31, 2014, 18 pages.
Non-Final Office Action received for U.S. Appl. No. 13/737,779, dated Mar. 29, 2013, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 13/899,391, dated Oct. 5, 2015, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 14/055,717, dated Apr. 10, 2014, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 14/082,003, dated May 25, 2016, 23 pages.
Non-Final Office Action received for U.S. Appl. No. 14/082,003, dated May 8, 2015, 26 pages.
Non-Final Office Action received for U.S. Appl. No. 14/082,074, dated Apr. 10, 2015, 24 pages.
Non-Final Office Action received for U.S. Appl. No. 14/318,157, dated Oct. 6, 2015, 8 pages.
Non-Final Office Action received for U.S. Appl. No. 14/550,686, dated Aug. 20, 2015, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 14/558,529, dated Apr. 14, 2016, 21 pages.
Non-Final Office Action received for U.S. Appl. No. 14/558,529, dated Jun. 26, 2017, 6 pages.
Non-Final Office Action received for U.S. Appl. No. 14/615,186, dated Jun. 1, 2016, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 14/645,120, dated Oct. 27, 2015, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 14/993,017, dated Jan. 18, 2019, 35 pages.
Non-Final Office Action received for U.S. Appl. No. 15/009,774, dated Sep. 4, 2019, 18 pages.
Non-Final Office Action received for U.S. Appl. No. 15/017,463, dated May 15, 2019, 20 pages.
Non-Final Office Action received for U.S. Appl. No. 15/087,956, dated Jan. 18, 2019, 13 pages.
Non-Final Office Action received for U.S. Appl. No. 15/507,722, dated Feb. 11. 2019, 16 pages.
Non-Final Office Action received for U.S. Appl. No. 15/522,737, dated Jan. 2, 2019, 14 pages.
Non-Final Office Action received for U.S. Appl. No. 16/152,326, dated Aug. 14, 2019, 12 pages.
Non-Final Office Action received for U.S. Appl. No. 16/201,730, dated May 10, 2019, 9 pages.
Notice of Allowance received for U.S. Appl. No. 12/238,333, dated Dec. 1, 2015, 10 pages.
Notice of Allowance received for U.S. Appl. No. 12/494,173, dated Oct. 15. 2014, 8 pages.
Notice of Allowance received for U.S. Appl. No. 12/500,911, dated Aug. 19, 2013, 7 pages.
Notice of Allowance received for U.S. Appl. No. 12/545,557, dated Apr. 11. 2014, 9 pages.
Notice of Allowance received for U.S. Appl. No. 12/545,557, dated Jun. 10, 2013, 9 pages.
Notice of Allowance received for U.S. Appl. No. 12/545,604, dated Oct. 5, 2015, 9 pages.
Notice of Allowance received for U.S. Appl. No. 12/545,754, dated Aug. 21, 2014, 10 pages.
Notice of Allowance received for U.S. Appl. No. 13/448,182, dated Jan. 8, 2016, 9 pages.
Notice of Allowance received for U.S. Appl. No. 13/737,779, dated Sep. 3, 2013, 11 pages.
Notice of Allowance received for U.S. Appl. No. 14/055,717, dated Nov. 7. 2014, 7 pages.
Notice of Allowance received for U.S. Appl. No. 14/312,489, dated Mar. 16, 2015, 8 pages.
Notice of Allowance received for U.S. Appl. No. 14/318,157, dated Dec. 31, 2018, 8 pages.
Notice of Allowance received for U.S. Appl. No. 14/993,017, dated Jul. 12, 2019, 10 pages.
Notice of Allowance received for U.S. Appl. No. 15/087,956, dated Mar. 11, 2019, 11 pages.
Notice of Allowance received for U.S. Appl. No. 15/687,078, dated Apr. 3, 2019, 9 pages.
Notice of Allowance received for U.S. Appl. No. 15/691,283, dated Jun. 5, 2019, 10 pages.
Notification of Grant received for Korean Patent Application No. 10-2016-7003645, dated May 31, 2019, 3 pages (1 page of English Translation and 2 pages of Official Copy).
Notification to Grant received for Chinese Patent Ap plication No. 201610790093.1, dated Apr. 30, 2019, 4 pages (2 pages of English Translation and 2 pages of Official Copy).
Office Action received for Chinese Patent Application No. 201480081612.6, dated Jun. 4, 2019, 22 pages (11 of English Translation and 11 pages of Official Copy).
Office Action received for Chinese Patent Application No. 201580058366.7, dated May 28, 2019, 19 pages (10 pages of English Translation and 9 pages of Official Copy).
Office Action received for Chinese Patent Application No. 201680012966.4, dated Nov. 1, 2019, 19 pages (10 pages of English Translation and 9 pages of Official copy).
Preinterview First Office Action received for U.S. Appl. No. 15/686,969, dated Apr. 4, 2019, 4 pages.
Rekimoto, J., “SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces”, CHI 2002 Conference Proceedings, Conference on Human Factors in Computing Systems, Minneapolis, vol. 4, No. 1, Apr. 20-25, 2002, pp. 113-120.
Restriction Requirement received for U.S. Appl. No. 12/238,333, dated Mar. 8, 2012, 6 pages.
Restriction Requirement received for U.S. Appl. No. 12/494,173, dated Aug. 8, 2012, 5 pages.
Restriction Requirement received for U.S. Appl. No. 13/899,391, dated Apr. 8, 2015, 6 pages.
Restriction Requirement received for U.S. Appl. No. 15/087,956, dated Feb. 13, 2018, 8 pages.
Restriction Requirement received for U.S. Appl. No. 15/097,179, dated Sep. 28, 2017, 6 pages.
Restriction Requirement received for U.S. Appl. No. 15/691,283, dated Mar. 5, 2019, 6 pages.
Rubine, Dean H., “Combining Gestures and Direct Manipulation”, CHI '92, May 3-7, 1992, pp. 659-660.
Rubine, Dean H., “The Automatic Recognition of Gestures”, CMU-CS-91-202. Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages.
Search Report received for Chinese Patent Application No. 201310042816.6, dated May 18, 2015, 4 pages (2 pages of English Translation and 2 pages of Official copy).
Search Report received for Chinese Patent Application No. ZL201020108330.X, dated Dec. 14, 2011, 12 pages (English Translation only).
Supplementary European Search Report received for European Patent Application No. 14902458.0, dated Jul. 27, 2017, 4 pages.
Search Report received for Netherlands Patent Application No. 2001672, dated Apr. 29, 2009, 8 pages.
Search Report received for Taiwanese Patent Application No. 103105965, dated Nov. 12, 2015, 2 pages (1 page of English Translation and 1 page of Official copy).
Search Report received for Taiwanese Patent Application No. 103116003, dated Oct. 14, 2015, 2 pages (1 page of English Translation and 1 page of Official copy).
Search Report received for Taiwanese Patent Application No. 104115152, dated May 3, 2016, 2 pages (1 page of English Translation and 1 page of Official copy).
Westerman, Wayne, “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface”, A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 1999, 363 pages.
Wilson, A. D., “Robust Computer Vision-Based Detection of Pinching for One and Two-Handed Gesture Input”, ACM, USIT '06, Montreux, Oct. 15-18, 2006, 4 pages.
Yang, et al., “A Noise-Immune High-Speed Readout Circuit for In-Cell Touch Screen Panels”, IEEE Transactions on Circuits and Systems-I: Regular Papers vol. 60, No. 7, Jul. 2013, pp. 1800-1809.
Decision of Rejection received for Chinese Patent Application No. 201480065352.3, dated Mar. 2, 2020, 14 pages (9 pages of English Translation and 5 pages of Official Copy).
Decision to Grant received for European Patent Application No. 15166813.4, dated Feb. 6, 2020, 2 pages.
Extended European Search Report received for European Patent Application No. 18197785.1, dated Apr. 5, 2019, 8 pages.
Final Office Action received for U.S. Appl. No. 15/226,628, dated Mar. 28, 2018, 17 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/044545, dated Feb. 7, 2019, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 13/766,376, dated Jul. 31, 2015, 29 pages.
Non-Final Office Action received for U.S. Appl. No. 15/039,400, dated Nov. 24, 2017, 17 pages.
Non-Final Office Action received for U.S. Appl. No. 15/089,432, dated Jan. 24, 2018, 28 pages.
Non-Final Office Action received for U.S. Appl. No. 15/148,798, dated Oct. 30, 2017, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 15/226,628, dated Aug. 11, 2017, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 15/226,628, dated Aug. 27, 2018, 17 pages.
Non-Final Office Action received for U.S. Appl. No. 15/311,836, dated Dec. 15, 2017, 15 pages.
Non-Final Office Action received for U.S. Appl. No. 15/687,354, dated May 23, 2019, 18 pages.
Non-Final Office Action received for U.S. Appl. No. 16/030,654, dated Feb. 21, 2020, 15 pages.
Non-Final Office Action received for U.S. Appl. No. 16/179,565, dated Dec. 13, 2018, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 16/192,664, dated Nov. 26, 2019, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 16/581,721, dated Oct. 30, 2019, 10 pages.
Notice of Acceptance received for Australian Patent Application No. 2019200698, dated Feb. 12, 2020, 3 pages.
Notice of Allowance received for U.S. Appl. No. 13/766,376, dated Jan. 11, 2016, 10 pages.
Notice of Allowance received for U.S. Appl. No. 15/009,774, dated Mar. 20, 2020, 16 pages.
Notice of Allowance received for U.S. Appl. No. 15/039,400, dated Nov. 14, 2018, 2 pages.
Notice of Allowance received for U.S. Appl. No. 15/039,400, dated Oct. 12, 2018, 9 pages.
Notice of Allowance received for U.S. Appl. No. 15/089,432, dated Jul. 30, 2018, 10 pages.
Notice of Allowance received for U.S. Appl. No. 15/148,798, dated Mar. 14, 2018, 10 pages.
Notice of Allowance received for U.S. Appl. No. 15/226,628, dated Apr. 3, 2019, 6 pages.
Notice of Allowance received for U.S. Appl. No. 15/311,836, dated Jul. 5, 2018, 9 pages.
Notice of Allowance received for U.S. Appl. No. 15/507,722, dated Feb. 27, 2020, 9 pages.
Notice of Allowance received for U.S. Appl. No. 15/663,271, dated Jul. 5, 2018, 10 pages.
Notice of Allowance received for U.S. Appl. No. 15/687,354, dated Sep. 6, 2019, 12 pages.
Notice of Allowance received for U.S. Appl. No. 16/179,565, dated Jun. 6, 2019, 7 pages.
Office Action received for Australian Patent Application No. 2019200698, dated Nov. 23, 2019, 3 pages.
Office Action received for Chinese Patent Application No. 201680008313.9, dated Jul. 16, 2019, 20 pages (12 pages of English Translation and 8 pages of Official copy).
Restriction Requirement received for U.S. Appl. No. 131766,376, dated Mar. 16, 2015, 6 pages.
Restriction Requirement received for U.S. Appl. No. 15/089,432, dated Jul. 17, 2017, 5 pages.
Written Opinion received for PCT Patent Application No. PCT/US2010/022868, dated Mar. 10, 2010, 4 pages.
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 11/818,498, dated Dec. 20, 2013, 17 pages.
Final Office Action received for U.S. Appl. No. 15/017,463, dated Feb. 13, 2020, 22 pages.
Final Office Action received for U.S. Appl. No. 16/152,326, dated Jan. 27, 2020, 10 pages.
Final Office Action received for U.S. Appl. No. 16/192,664, dated Apr. 16, 2020, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 16/152,326, dated Jun. 29, 2020, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 16/192,664, dated Jul. 30, 2020, 10 pages.
Notice of Allowance received for U.S. Appl. No. 15/009,774, dated Jul. 1, 2020, 6 pages.
Notice of Allowance received for U.S. Appl. No. 15/522,737, dated Mar. 6, 2020, 8 pages.
Notice of Allowance received for U.S. Appl. No. 15/686,969, dated Jan. 2, 2020, 8 pages.
Notice of Allowance received for U.S. Appl. No. 16/581,721, dated Apr. 22, 2020, 5 pages.
Notice of Allowance received for U.S. Appl. No. 16/581,721, dated Aug. 4, 2020, 5 pages.
Notice of Allowance received for U.S. Appl. No. 16/030,654, dated Jun. 16, 2020, 8 pages.
Patent Board Decision received for U.S. Appl. No. 11/818,498, dated Nov. 2, 2016, 8 pages.
Search Report received for Chinese Patent Application No. 201680008313.9, dated Jul. 5, 2019, 4 pages (2 pages English Translation and 2 pages of Official copy).
Supplemental Notice of Allowance received for U.S. Appl. No. 15/686,969, dated Feb. 21, 2020, 2 pages.
Related Publications (1)
Number Date Country
20170139539 A1 May 2017 US