Panel, covering and method for installing such panels

Information

  • Patent Grant
  • 11668099
  • Patent Number
    11,668,099
  • Date Filed
    Monday, November 25, 2019
    4 years ago
  • Date Issued
    Tuesday, June 6, 2023
    11 months ago
Abstract
A panel for forming a covering, more particularly a floor panel for forming a floor covering, which at least at two opposite edges, comprises coupling parts arranged to couple two of such panels to each other by means of a downward movement of one panel in respect to the other. The coupling parts form a first locking system arranged to lock in the plane of the panels and perpendicularly to the edges, as well as form a second locking system, which effects a locking perpendicularly to the plane of the panels. At least one of the coupling parts is formed at least partially in soft PVC (polyvinyl chloride), as well as at least partially formed from a milled profiled part of this soft PVC.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention relates to a panel, a covering formed of such panels, and a method for installing such panels.


Primarily, the invention relates to floor panels, more particularly decorative floor panels for forming a floor covering, however, it is not excluded to apply the invention with other forms of coverings, for example, as wall panels, ceiling panels and the like.


The invention relates in particular to panels consisting of supple synthetic material, more particularly panels consisting of soft PVC (polyvinyl chloride), also called vinyl tiles or vinyl strips. Often, also the abbreviation LVT is used for such tiles, which stands for Luxurious Vinyl Tile. Herein, this then relates particularly to vinyl tiles with a full core, said core whether or not being composed of layers and substantially consisting of a material on the basis of PVC, amongst which recycled or un-recycled PVC.


2. Related Art

Panels of synthetic material are known, amongst others, from US 2002/0189183. Herein, reference is also made to the American patent application Ser. No. 09/152,684, which is granted under the No. U.S. Pat. No. 6,306,318, and wherein for the material, the use of PVC is stated. The panels represented in the document US 2002/0189183 are formed in a mold. This technique shows the disadvantage that it is expensive and that the production rate is low. Further, the panels obtained in this manner are subjected to tolerance deviations as a result of the fact that expansions may occur when removing the panels from the mold, as a consequence of which the coupling means possibly formed at the edges, when installing the panels, either are difficult to fit into each other, or are sitting too loosely in each other.


A first aim of the invention consists in offering solutions for coupling such panels of PVC, or of another supple synthetic material, to each other in an adequate manner, such by means of appropriate coupling parts.


Moreover, the invention in general also relates to a panel, in particular a floor panel, which, at least at two opposite edges, comprises coupling parts of the type allowing to couple two of such panels to each other by means of a downward movement of one panel in respect to the other, wherein these coupling parts form a first locking system, which effects a locking in the plane of the panels and perpendicularly to said edges, as well as form a second locking system, which effects a locking perpendicularly to the plane of the panels. A second aim of the invention consists in further optimizing panels of this type, such that the coupling parts offer new possibilities and, amongst others, also can be applied with panels of a supple material, more particularly said panels of soft PVC.


SUMMARY

Thus, according to a first aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering, which, at least at two opposite edges, comprises coupling parts of the type allowing to couple two of such panels to each other by means of a downward movement of one panel in respect to the other; wherein these coupling parts form a first locking system, which effects a locking in the plane of the panels and perpendicularly to said edges, as well as form a second locking system, which effects a locking perpendicularly to the plane of the panels; with the characteristic that at least one of said coupling parts is realized at least partially in soft PVC, as well as at least partially in the form of a milled profiled part of this soft PVC. By milling the coupling parts at least partially from soft PVC, very precise tolerances can be maintained. In combination with the use of PVC then very controllable elastic properties may be imparted to the coupling parts, whereby on the whole good properties are obtained, in respect to a smooth coupling as well as in respect to the strength of the coupling which can be realized by means of such coupling parts.


According to a deviating embodiment, the profiled parts, instead of by means of one or more milling treatments, can also be realized by one or more other mechanical cutting treatments.


In a preferred embodiment, the panel is realized as a supple PVC panel, thus, at least with a substrate on the basis of PVC, and said coupling parts are integrally made of this substrate, preferably entirely by means of a mechanical cutting treatment, more particularly by means of a milling process.


According to a second independent aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering, which, at least at two opposite edges, comprises coupling parts of the type allowing to couple two of such panels to each other by means of a downward movement of one panel in respect to the other; wherein these coupling parts form a first locking system, which effects a locking in the plane of the panels and perpendicularly to said edges, as well as form a second locking system, which effects a locking perpendicularly to the plane of the panels; wherein the first locking system is formed at least of an upwardly directed lower hook-shaped portion which is situated at one of said two edges, as well as of a downwardly directed upper hook-shaped portion which is situated at the opposite edge; and wherein the lower hook-shaped portion consists of a lip with an upwardly directed locking element, whereas the upper hook-shaped portion consists of a lip with a downwardly directed locking element; with the characteristic that at least one of said hook-shaped portions is bendable in respect to the plane of the respective panel, such that the pertaining locking element can perform a movement, more particularly a tilting movement, which facilitates coupling the panels.


Panels according to this second independent aspect offer the advantage that they can be coupled smoothly at said edges, as the tilting movement provides for that the locking elements can engage more smoothly one behind the other, possibly without necessarily having to overcome a snap effect.


It is noted that, as will be explained further, the intended bending as such can take place in such hook-shaped portion itself, as well as at a distance therefrom, wherein the hook-shaped portion in the latter case then as a whole adopts a bent-out position.


According to a preferred characteristic of the second aspect, the panel is characterized in that the coupling means are configured such that the downwardly directed locking element is configured such that the downwardly directed locking element must be brought through an opening between the upwardly directed locking element and a locking part of the second locking system and that the downwardly directed locking element and said opening are configured such that the downwardly directed locking element fits more smoothly through said opening when at least one of said hook-shaped portions is bent, compared to the case when none of both hook-shaped portions is bent.


According to a third independent aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; wherein this panel comprises a substrate of a material on the basis of soft PVC; wherein this panel is rectangular, either oblong or square, and thus comprises a first pair of opposite edges and a second pair of opposite edges; wherein both pairs of opposite edges comprise coupling parts allowing to mutually couple a plurality of such panels to each other; wherein these coupling parts at both pairs of edges form a first locking system which effects a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system which effects a locking perpendicular to the plane of the panels; and wherein these coupling parts substantially are realized from said substrate; with the characteristic that the coupling parts at the first pair of opposite edges are configured such that two of such panels can be coupled to each other at these edges by means of a turning movement; and that the coupling parts at the second pair of opposite edges are configured such that two of such floor panels can be coupled to each other by means of a downward movement of one panel in respect to the other, more particularly by means of the downward movement obtained as a result of the turning movement at the first pair of edges.


According to a preferred embodiment, this floor panel further is characterized in that the second locking system at the second pair of edges consists of locking parts engaging behind each other, which can be brought one behind the other by their elasticity and/or movability.


Panels according to the third aspect of the invention offer the advantage that, by also integrating the coupling parts at the second pair of sides into the substrate, ideal properties are obtained for realizing a coupling which allows a locking by means of a downward movement.


According to a fourth independent aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; which, at least at two opposite edges, comprises coupling parts of the type allowing to couple two of such panels to each other by means of a downward movement of one panel in respect to the other; wherein these coupling parts form a first locking system, which effects a locking in the plane of the panels and perpendicularly to said edges, as well as form a second locking system, which effects a locking perpendicularly to the plane of the panels; wherein the first locking system is formed at least of an upwardly directed lower hook-shaped portion which is situated at one of said two edges, as well as of a downwardly directed upper hook-shaped portion which is situated at the opposite edge; wherein the lower hook-shaped portion consists of a lip with an upwardly directed locking element, whereas the upper hook-shaped portion consists of a lip with a downwardly directed locking element; and wherein the second locking system comprises locking parts which are situated next to the proximal end of the lower hook-shaped portion and the distal end of the upper hook-shaped portion, respectively; characterized in that at least one of said locking parts of the second locking system is made from soft PVC.


Herein, said locking parts preferably are made as a fixed and preferably compressible part.


More particularly, it is preferred herein that the panel substantially consists of a substrate on the basis of soft PVC and that said coupling parts are integrally realized in said substrate, wherein said locking parts are realized as fixed, possibly somewhat compressible parts.


By making use of soft PVC in a coupling system with coupling parts which can be joined together by a downward movement, it is obtained that the coupling parts can move smoothly along each other during coupling.


According to a fifth independent aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; wherein this panel is of the type which comprises a substrate of supple synthetic material; wherein this panel, at least at two opposite edges, comprises coupling parts of the type allowing to couple two of such panels to each other by means of a downward movement of one panel in respect to the other; wherein these coupling parts form a first locking system, which effects a locking in the plane of the panels and perpendicularly to said edges, as well as form a second locking system, which effects a locking perpendicularly to the plane of the panels; wherein the first locking system is formed at least of an upwardly directed lower hook-shaped portion which is situated at one of said two edges, as well as of a downwardly directed upper hook-shaped portion which is situated at the opposite edge; characterized in that in said substrate, a reinforcement layer is present, which extends in the plane of the panel; that the lower hook-shaped portion consists of a lip with an upwardly directed locking element, whereas the upper hook-shaped portion consists of a lip with a downwardly directed locking element; and that at least one of said lips is configured such that, seen in cross-section, it is at least over a certain portion free from said reinforcement layer. Preferably, both lips are configured in this manner.


The term “reinforcement layer” is to be understood in a broad sense and also simply includes a layer which, for example, is applied as a basic carrier for building up the vinyl structure.


As one or both of the lips, over at least a portion thereof, are kept free from such reinforcement layer, the advantage is obtained that such reinforcement layer cannot affect the bendability in these portions in a disadvantageous manner.


It is noted that the invention also relates to all possible combinations of the aforementioned aspects, wherein two, three, four or all five of said aspects are combined with each other. Herein, all mathematically possible combinations of the five aspects can be taken into consideration.


According to preferred embodiments, the panels of the aforementioned one or more aspects also show one or more of the hereafter listed additional characteristics, inasmuch as these characteristics do not already form part of the basic characteristics of such aspect. These characteristics consist in:

    • that at least said coupling parts, which are of the type allowing that two of such floor panels can be coupled to each other by means of a downward movement of one panel in respect to the other, are realized at least partially and preferably entirely of soft PVC;
    • that it comprises a substrate of soft PVC and that at least said coupling parts, which are of the type allowing that two of such floor panels can be coupled to each other by means of a downward movement of one panel in respect to the other, are integrally realized from the substrate;
    • that said coupling parts, which are of the type allowing that two of such floor panels can be coupled to each other by means of a downward movement of one panel in respect to the other, have a first locking system, which is formed at least of a downwardly directed first lower hook-shaped portion situated at one of the respective edges, as well as a downwardly directed upper hook-shaped portion situated at the opposite edge;
    • that this panel is rectangular, either oblong or square, and thus comprises a first pair of opposite edges and a second pair of opposite edges, wherein both pairs of opposite edges comprise coupling parts allowing to mutually couple a plurality of such panels to each other, wherein these coupling parts at both pairs of edges form a first locking system which effects a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system which effects a locking perpendicularly to the plane of the panels, and wherein the coupling parts at one of both pairs of edges thus are formed by said coupling parts which are of the type allowing that two of such floor panels can be coupled to each other by means of a downward movement of one panel in respect to the other;
    • that the panel substantially consists of a substrate and that the coupling parts at both pairs of edges are realized substantially integrally from this substrate;
    • that the substrate substantially consists of soft PVC, in which possibly a reinforcement layer is incorporated;
    • that the substrate substantially consists of soft PVC, with the exception of possible top layers, backing layers and intermediate layers, which may consist of another material.


According to a particular aspect of the invention, the coupling parts and/or the substrate and/or the entire panel consist of a supple synthetic material other than PVC, preferably having an elasticity comparable to that of soft PVC. It is clear that similar advantages are obtained. Also, compositions of materials are possible, for example, soft PVC with other materials, such as fillers. The PVC may consist of newly-made material as well as recycled PVC. It is clear that this also applies to the embodiments which are to follow.


The panels of the invention preferably are made in the form of rectangular oblong strips. The dimensions may vary greatly.


In respect to thickness of the embodiments aimed at herein above as well as herein below, this preferably varies between 3 and 10 mm, and still better between 4 and 7 mm.


At the decor side, they comprise a decorative layer, which may carry any image. In a practical embodiment, the image represents a wood motif. More particularly, on each panel the appearance of a wooden plank is represented.


Other additional characteristics will become clear from the detailed description and the claims. It is noted that all subsidiary characteristics can be combined at will with the main characteristics of the respective basic aspects.


According to a sixth independent aspect, the invention provides a method for installing panels, more particularly floor panels, wherein these panels are rectangular, either oblong or square, and thus comprise a first pair of opposite edges and a second pair of opposite edges; wherein both pairs of opposite edges comprise coupling parts, which form a first locking system which effects a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system which effects a locking perpendicular to the plane of the panels; wherein the coupling parts at the first pairs of opposite edges are configured such that two of such floor panels can be coupled to each other at these edges by means of a turning movement; wherein the coupling parts at the second pair of opposite edges are configured such that two of such floor panels can be coupled to each other by means of a downward movement of one panel in respect to the other, more particularly by means of the downward movement which is obtained as a result of the turning movement at the first pair of edges; wherein at the second pair of edges, the locking system is formed at least of an upwardly directed lower hook-shaped portion situated at one of said two edges, as well as of a downwardly directed upper hook-shaped portion which is situated at the opposite edge; and wherein the lower hook-shaped portion consists of a lip with an upwardly directed locking element, whereas the upper hook-shaped portion consists of a lip with a downwardly directed locking element; with the characteristic that at the second pair of edges coupling parts are applied of which at least one of the lips, in respect to the plane of the panel concerned, can be bent out of this plane, such that the pertaining locking element can perform a movement, more particularly a tilting movement, which facilitates the coupling of the panels, and that the method provides at least the following steps:

    • installing a first panel intended for forming part of a first row of panels;
    • coupling a second panel to said first panel, such at said first pair of edges, wherein this second panel is intended for forming part of a second row successive to said first row of panels;
    • coupling in the second row a third panel both to said second panel and to the first panel, wherein the third panel is coupled to the first panel by means of a turning movement, wherein the third panel, from an upwardly pivoted position, is brought into substantially the same plane as the first and second panels, whereas, as a result of this movement and the downward pressing-together movement created therein, the hook-shaped portions engage into each other between the third and second panel; applying an underlay element therein;
    • and, during pressing together, as a result of the use of the underlay element, deforming, more particularly bending, at least one of said lips in such a manner that coupling, as aforementioned, is facilitated.


According to a variant, not specifically one or more lips are bent, but one or more of the hook-shaped portions are bent as a whole or locally, wherein the bending thus does not necessarily have to take place in the lips themselves.


This installation technique allows a smooth installation, without necessitating tools. Further advantages, as well as preferred techniques, will become clear from the detailed description.


It is clear that the method of the sixth aspect shows its advantages in particular when it is applied for installing panels in the form of strips or tiles on the basis of soft PVC, which are provided with said coupling parts.


According to a deviating variant of the sixth aspect, the invention also relates to a method wherein the above-described, as well as below-described, technique in which an underlay element is applied and a bending is created, is applied for panels wherein at the first pair of edges the connection is performed in another manner than by means of a turning movement. The essence in fact consists in the particular technique of bending the coupling parts at one pair of edges, irrespective of the manner in which the other pair of edges is coupled.


In a preferred embodiment, in the aforementioned method panels are applied which also fulfill one or more of the aforementioned first five aspects.


It is noted that “soft PVC” is a term which expresses that this relates to supple PVC, in other words, PVC which is bendable in a relatively smooth manner. The term soft PVC is generally known in the art. Such soft PVC consists of PVC which is softened, preferably by means of a plasticizer added during the production process. Depending on the amount of plasticizer added, of course different degrees of suppleness can be obtained.


By a plasticizer, any agent is to be understood, which, when added, results in a more supple PVC. Typical examples are phthalate plasticizers and isosorbide plasticizers.


By PCV which has been plasticized, of course, also PVC can be understood, or a composition on the basis of PVC, which as such has the feature that it is supple, for example, because it is modified.


Preferably, a suppleness will be applied which is such that, when a panel is gripped horizontally at one extremity, it indeed will bend downward under its own weight and possibly at a distance from the clamped portion indeed will hang downward completely, however, certainly will not limply hang downward directly after the clamped end, however, it will still be well bendable by a manual force.


Also, it is noted that a number of the independent basic aspects are not restricted to the use of PVC or another synthetic material. Thus, it is clear that these aspects may also be applied in panels of other materials.


Although the herein above-described coupling systems are particularly useful when applied in panels having a substrate on the basis of synthetic material, and in particular PVC panels, with soft PVC it was found that in particular under the influence of heat, for example, sun radiation on a floor, a considerable expansion can take place, with the result that with such soft PVC, there is a risk that the panels, at their edges, are pushed upward against each other, which can result in that couplings, which are of the type allowing a connection by means of a downward movement, simply are pushed out of each other. According to a seventh aspect, a solution for this is offered.


According to this seventh aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; wherein this panel comprises a substrate of a material on the basis of soft PVC; wherein this panel is rectangular, either oblong or square, and thus comprises a first pair of opposite edges and a second pair of opposite edges, wherein both pairs of opposite edges comprise coupling parts allowing to couple a plurality of such panels to each other; wherein these coupling parts, at both pairs of edges, form a first locking system effecting a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system effecting a locking transverse to the plane of the panels; and wherein these coupling parts substantially are realized from said substrate; characterized in

    • that the coupling parts of the first pair of opposite edges, as well as of the second pair of opposite edges are configured such that two of such panels can be coupled to each other at these edges by means of a turning movement;
    • that to this aim, these coupling parts, at each of the aforementioned two pairs of edges, consist of a tongue and a groove, as well as locking parts, which, in the coupled condition, prevent the drifting apart of the tongue and groove;
    • and that at both pairs the groove each time is bordered by a lower lip and an upper lip, whereby the lower lip extends laterally up to beyond the distal end of the upper lip.


By the tongue and groove intended in the seventh aspect, a tongue and groove system is meant wherein the tongue and groove are so pronounced that they cannot be forced into each other by means of a manual downward movement and thus can be interconnected only in another manner, for example, by a turning movement and/or a shifting movement.


As, at both pairs of edges, coupling parts are provided, which can be brought into each other by means of a turning movement and which comprise a pronounced tongue and groove system, the panels can no longer be pushed out of each other in upward direction at their edges, by which permanent coupling remains guaranteed.


It is noted that up to now, the application of so-called angle connections at both pairs of edges of panels of soft PVC had been thought impossible, as such panels, during coupling, then have to be subjected at least to a number of manual shifting operations in longitudinal direction along coupled edges, and as it was assumed that parts consisting of soft PVC, in this case, thus, tongue and groove, would not allow such manual shifting operations due to the large friction therebetween. Against all such assumptions, however, the inventor has found that it still is possible indeed. Thus, by means of the seventh aspect, this prejudice is overcome.


According to a preferred embodiment of the seventh aspect of the invention, the panel is characterized in that the aforementioned locking parts at both pairs are provided with locking surfaces, which are situated at least partially in the portion of the lower lip which is situated beyond the distal end of the upper lip. Thereby, the locking part of the tongue can be brought smoothly behind the locking part of the groove when being inserted by turning.


According to still another preferred embodiment of the seventh aspect of the invention, the panel is characterized in that at least at one pair of edges, the tongue and groove have a shape providing for that, in the coupled condition of two of such panels, a space is present underneath the tongue, said space extending continuously underneath the tongue as from the tip of the tongue, at least up to a location which is situated beyond the distal end of the upper lip. The use of such space has the advantage that panels, during installation, can be moved smoothly along each other, as the risk of getting stuck and of friction during installation is reduced. Also, due to this space, the insertion of the tongue in the groove is avoided.


Preferably, said space extends underneath the tongue over a length, measured parallel to the surface of the panel, which is at least 1.5 and still better at least 2 times the distance from the tip of the tongue up to the distal end of the upper lip. Hereby, the risk of the occurrence of undesired clamping effects among the panels during their installation is minimized even further.


According to the seventh aspect, it is further preferred that the panel is oblong and thus has a long and a short side, and that at least the edges of the short sides provide for such space. This is particularly useful when the panels are installed by means of a so-called “angle-angle-technique”, as clamping effects will occur easily herein, which, particularly in the case of panels consisting of soft PVC, might lead to situations which might render the installation considerably difficult.


According to a particular embodiment, the panel is characterized in that it is manually bendable in at least one direction in such a manner that it can be inserted, at the edges extending transverse to this direction, with a tongue over the lower lip of a preceding panel in the groove of this preceding panel, until the upper edges touch each other, and without bending the lower lip of the preceding panel, whereas the panel concerned, at the edge located opposite to the edge having said tongue, is bent down until it touches the underlying surface. The advantage thereof will become evident from the following description.


According to still another embodiment of the seventh aspect, the panel is characterized in that it is manually bendable in at least one direction in such a manner that it can be inserted, at the edges extending transverse to this direction, with a tongue over the lower lip of a preceding panel in the groove of this preceding panel, until the upper edges touch each other, and without bending the lower lip of the preceding panel, whereas the panel concerned, at the edge located opposite to the edge having said tongue, is bent down until it touches the underlying surface, and that the pair of edges extending transverse to said direction relates to the same pair of edges as the pair of edges which provides for the aforementioned space. This combination of characteristics is particularly useful for coupling the panels to each other by means of the “angle-angle-technique”.


In a practical embodiment of the seventh aspect, both pairs of edges provide for such space in the coupled condition.


According to another embodiment, the panel of the seventh aspect is characterized in that the tongue and groove of at least one pair of edges are realized such that, when two of such panels are presented to each other at these edges in a plane-parallel manner, the tongue, at least with its tip, comes to sit at least partially underneath the lip bordering the upper side of the groove, without any bending being necessary already. The other pair of edges then in coupled condition preferably provides a space, as described herein above.


Even only the application of said space with panels consisting of a material on the basis of soft PVC already results in a coupling system which is advantageous in respect to the existing systems. In fact, it is clear that thereby less clamping effects will occur when coupling two such panels, and installation will become considerably easier. Therefor, the invention, according to an eighth independent aspect, relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; wherein this panel comprises a substrate of a material on the basis of soft PVC; wherein this panel is rectangular, either oblong or square, and thus comprises a first pair of opposite edges and a second pair of opposite edges; wherein both pairs of opposite edges comprise coupling parts allowing to couple a plurality of such panels to each other; wherein these coupling parts, at both pairs of edges, form a first locking system effecting a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system effecting a locking transverse to the plane of the panels; and wherein these coupling parts substantially are realized from said substrate; characterized in

    • that to this aim, these coupling parts, at least at one of the aforementioned two pairs of edges, consist of a tongue and a groove, as well as locking parts, which, in the coupled condition, prevent the drifting apart of the tongue and groove;
    • that said groove each time is bordered by a lower lip and an upper lip, whereby the lower lip extends laterally up to beyond the distal end of the upper lip; and
    • that said tongue and groove have a shape which provides for that, in the coupled condition of two of such panels, a space is present underneath the tongue, said space extending from the tip of the tongue continuously underneath the tongue at least up to a location situated beyond the distal end of the upper lip.


Preferably, the panel, according to the eighth aspect, further is characterized in that the tongue and groove, including the locking parts, are of the type allowing that two such panels can be interconnected at the respective edges by means of a turning movement. According to still another preferred characteristic, said tongue and groove are realized such that, when two of such panels are presented to each other at these edges in a plan-parallel manner, the tongue, at least with its tip, comes to sit at least partially underneath the lip bordering the upper side of the groove, without any bending being necessary already.


In the case of oblong panels, the aforementioned space preferably is provided at the short sides.


It is clear that the use of such space can also be useful with panels consisting of other synthetic materials. Consequently, the invention, according to the ninth independent aspect, relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; wherein this panel comprises a substrate of a material on the basis of soft PVC; wherein this panel is rectangular, either oblong or square, and thus comprises a first pair of opposite edges and a second pair of opposite edges; wherein both pairs of opposite edges comprise coupling parts allowing to couple a plurality of such panels to each other; wherein these coupling parts, at both pairs of edges, form a first locking system effecting a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system effecting a locking transverse to the plane of the panels; and wherein these coupling parts substantially are realized from said substrate; characterized in

    • that the coupling parts of the first pair of opposite edges as well as of the second pair of opposite edges are configured such that two of such panels can be coupled to each other at these edges by means of a turning movement;
    • that these coupling parts, at least at one pair of edges, consist of a tongue and a groove, as well as locking parts, which, in the coupled condition, prevent the drifting apart of the tongue and groove;
    • that said groove is bordered by a lower lip and an upper lip, whereby the lower lip extends laterally up to beyond the distal end of the upper lip; and
    • that said tongue and groove have a shape which provides for that, in the coupled condition of two of such panels, a space is present underneath the tongue, said space extending from the tip of the tongue continuously underneath the tongue at least up to a location situated beyond the distal end of the upper lip.


Here, too, it is preferred that, when the panel is oblong, said pair of edges providing for the aforementioned space is situated at the short sides of the panel.


According to the tenth independent aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; wherein this panel comprises a substrate of a material on the basis of soft PVC; wherein this panel is rectangular, either oblong or square, and thus comprises a first pair of opposite edges and a second pair of opposite edges; wherein both pairs of opposite edges comprise coupling parts allowing to couple a plurality of such panels to each other; wherein these coupling parts, at both pairs of edges, form a first locking system effecting a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system effecting a locking transverse to the plane of the panels; and wherein these coupling parts substantially are realized from said substrate; characterized in

    • that the coupling parts of at least the first pair of opposite edges are configured such that two of such panels can be coupled to each other at these edges by means of a turning movement;
    • that these coupling parts at the first pair of edges consist of a tongue and a groove, as well as locking parts, which, in the coupled condition, prevent the drifting apart of the tongue and groove;
    • that said groove is bordered by a lower lip and an upper lip, whereby the lower lip extends laterally up to beyond the distal end of the upper lip; and
    • that said tongue and groove have a shape which provides for that, in the coupled condition of two of such panels, a space is present underneath the tongue, said space extending from the tip of the tongue continuously underneath the tongue at least up to a location situated beyond the distal end of the upper lip; and
    • that the tongue is in connection with the remainder of the panel via a narrowed portion;
    • that the smallest thickness of the portion of the lower lip situated beyond the distal end of the upper lip, is smaller than the smallest thickness of said narrowed portion; and
    • that the tongue in downward direction is supported on the groove by the locking surfaces and/or by a support point located proximally in respect to the locking surfaces.


According to an eleventh independent aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; wherein this panel is rectangular, either oblong or square, and thus comprises a long side and a short side; wherein this panel, at least at the short side, is provided with coupling parts allowing to couple two of such panels to each other; wherein these coupling parts form a first locking system effecting a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system effecting a locking transverse to the plane of the panels; wherein said coupling parts comprise a tongue and a groove, as well as locking parts, which, in the coupled condition, prevent the drifting apart of the tongue and groove; and wherein the aforementioned groove is bordered by a lower lip and an upper lip, whereby the lower lip extends laterally up to beyond the distal end of the upper lip; characterized in that the panel according to a direction perpendicularly to the short sides is manually bendable in such a manner that it can be inserted, at the edges extending transverse to this direction, with a tongue over the lower lip of a preceding panel in the groove of this preceding panel, until the upper edges touch each other, and without bending the lower lip of the preceding panel, whereas the panel concerned, at the edge located opposite to the edge having said tongue, is bent down until it touches the underlying surface. Such panel offers the advantage that it can be brought smoothly with the tongue in the groove of the preceding panel at one end, whereas, on the other hand, the bent-down end allows a better alignment and positioning. It is clear that this eleventh aspect thus also is particularly useful with panels having a substrate on the basis of soft PVC.


According to a twelfth independent aspect, the invention relates to a panel for forming a covering, more particularly a floor panel for forming a floor covering; wherein this panel comprises a substrate of a material on the basis of soft PVC; wherein this panel is rectangular, either oblong or square, and thus comprises a first pair of opposite edges and a second pair of opposite edges; characterized in that at least one pair of opposite edges comprises coupling parts allowing to couple two of such panels to each other; wherein these coupling parts form a first locking system effecting a locking in the plane of the panels and perpendicularly to the edges concerned, as well as form a second locking system effecting a locking transverse to the plane of the panels; that these coupling parts substantially are realized from said substrate; that these coupling parts consist of a tongue and a groove, as well as locking parts, which, in the coupled condition, prevent the drifting apart of the tongue and groove; that the groove is bordered by a lower lip and an upper lip, wherein the lower lip extends laterally up to beyond the distal end of the upper lip; and that the coupling parts are configured such that two of such panels can be coupled to each other at these edges by means of a turning movement, as well as can be coupled to each other by means of a shifting and snap movement. Herein, the advantage is obtained that the installing person can realize a connection by turning as well as by snapping together, at choice.


According to a thirteenth independent aspect, the invention relates to a method for installing panels, wherein it relates to panels according to any of the aforementioned seventh to twelfth aspects, and wherein these panels substantially are formed of a synthetic material substrate, more particularly of soft PVC, characterized in that the panels are interconnected by means of an angle-angle-technique, wherein a newly to install panel is coupled to a preceding panel in a same row by means of a turning movement, such panel, in coupled condition, is subjected to a shifting movement in order to bring it against a panel in a preceding row, and this panel then is coupled to panels in a preceding row by turning it down together with the preceding panel from the same row; and that in said shifting movement, the contact between the coupling parts applied therein, which comprise and a groove, as well as locking parts, is kept small by applying a space underneath the tongue, said space extending continuously underneath the tongue as from the tip of the tongue, at least up to a location situated beyond the distal end of the upper lip. As explained further, the panels, thanks to the application of said space, can be installed in a smooth manner, although soft PVC shows the feature that two parts thereof are difficult to shift along each other.





BRIEF DESCRIPTION OF THE DRAWINGS

With the intention of better showing the characteristics of the invention, hereafter, as an example without any limitative character, some preferred embodiments are described, with reference to the accompanying drawings, wherein:



FIG. 1 in top plan view represents a panel, more particularly a floor panel, according to the invention;



FIGS. 2 and 3, at a larger scale, represent cross-sections according to the lines II-II and III-III in FIG. 1;



FIGS. 4 and 5 represent how the panels can be interconnected at their long sides;



FIGS. 6 and 7 represent how the panels fit into each other at their short sides;



FIG. 8 represents how a plurality of panels from FIG. 1 can be connected to each other;



FIG. 9, at a larger scale, represents the portion indicated by F9 in FIG. 8;



FIG. 10 represents a particular technique for interconnecting panels;



FIG. 11, at a larger scale, represents the portion indicated by F11 in FIG. 10;



FIGS. 12 and 13 further illustrate the aforementioned technique;



FIG. 14 represents another particular embodiment of said technique;



FIG. 15 in cross-section represents another embodiment of a panel according to the invention;



FIG. 16 in top view represents another panel according to the invention;



FIGS. 17 and 18, at a larger scale, represent cross-sections according to lines XVII-XVII and XVIII-XVIII, respectively, in FIG. 16;



FIG. 19 represents how two panels according to FIG. 16 can be coupled to each other;



FIG. 20 represents two coupled panels from FIG. 16;



FIG. 21 represents the edges of two panels according to FIG. 16 in a condition wherein they are presented to each other in a plan-parallel manner;



FIGS. 22 to 27 relate to methods for installing panels such as those from FIG. 16;



FIG. 28 schematically represents a step from the milling process for realizing a panel according to FIG. 16.





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

In FIGS. 1 to 7, an embodiment of a panel 1 according to the invention is represented, which is realized as a floor panel, in which all first five aspects of the invention are applied.


In the represented example, the panel 1 is made as an oblong rectangular strip and thus comprises a first pair of opposite edges 2-3, which in this case form the long sides of the panel 1, and a second pair of opposite edges 4-5, which form the short sides of the panel 1.


As is represented more in detail in FIGS. 2 and 3, both pairs of opposite edges 2-3 and 4-5 comprise coupling parts 6-7, 8-9, respectively, which allow to mutually couple a plurality of such panels 1 to each other.


As specifically represented in the FIGS. 4 and 5, coupling parts 6-7 at the first pair of opposite edges 2-3 are configured such that two of such panels can be coupled to each other at these edges 2-3 in a locking manner by means of a turning movement. Herein, the coupling parts 6-7 form a first locking system which effects a locking in the plane of the panels 1 and perpendicularly to said edges 2-3, thus, in this case in the horizontal direction, as well as form a second locking system, which effects a locking perpendicularly to the plane of the panels 1, in this case, thus, in the vertical direction. To this aim, the coupling parts 6-7 are constructed as a tongue 10 and a groove 11, which provide for the vertical locking and comprise locking parts 12-13, which, in the coupled condition, prevent the shifting apart of the tongue and groove.


Herein, it is preferred that, as indicated, the groove 11 is limited by a lower lip 14 and an upper lip 15, and that the locking parts 12 and 13 are performed in the form of cooperating projections, at the lower side of the tongue 10 and at the upper side of the lower lip 14, respectively. The cooperation is performed by means of locking surfaces 16 and 17 provided for this purpose. As also represented, it is also preferred that the lower lip 14 extends laterally up to beyond the distal end of the upper lip 15, more particularly such that the locking surface 17 is situated entirely in that portion of the lower lip 14 which is situated beyond the upper lip 15.


As schematically represented in FIGS. 6 and 7, the coupling parts 8-9 at the second pair of opposite edges 4-5 are configured such that two of such panels 1 can be coupled to each other by means of a downward movement of one panel in respect to the other. This downward movement will be discussed more detailed below.


As is clearly visible in FIG. 7, the coupling parts 8-9 herein also form a first locking system, which effects a locking in the plane of the panels 1 and perpendicular to said edges 4-5, thus, in the case in the horizontal direction, as well as a second locking system, which effects a locking perpendicularly to the plane of the panels 1, in this case, thus, the vertical direction.


The first locking system is substantially formed of an upwardly directed lower hook-shaped portion 18 situated at the edge 5, as well as of a downwardly directed upper hook-shaped portion 19 which is situated at the opposite edge 4, which hook-shaped portions can be engaged one behind the other by said downward movement. The lower hook-shaped portion 18 consists of a lip 20, which extends laterally from the lower edge of the panel 1 and which is provided with an upwardly directed locking element 21 with a locking surface 22, whereas the upper hook-shaped portion 19 consists of a lip 23, which extends laterally from the upper edge of the panel 1 and which is provided with a downwardly directed locking element 24 with a locking surface 25.


The second locking system of the edges at the short sides is formed by locking parts 26-27, which are situated next to the proximal extremity 28 of the lower hook-shaped portion 18 and the distal extremity 29 of the upper hook-shaped portion 19, respectively. The locking parts 26-27 consist of projections engaging one behind the other, which define locking surfaces 30-31. It is noted that the coupling parts 8-9 principally also may be considered a tongue and groove coupling, wherein the locking part 27 functions as a tongue, whereas the groove in which this tongue gets seated, is defined by the locking part 26 functioning as the upper lip, and the first hook-shaped portion 18 functioning as the lower lip.


It is noted that the space between the vertically active locking part 26 and the horizontally active locking element 21, which is also indicated by opening H, functions as a female part 32, whereas the locking element 24 is made as a male part 33, which fits into the female part 32.


The panel 1 is substantially formed on the basis of soft polyvinyl chloride (PVC). More specifically, it comprises a substrate which is realized on the basis of soft PVC, which substrate is indicated by reference 34 in FIGS. 2 through 13. In these figures, this substrate is schematically depicted as a single layer. In reality, this may be a single layer as well as several layers, which not all have to consist of PVC. Usually, a top layer 35 is provided on the substrate, which in FIGS. 2 to 13 also is represented by a single layer, however, in reality also may consist of several layers, which further will become clear from the description of FIG. 14. The top layer 35 has at least the aim of providing a decorative upper side 36 at the panel 1, preferably in the form of a printed decor and, at least in the case of a floor panel, providing for offering a wear-resistant surface.


As indicated in FIG. 7, the panels have a total thickness T. The thickness T preferably has a value situated between 3 and 10 mm. In particular in a practical embodiment, this value will be situated between 4 and 7 mm.


It is noted that the aforementioned coupling parts, 6-7 as well as 8-9, as represented, preferably are formed integrally from the material of the actual panel 1, more particularly from the substrate material. As a result thereof, the coupling parts as such also consist of soft PVC. It is noted that the coupling parts 6-7 and 8-9 preferably are also formed by means of a mechanical treatment, more particularly milling treatments. Milling techniques which allow to provide coupling parts at the edges of the panels are known, amongst others, from WO 97/47834. By selecting appropriate cutters and by means of an appropriate adjustment thereof, thus, appropriate profiled parts, for example, as are represented in the figures, may be realized.


Preferably, the whole is designed such that, by exerting a relatively low force, preferably manually, at least one of said hook-shaped portions 18-19 can be bent out of the plane of the panel 1, and preferably even both can be bent out of the plane of the panel 1. By this bendability, it is meant that such hook-shaped portion can adopt a bent position in respect to the remainder of such panel 1, wherein this thus may relate to a bending in such hook-shaped portion itself, for example, in the lip thereof, as well as to a bending in the panel itself, proximally from the hook-shaped portion, such that the hook-shaped portion is put at an angle in respect to the panel itself, or to a combination of both. This bendability is achieved, amongst others, due to the suppleness of said soft PVC.


More particularly, it is preferred that at least one of said hook-shaped portions 18-19, in respect to the plane of the panel concerned, can be bent out of this plane, such that the pertaining locking element 21-24 can perform a movement, more particularly a tilting movement, which facilitates coupling the panels. Such bending allows a smooth coupling of such panels by means of an underlay element 37, according to an installation technique which will be explained further in particular.


In FIGS. 8 and 9, it is schematically represented how the panels 1 can be installed. In order to explain the method, a number of the panels 1, in order to differentiate additionally, are indicated by references 1A, 1B, 1C. The panels 1 are laid down row per row and coupled to each other. In order to obtain that the panels are coupled at the edges 2-3 as well as 4-5, the method comprises at least the following steps:

    • installing a first panel 1A intended for forming part of a first row of panels;
    • coupling a second panel 1B to said first panel 1A, such at first edges 2-3, wherein this second panel 1B is intended for forming part of a second row successive to said first row of panels;
    • coupling in the second row a third panel 1C both to said second panel 1B as to the first panel 1A, wherein the third panel 1C is coupled to the first panel 1A by means of a turning movement, wherein the third panel 1C, from an upwardly pivoted position, is brought into substantially the same plane as the first and second panels, whereas, as a result of this movement and the downward movement created therein, the hook-shaped portions 18-19 engage into each other between the third and second panel.


It is clear that normally, between installing the first panel 1A and coupling the second panel 1B thereto, first also all further panels of the row in which the first panel 1A is situated, are installed. Coupling the second panel 1B to the first panel 1A, of course, also is performed by connecting the panel 1B at its edge 2, by means of a turning movement as represented in FIG. 4, to the edge 3 of the first panel 1A and possible other panels of the row of the panel 1A.


When connecting the panel 1C to the panel 1A, also a turning movement, as in FIG. 4, is applied. Herein, a downward movement M is performed at the short edges 4-5, by which the coupling parts 8 and 9 are engaged into each other.


By this downward movement M, in a very broad sense each form of movement is meant in which, in a cross-section as seen in FIGS. 6 and 7, the one panel is let down from a higher position in relation to the other. This movement M does not necessarily have to be a rectilinear movement, and during this movement, temporary deformations in the panels and more particularly in the hook-shaped portions 18 and 19 may occur.


Theoretically, a downward movement M, which, seen in cross-section, is rectilinear or almost rectilinear, may be used for engaging a panel 1C into a panel 1B, which means that the right-hand panel in FIG. 6, seen in cross-section, simply is pressed straight down into the position of FIG. 7. It is clear that herein effectively small local deformations will occur, as the locking parts 26 and 27 have to be pressed home one behind each other by means of a snap effect. Herein, the snap effect is obtained by the elasticity of the soft PVC and the bending actions in the component parts and compressions in the material occurring as a result thereof.


Practically seen, however, use shall be made of a technique described in more detail below, by which the installation of the panels 1 is facilitated. Namely, it is so that, when joining the panels by means of the aforementioned theoretical manner, the hook-shaped portions 18-19 are difficult to press fixedly into each other as the suppleness of soft PVC is too low. Pressing the hook-shaped portions 18-19 fixedly together according to said theoretical manner, in the represented profile normally will be realized only by exerting a force with a tool onto the upper side of the panel to be joined into the other, on the respective edge thereof, for example, by means of a hammer or the like.


According to a practical technique of the invention, an underlay element 37 is applied when interconnecting the panels 1C and 1B, in such a manner that during joining a bending is created in one or both of the hook-shaped portions 18-19, as a result of which the male part 33 more smoothly fits into the female part 32. Herein, the underlay element 37 is provided underneath the edge 5 of the panel 1B, more particularly is pushed there under, such that the hook-shaped portion 18 is pending freely at a distance above the subsurface, more particularly such as can be seen in FIGS. 12 and 13. By subsequently coupling the panel 1C during turning down to the panel 1B, different movement mechanisms can be created, depending on the location where a pressure is exerted on the panel 1C, which mechanisms, however, always lead to a smooth joining of the edges, without having to exert an extreme force for this purpose. Thus, the pressing-on may take place simply by exerting a force F on the panel 1C with a finger.


According to FIG. 12, the force F is exerted on top of the hook-shaped portion 19, with the result that this hook-shaped portion 19 as such bends not or a little and only the hook-shaped portion 18 bends downward, whereby the opening H indicated in FIG. 11 enlarges a little and the male part 33 will fit better into the female part 32.


However, still better, as represented in FIG. 13, a force F is exerted on the panel 1C at a distance which is somewhat remote from the edge 4, with the result that the entire hook-shaped portion 19 comes into an upwardly bent position in respect to the remainder of the panel. As a result thereof, the locking element 24 performs a tilting movement, by which it fits more smoothly through said opening H, after which, after removing the pressure on the panel 1C, this locking portion 24 tilts back into its normal position, wherein the locking part 27 comes to sit underneath the locking part 26. It is clear that herein normally also a bending in the hook-shaped portion 18 will occur, as a result of which, analogous as discussed by means of FIG. 12, also the joining is facilitated once more.


During joining according to FIG. 13, a snap effect may or may not occur, depending on the design of the coupling parts and the bending effects of the hook-shaped portions 18 and 19 realized during joining. It is clear that by a bending herein a bending in a hook-shaped portion 18 or 19 itself has to be understood, thus, that the lip 20 and/or 23 itself is bent, as well as a bending of such part in its totality, wherein the bending zone is not located in the lip 20 and/or 23, but at a farther distance from the respective edge in the respective panel itself. The bending may also consist of the combination of these two possibilities.


In the most preferred embodiment, the coupling parts 8-9 are realized such that, by realizing a bending as in FIG. 13, however, in a more pronounced form, the male part 33 can be inserted in the female part 32 without any snap effect, this by means of the above-discussed tilting movement. By means of a pronounced bending, the male part 33 effectively can be inserted freely into the opening H, after which this, by the tilting back thereof, it is seated with the locking part 27 underneath the locking part 26 without any snap effect. Such pronounced bending is represented in FIG. 14, wherein said opening is enlarged such that the locking element 24 can move smoothly downward between the locking element 21 and the locking part 26, whether or not with any clamping effect, until the locking surface 31 slides underneath the locking surface 30 and the locking is obtained. It is noted that the technique applied herein results in that the coupling is no longer operative as a so-called “push-lock” coupling, but rather provides for a local turning movement, wherein certain portions thus perform tilting movements into each other by the deformation of the respective edge zones.


An important advantage of the herein-above discussed practical methods consists in that for moving the locking parts 26 and 27 one behind each other, the panel 1C, when being let down, does not have to perform a short to-and-fro shifting movement along the already coupled edge 2, or this shifting movement is strongly minimized. In a number of known so-called “angle-push” or “fold-down” systems, such to-and-fro shifting movement in fact forms a problem, as the new panel, which is already coupled at the longitudinal edges, often does not properly pull itself against the preceding panel in the same row. By the above-described technique, wherein a tilting movement occurs in the edges 4-5 to be coupled, the entire panel, in order to provide the locking parts 26 and 27 one behind the other, does not have to perform a to-and-fro displacement in the longitudinal direction, or this to-and-fro displacement is considerably reduced, by which said problem is excluded, minimized, respectively.


Finally, in FIG. 15 a particular embodiment of a panel according to the invention is represented, with the particularity that in the substrate 34 a reinforcement layer 38 is provided, preferably of glass fiber, more particularly a net or fleece of glass fiber. An important preferred characteristic herein is that at least one of the lips 20, 23, respectively, and preferably both, comprise a portion G1, G2, respectively, which are free from the reinforcement layer 38, such that a good bendability in the respective lip is maintained.


As an example, FIG. 15, apart from the reinforcement layer 38, also represents a practical construction, which is composed as follows:

    • the substrate, which consists of two basic layers 39-40, with the reinforcement layer 38 embedded there between;
    • the top layer 35, which is composed of a film 41 printed with a motif, a transparent wear layer 42 and one or more transparent lacquer layers 43;
    • at the underside, a backing layer 44.


The basic layers 39 and 40 consist of PVC, possibly recycled PVC, whereas the reinforcement layer 38 consists of a glass fiber net. The printed film 41 consists of a printed PVC film. The transparent wear layer 42 consists of a thin layer of vinyl, in which wear-resistant particles, preferably ceramic particles, such as corundum and the like, are incorporated. The lacquer layers 43 offer an additional protection and preferably are formed of two layers of transparent polyurethane lacquer, in which optionally also wear-resistant particles have been incorporated.


The thicknesses of the layers may differ from manufacturer to manufacturer. In FIG. 15, they are depicted only schematically. In a practical embodiment, these may have, for example, the following thicknesses: 1 mm for the backing layer 44; 2.5 mm for the lower basic layer 37; 0.3 mm for the glass fiber net; 1.5 mm for the upper basic layer 38; 0.1 mm for the printed film 39; 0.5 mm for the wear layer 40; and 0.1 mm for the whole of lacquer layers 41.


Further, impressions can be provided in the surface, in the form of a relief, which, for example, imitates a real surface structure, for example, of wood or the like. This relief can be performed in register with the decor.


Further, it is noted in general that preferably also one or more of the following characteristics are applied:

    • the locking part 27 is placed somewhat towards the inside, such that it is situated entirely underneath the upper side of its own panel;
    • the locking parts 26-27 forming the second locking system are made in the form of projections, undercuts, respectively.


The present invention is in no way restricted to the embodiments described by way of example and represented in the figures, however, such panel, such covering and such method for installing panels can be realized according to various variants, without leaving the scope of the invention.


For example, a support portion 45 can be provided at the underlay element 37, with which this underlay element 37 can be slid against the front edge of the panel 1B, in order to obtain that the underlay element is situated perpendicularly to the longitudinal direction of the panels. At the front edge 46 possibly a means, such as an inclined part, can be provided, as a result of which the underlay element can be slid smoothly under the already installed panel 1B. It is noted that the underlay element 37 preferably has such a length that it reaches up to underneath the panel 1A.


The panel described below by means of FIGS. 16 to 28, as well as methods for installing and manufacturing it, relate to the seventh to thirteenth aspect of the invention.


In the represented example, the panel 1 is rectangular and oblong and comprises one pair of edges 2-3, which form the long sides of the panel 1, as well as one pair of edges 4-5, which form the short sides. Further, the represented panel 1 comprises a substrate 34, which consists of a material on the basis of soft PVC. Moreover, the panel 1 altogether is relatively supple.


As can be seen in FIGS. 17 and 18, at each pair of edges 2-3 and 4-5 coupling parts 6-7, 8-9, respectively, are present, which are formed in the substrate 34 and which, in the coupled condition of two of such panels 1, effect a locking in the vertical as well as in the horizontal direction. Herein, these coupling parts 6-7 and 8-9 at both pairs of edges 2-3 and 4-5 are configured such that two of such panels can be coupled to each other by means of a turning movement, as illustrated in FIG. 19.


In this case, the coupling parts 6-7 and 8-9 consist at both pairs of edges of a tongue 10 and a groove 11, as well as locking parts 12-13, which, in the coupled condition, prevent the drifting apart of the tongue 10 and groove 11. The groove 11 respectively is bordered by a lower lip 14 and an upper lip 15, wherein the lower lip 14 extends laterally up to beyond the distal end 47 of the upper lip 15. The locking parts 12-13 define locking surfaces 16-17. It is noted that in the represented example, the tongue and groove profiles at both pairs of edges 2-3 and 4-5 are identical to each other, which, of course, is no absolute requirement. For simplicity's sake, in the embodiment of FIGS. 16 to 21 thus the same references 10 to 17 are applied for the specific description of the coupling parts 6-7 as well as of the coupling parts 8-9.


The locking surfaces 16-17 are situated at least partially, and, as represented, entirely in the portion of the lower lip which is situated beyond the distal end of the upper lip.



FIG. 20 represents that in the coupled condition of two of such panels 1, a space 48 is present underneath the tongue 10, said space extending continuously underneath the tongue 10 as from the tip of the tongue 10 up to a location 50, which is situated beyond the distal end 47 of the upper lip 15.


Said space 48 extends underneath the tongue 10 over a length L1, measured parallel to the plane of the panel, which preferably is at least 1.5 times, and still better at least 2 times, the distance L2 from the tip 49 of the tongue 10 up to the distal end 47 of the upper lip 15, which effects a smooth insertion of the tongue in the groove and also contributes to that two of such panels can be shifted along their edges in mutual respect.


As represented, the tongue 10 preferably is in connection with the remainder of the panel 1 by means of a narrowed portion 51. The smallest thickness A of the portion 52 of the lower lip 14, which is situated beyond the distal end 47 of the upper lip 15, therein preferably is smaller than the smallest thickness B of said narrowed portion 51. Further, it is preferred that the tongue 10, in downward direction, is supported on the groove by means of the locking surfaces 16 and 17 and/or by means of a support point 53 situated proximally from the locking surface 17.


The support point 53, which also provides for the support in downward direction, preferably has a contact tangent line 54 forming an inclination with the horizontal which is smaller than 30 degrees and still better is smaller than 10 degrees and still better is zero degrees, such as it is the case in FIG. 20.


The fact that apart from the locking surfaces 16 and 17, also a support point 53 is present, guarantees for that the tongue 10 cannot move up and down in the groove and that no height differences can occur among the coupled panels.



FIG. 20 also shows that the contacting portion 55, which is situated at the underside of the upper lip 15, preferably forms a slight downward inclination in proximal direction, which allows working with a slightly downward-inclined milling cutter, which will be explained further in the description of FIG. 28.


As represented, the tongue 10 preferably is beveled or rounded at the upper side, next to the tip 49. The rounded and/or beveled portion 56 preferably extends over a distance L3, which is at least ¼ and still better at least ⅓ of the length L2, as measured according to a direction parallel to the plane of the panels. Also distally from the contacting portion 55, as represented, preferably a beveled and/or rounded portion 57 is present at the underside of the upper lip 15, such over a distance L4, which is at least ⅕ and still better ¼ of said distance L2.


The average thickness L5 of the portion of the tongue 10 situated in coupled condition underneath the contacting portion 55, preferably is less than 1.5 mm in order to keep maximum material thicknesses for the upper lip 15 and lower lip 14 in this manner, which is of importance with vinyl panels, which mostly are relatively thin. Preferably, the tongue 10 is relatively long in relation to its thickness. More particularly, it is preferred that the distance L2 is larger than 1.2 times and still better is larger than 1.3 times the aforementioned thickness L5, by which a positive locking in height direction can be guaranteed.


The lower lip 14 preferably is made relatively stable in relation to the groove structure. More particularly, it is preferred that the distance A, which relates to the thinnest portion of the lower lip 14, is at least 0.7 times the distance L6. Herein, the distance L6 is the average thickness of the upper lip 15 at the location of the contacting portion 55.


As can be seen in FIG. 21, the tongue and groove are made such that, when two of such panels 1 are presented to each other in a plane-parallel manner at the edges concerned, the tongue 10 comes to sit at least with its tip already at least partially underneath the lip 15 bordering the upper side of the groove 11, without any bending being necessary already. This offers the advantage that the tongue 10, during the installation of the panels 1, almost always automatically ends up in the groove. Further, it is preferred that, due to the elasticity and bendability of the materials, of which the panels are made, two of such panels can also be forced into each other by means of a snap movement. This may be realized, for example, by pushing two of such panels 1 from a mutual position, such as the one from FIG. 21, towards each other. This may also be realized starting from a position in which both panels 1 are situated completely next to each other, and shifting them from this position towards each other. The rounded portions 58 and 59 indicated in FIG. 21 then cooperate with each other and provide for that the tongue 10 then is shifted onto and subsequently over the locking part 13.


It is noted that all partial characteristics described herein above, according to not represented variants of the invention, do not have to be combined in the same embodiment and also do not have to be present at both edges. Each of the described characteristics, ratios and the like thus may occur as such in combination with one of the independent aspects of the invention.



FIGS. 22 to 25 represent how the panels 1 can be installed by means of a “angle-angle technique”, which means that the panels are installed by means of a turning technique both at the edges 2-3 and 4-5. Herein, for clarity's sake the panels are indicated by the differentiating references 1D, 1E and 1F.



FIG. 22 shows a situation in which panels 1D in the same row already are coupled to each other and, in a second row, already a panel 1E is coupled thereto. The newly to be coupled panel 1F then is coupled to the panel 1E by means of a turning movement W1, wherein this panel 1F in respect to the closest edge of the panels 1D is situated somewhat shifted over a distance D1. The turning movement W1 is a movement analogous to the one represented in FIG. 19.


Thereafter, both panels 1E and 1F simultaneously are turned somewhat upward, which turning movement is indicated by W2 in FIG. 24. Subsequently, the panel 1F is shifted with its edge 4 along the edge 5 of the panel 1E, by means of a shifting movement S, until the condition of FIG. 25 is obtained. Due to the presence of said space 48, it is obtained that the tongue 10 during this shifting movement S cannot get stuck in the most rigid portion of the groove, in particular the portion situated underneath the upper lip. In the case of synthetic material, and in particular in the case of soft PVC, otherwise rather fast a clamping effect would arise, which renders installing difficult and even impossible.


As a result of the aforementioned shifting movement S, the panels 1F and 1D come into a position at their cooperating edges, which is analogous to that of FIG. 19. It is clear that the panel 1F can be brought in its completely installed position by turning the panels 1E and 1F then from the position of FIG. 25 simultaneously downward into the flat condition, such by means of the turning movement W3.


By applying a tongue and groove profile allowing a mutual presentation as illustrated in FIG. 21, it is also obtained that with the shifting represented in FIG. 24 the tongue at the edge 6 automatically searches a way into the grooves 11 of the edges 7 of the panels 1D, even when the panels 1E and 1F are lifted up only slightly.


Thus, it is clear that the use of the space 48 is of particular importance at the short sides, whereas a configuration allowing a mutual positioning as in FIG. 21 is particularly useful at the long sides.



FIG. 26 represents a technique, which can replace the steps of FIGS. 22 and 23. Herein, the panel 1E first is turned somewhat upward and in this position the panel 1F is presented with its edge 4 to the edge 5 of panel 1E and is turned in, after which again a condition as in FIG. 24 is obtained.


It is noted that it is preferred that a panel 1 according to the invention is manually bendable in at least one direction in such a manner that it can be inserted, at the edges extending transverse to this direction, with a tongue over the lower lip of a preceding panel into the groove of this preceding panel, until the upper edges touch each other, and without bending of the lower lip of the preceding panel, whereas the respective panel, at the edge situated opposite to the edge having said tongue, is bent down up to the underlying surface. This allows that such panel can be smoothly inserted with the tongue concerned into the groove of a preceding panel. As the panel at the opposite edge can be bent up to the underlying surface, or possibly, under the influence of its own weight, bends down to the underlying surface, the panel can be smoothly aligned in said direction in relation to the already installed panels. In the case of oblong panels, said direction preferably is the longitudinal direction of the panel.


A practical application, wherein said characteristic shows its advantages, is represented in FIG. 27. In FIG. 27, a panel 1F is coupled to the panel 1E, analogous as in FIG. 22, however, the panel 1F thereby is brought or held in a bent condition. In this manner, the tongue of the edge 4 can be inserted in the respective groove of the panel 1E, analogous to FIG. 19, whereas the corner 60 remains on the underlying surface or in the proximity thereof and thereby the panel 1F can be positioned with the corner 60 close to the edge 3 of the panel 1D, by which an alignment in longitudinal direction is obtained, which facilitates the realization of the coupling at the short sides.


According to a deviating variant of the invention, it also relates to panels which are made of synthetic material and in particular on the basis of soft PVC, wherein, as aforementioned, use is made of a space underneath the tongue, however, wherein it is not necessary that coupling parts are present at the other pair of sides, or wherein these coupling parts provide exclusively for a vertical or exclusively for a horizontal locking. Such space also in such application still offers certain advantages, amongst others, of a smooth insertion of the tongue in the groove.



FIG. 28 represents that the groove 11 can be realized, amongst others, by means of a rotating cutting tool 61, such as a milling cutter, which is arranged inclined in respect to the plane of the panel. This allows giving the cutting parts 62 of the cutting tool 61 a larger thickness than in the case of using a cutting tool 61 rotating in the plane of the panel. This is of particular importance with thin panels, for example, with a thickness of less than 5 mm, in order to thus still be able to give the cutting parts 62 a proper thickness, which thickness D2 then is at least 1.4 mm. Towards the underside of the panels, the cutting parts 62 may remove more material, as here then the space 48 has to be realized. It is noted that the panel here is represented upright, however, that in a real milling process, the panel mostly is lying upside down on a support surface.


Finally, it is noted that the panels above substantially are described as floor panels. A certain terminology refers to the position taken by a panel when applied as flooring. However, it is clear that with an application in wall or ceiling panels, this terminology has to be interpreted in an adapted manner. A lower hook-shaped portion then has to be seen as a hook-shaped portion situated against the rear side. An upwardly directed locking element then has to be seen as a locking element extending in the direction from the rear side to the decorative side. A downward movement then forms the movement by which one panel is moved with its rear side towards the plane in which the covering has to be realized.


Also, it is noted again that there, where soft PVC is mentioned, according to an alternative pertaining to the invention, also other synthetic materials can be applied, which have a similar suppleness as soft vinyl or LVT tiles. It is also clear that the substrates intended in the application can consist of a plurality of layers, amongst which also such of other materials, as, for example, reinforcement layers.


Further, it is clear that when using them as floor panels, these panels can be installed floatingly, which, however, does not exclude that, according to an alternative, they can be glued to the underlying surface, as well.

Claims
  • 1. A method for producing panels for forming a floor covering; wherein the panels comprise a substrate on the basis of soft PVC which is bendable and includes a plasticizer;wherein the panels are rectangular, either oblong or square, and thus comprise a first pair of opposite edges and a second pair of opposite edges;wherein both pairs of opposite edges comprise coupling parts allowing to mutually couple a plurality of such panels to each other;wherein these coupling parts are formed by the soft PVC of said substrate;wherein these coupling parts form a first locking system, which effects a locking in the plane of the panels and perpendicularly to said edges, as well as form a second locking system, which effects a locking perpendicularly to the plane of the panels;wherein said coupling parts are integrally made from the substrate by a mechanical cutting treatment, as a result of which the coupling parts are realized in soft PVC (polyvinyl chloride);wherein the coupling parts include a tongue and a groove, and locking parts, which, in the coupled condition, the coupling parts prevent the drifting apart of the tongue and groove;wherein said coupling parts allow to couple two of such panels to each other by means of a downward movement of one panel in respect to the other;wherein the first locking system is formed at least of an upwardly directed lower hook-shaped portion which is situated at one of said two edges, as well as of a downwardly directed upper hook-shaped portion which is situated at the opposite edge;wherein the lower hook-shaped portion consists of a lip with an upwardly directed locking element, whereas the upper hook-shaped portion consists of a lip with a downwardly directed locking element;wherein the distal end of the lower hook-shaped portion is free from locking parts effecting a locking perpendicularly to the plane of the panels;wherein at least one of said hook-shaped portions is bendable in respect to the plane of the respective panel, such that the pertaining locking element can perform a tilting movement, which facilitates coupling the panels;wherein the coupling parts are configured such that, when coupling two of such panels at the respective edges, the downwardly directed locking element must be brought through an opening between the upwardly directed locking element and a locking part of the second locking system and that the downwardly directed locking element and said opening are configured such that the downwardly directed locking element fits more smoothly through said opening when at least one of said hook-shaped portions is bent, compared to the case when none of both hook-shaped portions is bent.
  • 2. The method of claim 1, wherein the mechanical cutting treatment comprises a milling process.
  • 3. The method of claim 1, wherein a reinforcement layer is present in said substrate, wherein the reinforcement layer extends in the plane of each panel; and that at least one of said lips is configured such that, seen in cross-section, it is at least over a certain portion free from said reinforcement layer; wherein the reinforcement layer is a net or fleece of glass fiber.
  • 4. The method of claim 1, wherein the second locking system comprises locking parts which are situated next to the proximal end of the lower hook-shaped portion and the distal end of the upper hook-shaped portion, respectively; and that at least one of said locking parts of the second locking system is made from soft PVC.
  • 5. The method of claim 1, wherein said coupling parts allow to couple two of such panels to each other by means of a turning movement.
  • 6. The method according to claim 1, wherein these coupling parts at both pairs of edges form a first locking system which effects a locking in the plane of the panels and perpendicular to the respective edges, as well as form a second locking system which effects a locking perpendicular to the plane of the panels;wherein the coupling parts at the first pair of opposite edges are configured such that two of such panels can be coupled to each other at these edges by means of a turning movement; andwherein the coupling parts at the second pair of opposite edges are configured such that two of such floor panels can be coupled to each other by means of a downward movement of one panel in respect to the other.
  • 7. The method of claim 6, wherein the coupling parts at the second pair of opposite edges are configured such that two of such floor panels can be coupled to each other by means of a downward movement of one panel in respect to the other, wherein the downward movement can be obtained as a result of the turning movement at the first pair of edges.
  • 8. The method of claim 6, wherein the coupling parts at both pairs of edges are integrally made from the substrate by a mechanical cutting treatment.
  • 9. The method of claim 8, wherein the mechanical cutting treatment comprises a milling process.
  • 10. The method of claim 6, wherein the coupling parts at both pairs of edges are realized integrally from this substrate.
  • 11. The method of claim 6, wherein the second locking system comprises locking parts which are situated next to the proximal end of the lower hook-shaped portion and the distal end of the upper hook-shaped portion, respectively; and that at least one of said locking parts of the second locking system is made from soft PVC.
  • 12. The method according to claim 1, wherein the thickness of the panels is between 3 and 10 mm.
  • 13. The method of claim 1, wherein the panels are less than 5 mm thick.
  • 14. The method of claim 1, wherein the groove is bordered by an upper lip and by a lower lip, wherein the lower lip extends laterally up to beyond the distal end of the upper lip, and wherein the height of the groove at the middle between the distal end of the upper lip and the proximal end of the groove is at least 1.4 mm.
  • 15. The method according to claim 1, wherein the substrate comprises fillers.
  • 16. The method according to claim 1, wherein the method comprises the step of cutting at least part of the groove by means of a rotating cutting tool which is arranged inclined in respect to the plane of the panel.
Priority Claims (1)
Number Date Country Kind
09015855 Dec 2009 EP regional
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/388,076 filed Dec. 22, 2016, which is a continuation of U.S. application Ser. No. 13/518,112, filed Jun. 21, 2012, now U.S. Pat. No. 9,528,278, which is the national stage of PCT/IB2010/055693, filed Dec. 9, 2010, which claims priority to European application number 09015855.1, filed Dec. 22, 2009, which further claims the benefit of the filing date of U.S. provisional patent application No. 61/333,510, filed May 11, 2010, the entire contents of all of which are incorporated by reference in their entirety.

US Referenced Citations (301)
Number Name Date Kind
1387011 Ratcliff Aug 1921 A
1448180 Atwood et al. Mar 1923 A
1921164 Lewis Aug 1933 A
1971067 Fess Aug 1934 A
2143220 Cheney Jan 1939 A
3173804 Standfuss Mar 1965 A
3282010 King Nov 1966 A
3434861 Luc Mar 1969 A
3483057 Mittman Dec 1969 A
3554827 Yamagishi Jan 1971 A
3741851 Erb et al. Jun 1973 A
3810774 Pittman May 1974 A
3811915 Burrell et al. May 1974 A
3853685 Friedrich et al. Dec 1974 A
3905849 Bomboire Sep 1975 A
4050409 Duchenaud et al. Sep 1977 A
4097635 Sanz Hernandez et al. Jun 1978 A
4208468 Cunningham et al. Jun 1980 A
4233343 Barker et al. Nov 1980 A
4282697 Spielau Aug 1981 A
4312686 Smith et al. Jan 1982 A
4379198 Jaeschke et al. Apr 1983 A
4396566 Brinkmann et al. Aug 1983 A
4397896 Moran Aug 1983 A
4400862 Ignell Aug 1983 A
4426820 Terbrack et al. Jan 1984 A
4471012 Maxwell Sep 1984 A
4586299 Bayer May 1986 A
4614680 Fry et al. Sep 1986 A
4690434 Schmidt Sep 1987 A
4778547 Becker et al. Oct 1988 A
4844763 Robbins Jul 1989 A
4948653 Dinter et al. Aug 1990 A
5077112 Hensel et al. Dec 1991 A
5082495 Iijima Jan 1992 A
5112671 Diamond et al. May 1992 A
5261508 Kikuchi Nov 1993 A
5275862 Ramadan et al. Jan 1994 A
5437934 Witt et al. Aug 1995 A
5494707 Wang et al. Feb 1996 A
5516472 Laver May 1996 A
5560797 Burt et al. Oct 1996 A
5755068 Ormiston May 1998 A
5836128 Groh et al. Nov 1998 A
5863632 Bisker Jan 1999 A
5899038 Stroppiana May 1999 A
5916662 Schmidt Jun 1999 A
5928772 Shiraishi et al. Jul 1999 A
5952076 Foster Sep 1999 A
5988503 Kuo Nov 1999 A
6006486 Moriau et al. Dec 1999 A
6216409 Roy et al. Apr 2001 B1
6247285 Moebus Jun 2001 B1
6256959 Palmersten Jul 2001 B1
6298621 Lee Oct 2001 B1
6306318 Ricciardelli et al. Oct 2001 B1
6333094 Schneider et al. Dec 2001 B1
6345481 Nelson Feb 2002 B1
6385936 Schneider May 2002 B1
6428871 Cozzolino Aug 2002 B1
6444075 Schneider et al. Sep 2002 B1
6467224 Bertolini Oct 2002 B1
6477948 Nissing et al. Nov 2002 B1
6505452 Hannig Jan 2003 B1
6536178 Palsson et al. Mar 2003 B1
6591568 Palsson Jul 2003 B1
6617009 Chen et al. Sep 2003 B1
6647690 Martensson Nov 2003 B1
6764741 Kawasumi et al. Jul 2004 B2
6772568 Thiers et al. Aug 2004 B2
6804926 Eisermann Oct 2004 B1
6874292 Moriau Apr 2005 B2
6918221 Williams Jul 2005 B2
6931811 Thiers Aug 2005 B2
6933043 Son et al. Aug 2005 B1
6979487 Scarbrough et al. Dec 2005 B2
6986934 Chen et al. Jan 2006 B2
6991830 Hansson et al. Jan 2006 B1
7093399 Thiers et al. Aug 2006 B2
7169460 Chen et al. Jan 2007 B1
7211310 Chen et al. May 2007 B2
7243469 Miller et al. Jul 2007 B2
7261947 Reichwein et al. Aug 2007 B2
7357959 Bauer Apr 2008 B2
7377081 Ruhdorfer May 2008 B2
7419717 Chen et al. Sep 2008 B2
7516588 Pervan Apr 2009 B2
7596920 Konstanczak Oct 2009 B2
7603826 Moebus Oct 2009 B1
7726088 Muehlebach Jun 2010 B2
7762035 Cappelle Jul 2010 B2
7763345 Chen et al. Jul 2010 B2
7841145 Pervan et al. Nov 2010 B2
8021741 Chen et al. Sep 2011 B2
3038363 Hannig et al. Oct 2011 A1
8056236 Brouckaert et al. Nov 2011 B2
8071193 Windmoller Dec 2011 B2
8099919 Garcia Jan 2012 B2
8112891 Pervan Feb 2012 B2
8153234 Nollet et al. Apr 2012 B2
8156705 Alford et al. Apr 2012 B2
8171691 Stone May 2012 B1
8245477 Pervan Aug 2012 B2
8272187 Meersseman et al. Sep 2012 B2
8341915 Pervan et al. Jan 2013 B2
8375672 Hannig Feb 2013 B2
8381477 Pervan et al. Feb 2013 B2
8465804 Provoost et al. Jun 2013 B2
8475871 Oldorff Jul 2013 B2
8544231 Hannig Oct 2013 B2
8621814 Cappelle Jan 2014 B2
8806830 Schacht et al. Aug 2014 B2
8925275 Meersseman Jan 2015 B2
8966852 Cappelle Mar 2015 B2
8991055 Cappelle Mar 2015 B2
9080330 Meersseman et al. Jul 2015 B2
9145691 Cappelle Sep 2015 B2
9200460 Cappelle Dec 2015 B2
9366035 Meersseman et al. Jun 2016 B2
9366037 Cappelle Jun 2016 B2
9371654 Cappelle Jun 2016 B2
9487957 Cappelle Nov 2016 B2
9528278 Cappelle Dec 2016 B2
9534400 Schacht et al. Jan 2017 B2
9670682 Cappelle Jun 2017 B2
9670683 Cappelle Jun 2017 B2
9695599 Cappelle Jul 2017 B2
9745756 Hannig Aug 2017 B2
9783995 Meersseman et al. Oct 2017 B2
9809984 Meersseman et al. Nov 2017 B2
9890542 Cappelle Feb 2018 B2
10041259 Meersseman et al. Aug 2018 B2
10100532 Schacht et al. Oct 2018 B2
10125499 Cappelle Nov 2018 B2
10240348 Pervan et al. Mar 2019 B2
10358831 Cappelle Jul 2019 B2
10519674 Cappelle Dec 2019 B2
10745921 Cappelle Aug 2020 B2
10975578 Cappelle Apr 2021 B2
10975579 Cappelle Apr 2021 B2
20010034991 Martensson et al. Nov 2001 A1
20020020127 Thiers et al. Feb 2002 A1
20020025446 Chen et al. Feb 2002 A1
20020046527 Nelson Apr 2002 A1
20020046528 Pervan et al. Apr 2002 A1
20020056245 Thiers May 2002 A1
20020090490 Kawasumi et al. Jul 2002 A1
20020092252 Kettler et al. Jul 2002 A1
20020092263 Schulte Jul 2002 A1
20020136862 Dong et al. Sep 2002 A1
20020142106 Bethune et al. Oct 2002 A1
20020189183 Ricciardelli Dec 2002 A1
20030024199 Pervan et al. Feb 2003 A1
20030033777 Thiers et al. Feb 2003 A1
20030033779 Downey Feb 2003 A1
20030097808 Sabatini May 2003 A1
20030101674 Pervan et al. Jun 2003 A1
20030159385 Thiers Aug 2003 A1
20040016196 Pervan Jan 2004 A1
20040016197 Ruhdorfer Jan 2004 A1
20040026017 Taylor et al. Feb 2004 A1
20040028830 Bauer Feb 2004 A1
20040068954 Martensson Apr 2004 A1
20040071978 Hallenbeck et al. Apr 2004 A1
20040086678 Chen et al. May 2004 A1
20040102120 Plusquellec et al. May 2004 A1
20040103602 Geraud Jun 2004 A1
20040137248 Elsasser Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040139679 Della Pepa Jul 2004 A1
20040146695 Hardwick Jul 2004 A1
20040161588 Mauk et al. Aug 2004 A1
20040182036 Sjoberg et al. Sep 2004 A1
20040191547 Oldorff Sep 2004 A1
20040211144 Stanchfield Oct 2004 A1
20040248489 Hutchison et al. Dec 2004 A1
20040255538 Ruhdorfer Dec 2004 A1
20050003160 Chen et al. Jan 2005 A1
20050025934 Thiers Feb 2005 A1
20050050827 Schitter Mar 2005 A1
20050153243 Rundle et al. Jul 2005 A1
20050183370 Cripps Aug 2005 A1
20050208255 Pervan Sep 2005 A1
20050221056 Schwonke et al. Oct 2005 A1
20050281986 Nam Dec 2005 A1
20060008630 Thiers et al. Jan 2006 A1
20060032175 Chen et al. Feb 2006 A1
20060032177 Moriau et al. Feb 2006 A1
20060064940 Cappelle Mar 2006 A1
20060075713 Pervan et al. Apr 2006 A1
20060130416 Mohr et al. Jun 2006 A1
20060144005 Tonyan Jul 2006 A1
20060174578 Konstanczak Aug 2006 A1
20060179773 Pervan Aug 2006 A1
20060204773 Kwon et al. Sep 2006 A1
20060280870 Halot et al. Dec 2006 A1
20070022694 Chen Feb 2007 A1
20070051064 Thiers Mar 2007 A1
20070084368 Vest et al. Apr 2007 A1
20070094978 Svanholm et al. May 2007 A1
20070130872 Goodwin et al. Jun 2007 A1
20070175160 Groeke et al. Aug 2007 A1
20070251188 Moriau et al. Nov 2007 A1
20070294968 Braun Dec 2007 A1
20080005999 Pervan Jan 2008 A1
20080029926 Steinwender et al. Feb 2008 A1
20080034701 Pervan Feb 2008 A1
20080060308 Pervan Mar 2008 A1
20080104921 Pervan May 2008 A1
20080134607 Pervan et al. Jun 2008 A1
20080134614 Pervan et al. Jun 2008 A1
20080138560 Windmoller Jun 2008 A1
20080168737 Pervan Jul 2008 A1
20080172856 Brouckaert et al. Jul 2008 A1
20080261019 Shen et al. Oct 2008 A1
20080295432 Pervan et al. Dec 2008 A1
20080305312 Kim et al. Dec 2008 A1
20080311355 Chen et al. Dec 2008 A1
20090019801 Coghlan et al. Jan 2009 A1
20090019806 Muehlebach Jan 2009 A1
20090019808 Palsson et al. Jan 2009 A1
20090031662 Chen et al. Feb 2009 A1
20090038254 Steele et al. Feb 2009 A1
20090042010 Stanhope Feb 2009 A1
20090049786 Hwang et al. Feb 2009 A1
20090061168 Kim et al. Mar 2009 A1
20090126308 Hannig et al. May 2009 A1
20090133353 Pervan et al. May 2009 A1
20090155612 Pervan et al. Jun 2009 A1
20090193741 Cappelle Aug 2009 A1
20090223162 Chen et al. Sep 2009 A1
20090226662 Dyczko-Riglin et al. Sep 2009 A1
20090260307 Thiers Oct 2009 A1
20090260313 Segaert Oct 2009 A1
20090269522 Liu Oct 2009 A1
20090308001 Wu et al. Dec 2009 A1
20090320402 Schacht et al. Dec 2009 A1
20100000172 Vermeulen Jan 2010 A1
20100015420 Riebel et al. Jan 2010 A1
20100018149 Thiers Jan 2010 A1
20100055420 Vermeulen Mar 2010 A1
20100083603 Goodwin Apr 2010 A1
20100159213 Przybylinkski et al. Jun 2010 A1
20100215875 Yang et al. Aug 2010 A1
20100218450 Braun et al. Sep 2010 A1
20100281803 Cappelle Nov 2010 A1
20110045250 De Zen Feb 2011 A1
20110056167 Nilsson Mar 2011 A1
20110131909 Hannig Jun 2011 A1
20110138722 Hannig Jun 2011 A1
20110146177 Hannig Jun 2011 A1
20110167744 Whispell et al. Jul 2011 A1
20110247285 Wybo et al. Oct 2011 A1
20110268937 Schacht et al. Nov 2011 A1
20110287237 Riebel et al. Nov 2011 A1
20110300392 Vermeulen Dec 2011 A1
20110308182 Downey Dec 2011 A1
20120015107 Schacht et al. Jan 2012 A1
20120174521 Schulte Jul 2012 A1
20120266555 Cappelle Oct 2012 A1
20120276348 Clausi et al. Nov 2012 A1
20120279154 Bergelin Nov 2012 A1
20130008118 Baert et al. Jan 2013 A1
20130042558 Cordeiro Feb 2013 A1
20130062006 Meersseman et al. Mar 2013 A1
20130067842 Meersseman et al. Mar 2013 A1
20130081349 Pervan et al. Apr 2013 A1
20130104485 Meersseman et al. May 2013 A1
20130295352 Thiers et al. Nov 2013 A1
20140020820 Meersseman et al. Jan 2014 A1
20140033635 Pervan et al. Feb 2014 A1
20140033636 Cappelle Feb 2014 A1
20140053497 Pervan et al. Feb 2014 A1
20140109507 Dossche et al. Apr 2014 A1
20140290158 Meersseman et al. Oct 2014 A1
20140318070 Schacht et al. Oct 2014 A1
20150107178 Meersseman et al. Apr 2015 A1
20150159379 Meersseman et al. Jun 2015 A1
20150204080 Cappelle Jul 2015 A1
20150204081 Cappelle Jul 2015 A1
20160251861 Cappelle Sep 2016 A1
20160258167 Meersseman et al. Sep 2016 A1
20160265233 Cappelle Sep 2016 A1
20160356047 Cappelle Dec 2016 A1
20160369516 Cappelle Dec 2016 A1
20170051514 Cappelle Feb 2017 A1
20170089078 Schacht et al. Mar 2017 A1
20170101785 Cappelle Apr 2017 A1
20170101786 Cappelle Apr 2017 A1
20170284106 Cappelle Oct 2017 A1
20170335571 Hannig Nov 2017 A1
20180023306 Meersseman et al. Jan 2018 A1
20180127985 Cappelle May 2018 A1
20180223540 Cappelle Aug 2018 A1
20190048595 Cappelle Feb 2019 A1
20190093370 Pervan et al. Mar 2019 A1
20190330858 Cappelle Oct 2019 A1
20200063444 Cappelle Feb 2020 A1
20200270875 Cappelle Aug 2020 A1
20200270876 Cappelle Aug 2020 A1
20210189738 Cappelle Jun 2021 A1
Foreign Referenced Citations (169)
Number Date Country
1237344 May 1988 CA
2226286 Dec 1997 CA
2360414 Aug 2000 CA
2734801 Mar 2010 CA
2784227 Jun 2011 CA
2110047 Jul 1992 CN
1119152 Mar 1996 CN
2301491 Dec 1998 CN
1239174 Dec 1999 CN
2364121 Feb 2000 CN
2415082 Jan 2001 CN
1399051 Feb 2003 CN
2536701 Feb 2003 CN
1482166 Mar 2004 CN
2654757 Nov 2004 CN
2688807 Mar 2005 CN
2765969 Mar 2006 CN
1911997 Feb 2007 CN
2880971 Mar 2007 CN
101023230 Aug 2007 CN
101042014 Sep 2007 CN
101072691 Nov 2007 CN
100354492 Dec 2007 CN
101158226 Apr 2008 CN
101168610 Apr 2008 CN
201071580 Jun 2008 CN
101367977 Feb 2009 CN
101368440 Feb 2009 CN
101460688 Jun 2009 CN
201268019 Jul 2009 CN
100523404 Aug 2009 CN
101563511 Oct 2009 CN
201339298 Nov 2009 CN
101614068 Dec 2009 CN
101629446 Jan 2010 CN
101767362 Jul 2010 CN
101487336 Oct 2010 CN
201679203 Dec 2010 CN
101955614 Jan 2011 CN
101613503 May 2011 CN
101698749 Oct 2011 CN
202324474 Jul 2012 CN
202324517 Jul 2012 CN
202483139 Oct 2012 CN
202483140 Oct 2012 CN
1534802 Apr 1970 DE
2545854 Oct 1976 DE
2721292 Nov 1978 DE
2856391 Jul 1980 DE
254920 Mar 1988 DE
19532819 Mar 1997 DE
19725829 Aug 1998 DE
19854475 Jul 1999 DE
19944399 Apr 2001 DE
20300306 Apr 2003 DE
10154767 May 2003 DE
20300291 Nov 2003 DE
102004009160 Sep 2005 DE
102004023157 Nov 2005 DE
202005019427 Apr 2006 DE
102006054023 Dec 2007 DE
202008008597 Aug 2008 DE
202008011589 Nov 2008 DE
202008010555 Dec 2009 DE
0007230 Jan 1980 EP
0130559 Jan 1985 EP
0562402 Sep 1993 EP
0864712 Sep 1998 EP
0893473 Jan 1999 EP
1026341 Aug 2000 EP
1138467 Oct 2001 EP
1154090 Nov 2001 EP
1247641 Oct 2002 EP
1262607 Dec 2002 EP
1262609 Dec 2002 EP
1454763 Sep 2004 EP
1469140 Oct 2004 EP
1493879 Jan 2005 EP
1593796 Nov 2005 EP
1650375 Apr 2006 EP
1666247 Jun 2006 EP
1705309 Sep 2006 EP
1808546 Jul 2007 EP
1872959 Jan 2008 EP
1892352 Feb 2008 EP
1938963 Jul 2008 EP
2130991 Dec 2009 EP
1290290 Jan 2010 EP
2202056 Jun 2010 EP
2246188 Nov 2010 EP
2287418 Feb 2011 EP
2516768 Oct 2012 EP
1293043 May 1962 FR
2149112 Mar 1973 FR
2271365 Dec 1975 FR
2609664 Jul 1988 FR
2827529 Jan 2003 FR
518239 Feb 1940 GB
900958 Jul 1962 GB
1015701 Jan 1966 GB
1467899 Mar 1977 GB
1520964 Aug 1978 GB
2020998 Nov 1979 GB
2145371 Mar 1985 GB
2376916 Dec 2002 GB
S60255843 Dec 1985 JP
S62127225 Jun 1987 JP
H03169967 Jul 1991 JP
H05214803 Aug 1993 JP
H0664108 Mar 1994 JP
H07180333 Jul 1995 JP
H09165899 Jun 1997 JP
2000170361 Jun 2000 JP
19960005785 Jul 1996 KR
19990036219 May 1999 KR
20020053759 Jul 2002 KR
20030050167 Jun 2003 KR
200399316 Oct 2005 KR
20070063046 Jun 2007 KR
8000083 Aug 1981 NL
9511333 Apr 1995 WO
9606248 Feb 1996 WO
9627721 Sep 1996 WO
9718949 May 1997 WO
9747834 Dec 1997 WO
9917930 Apr 1999 WO
9945060 Sep 1999 WO
0047841 Aug 2000 WO
0109461 Feb 2001 WO
0147724 Jul 2001 WO
0147725 Jul 2001 WO
0148333 Jul 2001 WO
0183488 Nov 2001 WO
0196689 Dec 2001 WO
0198604 Dec 2001 WO
0200449 Jan 2002 WO
0204206 Jan 2002 WO
03012224 Feb 2003 WO
03089736 Oct 2003 WO
2004015221 Feb 2004 WO
2004042168 May 2004 WO
2005018833 Mar 2005 WO
2005033204 Apr 2005 WO
2006033706 Mar 2006 WO
2006043893 Apr 2006 WO
2006066776 Jun 2006 WO
2006090287 Aug 2006 WO
2006103565 Oct 2006 WO
2007059967 May 2007 WO
2007081267 Jul 2007 WO
2007113676 Oct 2007 WO
2007141605 Dec 2007 WO
2008078181 Jul 2008 WO
2008083662 Jul 2008 WO
2008091045 Jul 2008 WO
2008122668 Oct 2008 WO
2009061279 May 2009 WO
2009101217 Aug 2009 WO
2009118709 Oct 2009 WO
2010023042 Mar 2010 WO
2010081860 Jul 2010 WO
2010088769 Aug 2010 WO
2011028171 Mar 2011 WO
2011077311 Jun 2011 WO
2011085306 Jul 2011 WO
2012001091 Jan 2012 WO
2012001109 Jan 2012 WO
2012004700 Jan 2012 WO
2012061300 May 2012 WO
Non-Patent Literature Citations (12)
Entry
An, Suqin et al., “Building and Ornamental Materials,” China Architecture & Building Press, Feb. 2005, pp. 111-114.
Database WPI, week 199338, Thomson Scientific, London, GB, AN 1993-300138, XP002621436, Aug. 24, 1993.
Machine translation of DE 202005019427 provided by European Patent Office at Espacenet at: http://translationportal.epo.org/emtp/translate/?ACTION=description-retrieval&COUNTRY=DE&ENGINE=google&FORMAT=docdb&KIND=U1&LOCALE=en_EP&NUMBER=202005019427&OPS=ops.epo.org&SRCLANG=de&TRGLANG=en.
Wen-Hsuan Chang et al., “Advances in Polyurethan Coatings (1969 to Early 1972),” Ind. Eng. Chem. Prod. Res. Develop., vol. 12, No. 4, pp. 278-288, 1973.
Zhong, Shitun, “Building Plastics,” China Petrochemical Press, Jan. 2007, pp. 270 and 271.
“High Pressure Laminates (HPL)”, Composite Panel Association, http://www.decorativesurfaces.org/products/decorative-surfaces/high-pressure-laminates.html/details/, Downloaded from the Internet on Jul. 3, 2017, 3 Pages.
“Acrylnitril-Butadien-Styrol-Copolymer,” Wikipedia, retrieved from https://de.wikipedia.org/wiki/Acrylnitril-Butadien-Styrol-Copolymer on Mar. 14, 2018, 2 Pages.
Chanda et al., “Chapter 2 Fabrication Processes; Chapter 4 Industrial Polymers; Chapter 7 Trends in Polymer Applications,” Plastics Technology Handbook Third Edition, Revised and Expanded, 1998, 20 Pages.
“Testing and Characterization of Resins,” Encyclopedia of PVC, vol. 1, 1976, 4 Pages.
“Polycarbonate,” Wikipedia, retrieved from https://de.wikipedia.org/wiki/Polycarbonate on Mar. 14, 2018, 4 Pages.
“Standard Specification for Solid Vinyl Floor Tile,” ASTM, Designation: F 1700-96, Jul. 1996, pp. 719-721.
United States Patent Application for U.S. Appl. No. 08/899,118, filed Jul. 23, 1997, 36 Pages.
Related Publications (1)
Number Date Country
20200087924 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
61333510 May 2010 US
Continuations (2)
Number Date Country
Parent 15388076 Dec 2016 US
Child 16694042 US
Parent 13518112 US
Child 15388076 US