Panel curving machine

Information

  • Patent Grant
  • 6688147
  • Patent Number
    6,688,147
  • Date Filed
    Tuesday, June 19, 2001
    23 years ago
  • Date Issued
    Tuesday, February 10, 2004
    21 years ago
Abstract
A panel, formed from a perforated face (102), is respectively concavely and convexly curved by seriatim stretching or contracting its flanges (104a, b; 156a, b). Such stretching and contracting is produced by placing the opposed flanges within jaw halves (110a, b; 166a, b) of a jaw mechanism (110, 166), by seriatim positioning of the paired flanges between their respective jaw halves, and by moving the jaw halves away from or towards one another. Jaw movement towards one another effects a stretching function. Jaw movement towards one another effects a shrinking function. Computerization enables the panel curving to be precisely controlled. The curved panel, as it exits from the panel curving machine (126, 148) is supported on rollers (146) or, more precisely, by a scissor apparatus (176). The scissors apparatus includes roller sets (242, 244, 246) which are positionable, relative to one another, to conform the roller sets to the curvature of the exiting panel. The implementing mechanisms are mainly hydraulically operated.
Description




REFERENCE REGARDING FEDERAL SPONSORSHIP




Not Applicable




REFERENCE TO SOURCE CODE APPENDIX




Attached hereto and incorporated herein is Appendix A, which is a compact disc (CD) containing the source codes for the following language computer programs comprising the radians software (Visual Basic), the PMAC code (PMAC Basic) and the radians software installation program, which program (configure) the processors and computers disclosed herein to implement the methods and procedures described herein. The contents of the CD directory are outlined in the printed material accompanying the compact disc. These source codes are subject to copyright protection. The copyright owner has no objection to the reproduction of the appendix, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a method, and machine, apparatus and mechanisms for forming curved panels and, in particular, to improvements therein for more precisely and accurately controlling the curvature, whether convex or concave, of such panels and for improved support thereof.




2. Description of Related Art and Other Considerations




Curved panels are used for decorative and functional purposes, such as related to the construction of ceilings, walls, column enclosures and, in general, architectural skins. While such use in the construction of ceilings, walls and skins comprise the most used applications of the panels formed by the method and apparatus of the present invention, it is to be understood that other uses and applications are intended to be encompassed within the general concepts described, illustrated and claimed and, therefore, any specific application is intended to be merely illustrative of its preferred use, and not limiting as to its application.




A ceiling or wall, for example, is composed of a plurality of panels, whether curved or not, so the combination effects a decorative and/or functional result for use, for example, in small and large installations, such as homes, offices and large convention and business establishments, e.g., planetariums, museums, theaters, airports, convention centers, casinos and subway stations. Most often, such panels are perforated for sound-absorbing or acoustical purposes. They are colored, anodized or otherwise treated, for example, to provide an attractive appearance. To enhance the aesthetic appearance of the building, their curvature may be simple or complex so that, when curved or otherwise bent or arced, they bestow a collectively softened look to the interior, or even exterior if so desired, of the building and, in many cases, to form a free-flowing, undulating or simply curved effect. Light-weight metals, such as aluminum, or decorative metals, such as copper, are conventionally employed as the composition of the panels, so that they may be made larger, stronger and curvier than that previously available. When thousands or more of such panels are interconnected, suspended overhead and aligned, the result forms connecting hills and valleys in a landscape.




Such a panel used in the above-described applications and in the present invention, are formed from a flat, perforated blank. The blank may have any geometrical shape, e.g., triangular, rectangular or other configuration. It is cut away at its corners, or wherever suitable. In the case of a rectangularly shaped blank, the four corners are cut away so that their circumferential edge portions can be bent to form an interior face and flanges angularly extending therefrom. If all four flanges of a rectangularly shaped blank were bent, they could be made to meet and thus to form an enclosing border.




In panels previously marketed by the assignee of the present invention and fabricated by use of machines and methods not publically disclosed or otherwise made publically known until divulged herein, the bending of such rectangularly shaped blanks was performed in a two-step operation. The first bending entailed the bending first of opposed parallelly disposed flanges extending longitudinally along the interconnecting perforated interior face or portion into an angled orientation from the perforated panel face. These parallelly extending flanges were then stretched or shrunk, that is dimensionally changed, in sequential fashion along their lengths extending along the corresponding longitudinal dimension of the panel in construction. Such stretching or shrinking exerted stresses on the face of the blank so as to bias the face in a curved fashion. A stretching of the flanges produced a panel being concavely configured. A shrinking of the flanges produced a panel being convexly configured. Thereafter, the remaining flanges were bent to form a border enclosing a perforated interior portion or face which is either concavely or convexly curved, in accordance with the stretching or shrinking of the parallelly extending flanges. Brackets of conventional construction were then secured to selected ones of the flanges to enable the panels to be hung.




The machines and methods, which are referred to above as not having been publically disclosed or otherwise made publically known, employ two stretching and shrinking mechanisms, one for each flange. Each mechanism includes paired opposing jaws positioned on either side of its panel flange, and the jaws are disposed to grip the flange segment sandwiched therebetween. Each jaw mechanism is supported on a head, and one of the shrinking or stretching jaws is moveable while the other is stationary during the stretching or shrinking operation. The heads are moveable with respect to one another only to accommodate different panel widths between the panel flanges and, when so accommodated, are fixed in place.




The preferred jaw mechanisms are fabricated by W. Eckold AG Werkzeugmaschinen of Switzerland and are described in its forming tools and spare parts brochure entitled “Eckold-Kraftformer Piccolo, KF 320, KF 314”, pages 6-8 thereof relating to spare parts FWA and FWR. In the preferred mechanisms, each jaw is composed of a pair of jaw halves, and one pair of jaw halves is positioned on one side of the flange and the other pair of jaw halves is positioned on the other side of the flange. This arrangement may be termed a sandwich of a flange segment between opposing jaw halves. Each pair of jaw halves is so constructed that the jaw halves within each pair can move mutually either towards or away from one other in a plane which is essentially parallel to the surfaces of the segment of the panel flange. Such relative movement between the jaw halves is dependant upon the configuration of the jaw half driving components which are coupled to a hydraulically operated driver. The jaw driving components include camming type elements which provide a very small and limited lateral movement of one pair of jaw halves in one jaw mechanism from the mating pair of jaw halves in the other jaw mechanism. This very small lateral jaw movement permits the panel flanges to be moved from one stretching or shrinking operation to the next such operation on an adjacent panel flange segment. Due to reasons discussed below, such lateral jaw movement is often insufficient to avoid some contact between the stationary jaw member and the adjacent flange surface. Additional lateral movement of the other jaw mechanism, when it is moved away from the stationary jaw mechanism, avoids contact the its adjacent flange surface.




In operation, when the jaw halves of opposed mechanisms engage opposite sides of the segment of the flange, the thus engaged flange segment is either shrunk or stretched.




The machines and methods, which are referred to above as not having been publically disclosed or otherwise made publically known, also include panel supporting and incrementally moving rollers. These rollers respectively support and grip the panel being worked on so as to incrementally move it and its flange portions into a stationary position between the jaws for stretching or shrinking a specific panel flange portion presently positioned between the jaws, and then to incrementally advance the panel so as to position the next panel flange portion to be so worked on.




Further support is employed to support the completed, curved panel as it exits from the machine, comprising essentially a linearly disposed roller arrangement positioned generally at the center of the panel face.




While the curved panels so fabricated have been successfully accepted and served well for their intended applications, it was desired that the curvature and quality of the finished product be improved. If the sequentially applied stretching or shrinking operations were not perfectly applied to the flanges, either to an individual flange or to opposed flanges, variations in curvature occurred, resulting in a non-uniform or warped panel appearance.




It was also discovered, for example, that the blanks, per se as constituting the raw material for the panels, were not homogeneous in several respects, that the panels were not uniformly shaped, and/or that the panel flanges were galled. Lack of homogeneity resulted from varying physical, chemical and material characteristics, for example, nonuniform thickness, material constituents and hardness throughout the blanks. Formation of the panel flanges also produced a lack of uniformity, e.g., from slight variations in the thickness of the flange when the blank was first fabricated from sheet stock, or from slight variations in the flatness of an individual flange or in the parallelism between the flanges on opposite sides of the perforated panel face, such as might have occurred during bending of the blank to form the dependent flanges. These and possibly other reasons produced galling in the flanges due to abrasion as they were moved past one or both the jaws because the lateral movement of the jaw half pairs was insufficient to provide adequate clearance of one or both jaw halves in one or both of the jaw pair from one or both the surfaces of the respective panel flange. Most commonly, the advancing panel would cause one side of the flange to contact the stationary jaw halves. The curvature of the finished panel was also affected by all or part of the above lack of homogeneity and uniformity.




The support provided by the essentially linearly disposed roller device means positioned at the exit of the machine was found not to be completely successful, in part because the exit portion of the curving machine acted as a fixed central point for holding the exiting curved panel. Therefore, as the panel moved further from the machine, this fixed point acted to increasingly produce a cantilevering effect on the curved panel. The linearly disposed roller support positioned at the center of the perforated panel face mitigated, but did not completely avoid such a cantilevering effect, and was further found to provide inadequate support for the panel, particularly at its face adjacent the side flanges. As a consequence, the curvature of the panel was deleteriously affected to a lesser or greater extent.




Therefore, every finished panel needed to be inspected for damage or lack of uniform curvature and, regarding the latter issue, the panels had to be segregated into like groups or classes and, when often needed, reworked by hand. Such inspection and reworking by hand involves the placing of the curved flange over a printed pattern of the desired curvature, to match the former with the latter. If there is a mismatch, the mismatch is marked on the flange, and the flange is inserted into a manually operated crimping tool, and crimped. Further inspection and manual crimping is conducted, as required. The result is increased cost and lower profitability, and affected competition vis-a-vis the products of others.




SUMMARY OF THE INVENTION




The machines and methods, which are referred to above as not having been publically disclosed or otherwise made publically known, are improved upon by the addition of refinements and additions which monitor and support the panel as it is worked on and protect it from undesired physical contact. A computer and related software, coupled to appropriate fluidic, mechanical, electromechanical and opto-mechanical devices ensure proper control of the refinements and additions.




Specifically, the curvature of the panel, as it is worked on by the stretching or shrinking mechanisms, is monitored preferably by a laser radiation so that any variation from the desired curvature pursuant to a pre-existing specification is immediately detected and information thereof is fed to the computer which then commands the respective stretching or shrinking mechanism and the panel feeding apparatus to make appropriate corrections. Both the heads, which carry the jaw mechanisms, and the jaw mechanisms are moveable towards and away from one another in individual and collective deportment to provide better spacing between the jaw mechanisms and, therefore, to avoid such problems which result from galling and abrasion and less than desired uniformity of panel curvature.




Several advantages are derived from this arrangement. Primarily, the curvature of the panels is more accurate and uniform. Panel face imperfections are reduced, the panel has the look of a true curve and the panel's appearance is accordingly improved. The points at which the curvature can be stopped and started can be more precisely located and, therefore, the transition from one curve to another, e.g., concave to convex and vice-versa or to a flat, is easily attained; one curve producing jaw mechanism can be replaced by another with much greater ease than before. Only inspection for lack of homogeneity and machine settings, for example, is required; inspection for galling is eliminated. Because the lack of uniform curvature is essentially, if not substantially avoided, less or no segregation of the panels into like groups or classes is circumvented. Costs are better maintained, architectural precision is enhanced, and increased acceptance in the marketplace is attained.




Other aims and advantages, as well as a more complete understanding of the present invention, will appear from the following explanation of exemplary embodiments and the accompanying drawings thereof.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a view of a rectangular blank of a panel comprising a central face portion and shorter and longer pairs of parallelly extending side portions which are disposed to be later bent into flanges.





FIG. 2

is a view similar to that shown in

FIG. 1

, showing its longer side portion having been bent at right angles to the face portion to form a pair of parallelly extending flanges.





FIG. 3

is a view of the panel illustrated in

FIG. 2

taken along line


3





3


thereof.





FIG. 4

is a view of the panel illustrated in

FIG. 2

taken along line


4





4


thereof.





FIG. 5

is a view (a) in cross-section of a segment of the panel depicted in

FIG. 4

, and (b) in full of a pair of jaw mechanisms which are in contact with the inner and outer surfaces of one of the flanges and which are configurable either as a flange stretching or a flange shrinking device.





FIG. 6

is view of the panel flange and jaw mechanism of

FIG. 5

taken along line


6





6


thereof, and shows a pair of relatively movable jaw halves.

FIGS. 6



a


and


6




b


respectively exhibit the operation of flange stretching and shrinking mechanisms.





FIGS. 7



a


and


7




b


respectively depict concavely and convexly shaped panels, as curved by the repeated operation of the respective flange stretching and shrinking mechanisms illustrated in

FIGS. 6



a


and


6




b.







FIG. 8

is a perspective view of an exemplary panel, prior to its being curved, such as shown in

FIGS. 2-4

.





FIG. 9

is a perspective of another exemplary panel, after having been concavely curved, such as shown in

FIG. 7



b


after its flanges were subjected to stretching.





FIGS. 10-13

are perspective views of a machine, which is referred to above as not having been publically disclosed or otherwise made publically known. The

FIG. 10

perspective views the back of the machine from which a panel will exit after having been curved. The

FIG. 11

perspective is a front-side to back-side view into which front-side a panel is placed for feeding into the curve forming devices. The

FIG. 12

perspective is a view of one side of the machine. The

FIG. 13

perspective of the machine viewed from the side opposite from that taken in FIG.


12


and looking towards the rear part or facade of its back-side.





FIG. 14

is a block diagram of the improved machine, panel supporting scissors apparatus, computer and supporting equipment therefor, including pneumatic and hydraulic supplies. Further included is laser radiation inspection of the panel in process of being curved to ensure improved curvature.





FIG. 14



a


is a view of the jaw mechanisms depicted in

FIG. 15

, but taken orthogonally thereto, similarly as

FIG. 6

is a 90° view of

FIG. 5

taken along line


6





6


thereof, also to show a pair of relatively movable jaw halves.





FIG. 15

is a block diagram of the hydraulic supply used in the various apparatus encompassed by the circuit diagram of FIG.


14


.





FIGS. 16-18

depict the advancing or indexing rollers and mechanisms and apparatus for advancing or indexing the panel and its dependent flanges for stretching or shrinking by the jaw mechanisms, with

FIG. 17

being taken along line


17





17


of FIG.


16


.





FIGS. 19 and 20

illustrate the positioning of one of the two panel flange stretching/shrinking jaw mechanisms and their supporting heads for ensuring indexing of the panel without galling to the flanges.




FIGS.


21


(


a


) and


21


(


b


) show the scissors mechanism positioned in front of the back-side of the curving machine for use in supporting the curved panel as it exits therefrom. FIG.


21


(


a


) depicts the scissors mechanism in its extended or deployed position in readiness to support a panel. FIG.


21


(


b


) depicts the scissors mechanism in its retracted or folded position.





FIG. 22

is a view of one embodiment of the improved panel curving machine, exemplified as an enablement incorporating the block diagram configuration depicted in FIG.


14


.





FIG. 23

is a view of a portion of the machine illustrated in

FIG. 22

detailing one of the two jaw mechanisms and its support head.





FIG. 24

is another view of a portion of the machine illustrated in

FIG. 22

detailing the back-side section of the improved panel curving machine and a portion of the scissors apparatus.





FIGS. 25



a


and


25




b


depict respective halves of an electrical connection diagram operable to control the embodiment illustrated in

FIGS. 14-21



b.







FIGS. 26



a


and


26




b


depict respective halves of an input/output connection diagram which includes one component shown in

FIG. 25



a.













DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIGS. 1-4

depict a typical panel which is appropriately imparted with a concave or convex configuration as illustrated by the methods and apparatus briefly outlined in

FIGS. 5-10

. For purposes of exposition, a rectangularly shaped blank, which is disposed to be configured into a rectangularly shaped panel, will be described, although it is be understood that other geometrical shapes may also be operated upon.




Specifically, as depicted in

FIG. 1

, a blank


100


, which is to be fabricated into a panel, includes a central perforated portion or face


102


. Perforated face


102


is bounded on its four sides by two pairs


104


and


106


of edge portions comprising longer parallelly extending portions or incipient flanges


104




a


and


104




b


and shorter parallelly extending portions or incipient flanges


106




a


and


106




b


. The intersecting corners between the portions are cut away as designated by indicia


108


to enable the portions to be later bent into contact with adjacent portions to form a panel with enclosing flanges.




Blank


100


is first operated upon by bending portions


104




a


and


104




b


into flanges which are thus disposed at an angle of about 90° from face


102


, as shown in

FIGS. 2-4

(see also FIG.


8


). In this example, flanges


104




a


and


104




b


are arranged to be stretched or shrunk to impart the desired concave or convex curvature to the panel between shorter parallelly extending portions or incipient flanges


106




a


and


106




b.






Accordingly, as illustrated in

FIGS. 5 and 6

, each flange, as exemplified by flange


104




b


is positioned between a pair of jaw mechanisms


110


and


112


(see also

FIG. 32

which shows the jaw mechanisms per se without a panel flange positioned between them). Each jaw mechanism includes a pair of jaw halves


110




a


,


110




b


and


112




a


and


112




b


, which are arranged to move either away from or towards each other, as respectively illustrated in

FIGS. 6



a


and


6




b


. Such relative movement between the jaw halves is dependant upon the configuration of the jaw half driving components which are coupled through camming-type elements to a hydraulically operated driver.




When jaw halves


110




a


,


110




b


and


112




a


and


112




b


of opposed mechanisms


110


and


112


engage opposite sides of the portion or segment of the flange, the thus engaged flange segment is either shrunk or stretched. The preferred mechanisms, are fabricated by W. Eckold AG Werkzeugmaschinen of Switzerland as referenced above, viz., they are described in its forming tools and spare parts brochure entitled “Eckold-Kraftformer Piccolo, KF 320, KF 314,” pages 6-8 thereof relating to spare parts FWA and FWR.




The stretching operation is depicted in

FIG. 6



a


in which respective jaw halves


110




a′, b


′ and


112




a′, b


′ are caused to move away from one another to cause a segment


104




b


′ to stretch. The shrinking operation is depicted in

FIG. 6



b


in which respective jaw halves


110




a″, b


″ and


112




a″, b


″ are caused to move away from one another to cause a segment


104




b


″ to stretch.




By seriatim application of these respective stretching and shrinking operations on spaced segments of the flange, as the panel is advanced past the opposing jaw halves, the entirety of both, parallelly extending flanges will be stretched or shrunk to an extent in accordance with the aggregate stretching or shrinking. This results, as shown in

FIGS. 7



a


and


7




b


, in a concavely shaped panel


114


having a like shaped perforated face


116


and a convexly shaped panel


118


having a like shaped face


120


effected by their respectively stretched-segment and shrunken-segment flanges


122


and


124


.

FIG. 9

is a perspective view of a concavely curved panel and which may be further processed to incorporate downwardly bent shorter portions formed from end flanges


106




a


and


106




b


and hanger hardware attached to the longer flange pair to enable the panels to be appropriate hung, for example, from a ceiling.




In

FIGS. 10-13

, a machine


126


used to fabricate curved panels includes a front-side section


128


into which panels are inserted and a back-side section


130


from which the curved panels exit. Two pairs of jaw mechanisms


132


and


134


are supported on heads


136


and


138


on back-side section


130


. For purposes of discussion at this point, the jaw mechanisms will not be classified as being of the stretching or the shrinking variety, unless a specific reference to one or the other is required to distinguish between a concavely or a convexly curved panel.




Vertically disposed panel supporting rollers


140


on both the front-side and back-side portions are arranged to contact the upper and under sides of the panel face. Horizontally disposed panel flange guiding rollers


142


on the back-side portion


130


are arranged to guide the panel through flange jaw mechanisms


132


and


134


. Additional vertically disposed panel advancing or indexing paired rollers


144


are positioned in the back-side section and are arranged to frictionally engage the upper and lower surfaces of the panel face so as to index the panel and, in particular, the parallelly placed panel flanges in indexed seriatim through the jaws of each mechanism


132


.




A linearly disposed roller means


146


is positioned adjacent back-side section


130


and is employed to support the center of the completed, curved panel as it exits from the machine.





FIGS. 14 and 15

depict, in block diagram, an improved curving machine


148


, which is controlled by a computer


150


. Machine


148


is designed to accurately curve a panel, as represented by panel portion


152


having a perforated face


154


and a flange


156


depending from the perforated face. Flange


156


includes parallelly and longitudinally extending surfaces


158


and


160


.




The entirety of improved computer-controlled machine


148


is illustrated in

FIG. 22

et seq., which machine includes two heads supporting jaw mechanisms and a centrally placed panel advancing/indexing roller mechanism,

FIG. 14

depicts one side of machine


148


.




As viewed in

FIG. 14

, and the orientation of broken-away perforated face


154


of panel portion


152


,

FIG. 14

may be viewed as the left-hand side of the panel curving machine, as distinguished from its right-hand side. This “left-hand” side comprises one head and its jaw mechanism and supporting hardware as being representative of its mating head and its jaw mechanism on the other side. Accordingly, for simplicity of the following exposition,

FIGS. 14-17

illustrate a single device or mechanism, which is representative of the “right-hand” side of machine


148


.




Notwithstanding the immediately preceding introduction relating to the simplified depiction of the machine, because the description of the electrical connection and the input/output diagrams shown in

FIGS. 25



a


,


25




b


,


26




a


and


26




b


describe some components which pertain to both heads and their jaw mechanisms, the indicia employed in the subsequent description for certain components are further labeled with the Greek letters “α” and “β”. Consequently, any indicium having the appendage “α” pertains to the “left-hand” side of the machine, while any indicium having the appendage “β” pertains to the “right-hand” side. For convenience, when it is not necessary to make a distinction between the left-half side “α” and the right-hand side “β”, these appendages may be omitted; however, it is be understood that they pertain, when apposite.




Accordingly, improved computer-controlled curving machine


148


includes a pair of generally configured U-shaped heads


162


α and


162


β (generically identified by indicium


162


) supported on an air bearing


164


, and a pair of jaw mechanisms


166


and


168


carried by the head. Head


162


is reciprocable, as denoted by double-headed arrow line


170


, on an appropriate base


172


, and its frictional engagement therewith is limited by air bearing


164


, which is coupled to a pneumatic supply


174


. A supporting scissors apparatus


176


is positioned at the back-side section of the curved machine for receipt of the curved panel.




As depicted in

FIG. 15

, a hydraulic system provides the instrumentality for operating all movable components, such as head


162


, jaw mechanism


166


, and scissors apparatus


176


. Specifically, the hydraulic system includes a supply


178


of hydraulic fluid, such as oil, which is furnished to the several proportional directional control valves, typified by indicium


180


in

FIG. 15

, for operating the several components, viz., proportional directional control valve


182


for head


162


, proportional directional control valve


184


for jaw mechanism


166


, and proportional directional control valve


186


for scissors apparatus


176


. A preferred typical proportional directional control valve comprises a high response proportional servo valve with an on-board drive amplifier, e.g., U.S. Pat. No. 4,434,966 and related patents.




As also shown in

FIG. 15

, hydraulic fluid supply


178


includes a main pressure pump


187


, an oil reservoir


188


, a circulation pump


190


and a temperature control


192


. Main pressure pump


187


is connected to proportional directional control valve


180


through a line


181


. Temperature control


192


is coupled to circulation pump


190


to ensure a proper temperature of the oil to be supplied to proportional directional control valve


180


. A hydraulic system temperature sensor


191


is associated with temperature control


192


to sense the temperature of the hydraulic fluid. Proportional directional control valve


180


is coupled to the device or mechanism (generally designated by indicium


194


) to be moved, e.g., head


162


, jaws mechanism


166


and scissors apparatus


176


, through a hydraulic cylinder


196


of conventional design. A hydraulic system pressure sensor


191


and a hydraulic pressure valve


193


are placed in line


181


from main pressure pump


187


to proportional directional control valve


180


.




A pressure bypass valve


195


is included between line


181


and oil reservoir


188


to allow the system to operate at very low pressures in order to achieve a gentle curving effect or for use with soft and or thin materials.




As illustrated in

FIGS. 16-18

, panel


152


is advanced or indexed through computer-controlled curving machine


148


preferably by three pairs


198


,


200


and


202


of six motor-driven rollers


204


which are grouped in three pairs to provide a proper gripping of perforated face


154


of panel


152


. Rollers


204


are driven by roller motors


206


, as controlled by an electronic roller driver device


208


which, in turn, is controlled by computer


150


.




A laser device


210


, one for each head (see also FIG.


16


), provides radiation


212


directed at panel perforated face


154


adjacent to flanges


156


and


156




a


. Such radiation provides information of the curvature of the panel, and such information is directed to computer


150


for such corrective action as may be required, pursuant to a comparison between the information thus obtained with a pre-established specification.




In general, computer


150


is coupled to proportional directional control valves


170


,


172


and


174


through appropriate circuitry to actuate them in accordance with the directions both for ensuring the proper settings in curving machine


148


and scissors apparatus


174


, as specified for the particular panel to be processed, and for otherwise operating the curving machine.




One computer-controlled operation is illustrated in

FIGS. 14

,


19


and


20


with respect to the head and jaw mechanism movements, and in conjunction with the advancing and indexing of the panel by roller pairs


200


-


204


and the diagram shown in FIG.


18


. The position of panel flange


156


in

FIGS. 14 and 14



a


and, in particular the segment of its segment gripped between movable jaw mechanism


166


and fixed jaw mechanism


168


, is after the panel segment has been stretched or shrunk. The indicia adopted to identify the jaw halves of jaw mechanisms


166


and


168


follow that used with respect to

FIG. 6

; thus, jaw halves


166




a, b


correspond to jaw halves


110




a, b


and jaw halves


168




a, b


correspond to jaw halves


112




a, b.






It is then necessary to advance or index the panel, without galling or otherwise harming the flange, so that the adjacent flange segment may be in position to be appropriately stretched or shrunk. The steps taken to effect this advance/indexing phase from the position shown in

FIGS. 14 and 14



a


is illustrated in

FIGS. 19 and 20

. As shown in

FIG. 19

, jaw mechanism


166


is retracted, as illustrated by the movement designated by line


214


in the direction of its arrowhead, to pull jaw halves


166




a


and


166




b


from contact with flange surface


158


, the separation therebetween being designated by double-headed arrow indicium


216


. Jaw mechanism


168


remains stationary.




Then, as shown in

FIG. 20

, head


162


, and both jaw mechanisms


166


and


168


, are linearly moved as illustrated by the movement designated by line


218


in the direction of its arrowhead, to pull jaw halves


168




a


and


168




b


from contact with flange surface


160


, the separation therebetween being designated by double-headed arrow indicium


220


. In this phase, both jaw mechanisms


166


and


168


remain stationary with respect to head


162


, but move together therewith. This movement reduces the separation designated in

FIG. 19

by indicium


216


between jaw halves


166




a


and


166




b


and flange surface


158


by a smaller separation, which is designated by double-headed arrow indicium


216


′ to differentiate it from larger separation


216


. The only condition placed upon the dimension of separation


216


is that it be of sufficient magnitude that, after movement of head


162


, both jaw halves


166




a, b


and


168




a, b


remain out of contact with surfaces


158


and


160


of flange


156


, regardless of any irregularity in the continuity of the flange.




After completion of the movements described with respect to

FIGS. 19 and 20

, panel


152


is indexed to its next position to place a new segment of the flange between the jaws for repeated stretching or shrinking.




During the movements described in connection with the movement depicted in

FIGS. 14



a


,


19


and


20


, both lasers


210


also monitor the curvature of panel


152


, specifically of its perforated face


154


adjacent its opposed flanges


156


and


156




a


. The laser radiation reflections from the panel face are conveyed to computer


150


, and compared with the desired curvature specification information stored therein to provide corrective information. This corrective information is then directed to the respective proportional directional control valves, e.g., valve


182


, to regulate the amount of movement of reciprocable jaw mechanism


166


towards the flange segment to be stretched or shrunk for a predetermined distance. This movement of reciprocable jaw mechanism


166


and the extent of its predetermined distance, in cooperation with the position of the jaws of stationary jaw mechanism


168


determines the pressure to be applied against the flange segment and, thus, the amount of stretching or shrinking needed to provide the desired, preprogrammed panel curvature. The interrelationships of both lasers with the computer at both flanges


156


and


156




a


are independent of each other.




Briefly, the steps undertaken are as follows:




(1) the jaw mechanisms are drawn back in two steps by first moving the movable jaw mechanism and then the head to distance both jaw mechanisms from engagement with the panel segment which had been subjected to a prior stretching or shrinking,




(2) the panel is indexed to advance the stretched/shrunk flange segment from the jaws and to position a fresh flange segment in position for stretching or shrinking,




(3) the head is moved back to place the fixed jaw in contact with the fresh flange segment,




(4) laser radiation detects the panel perforated face, and




(5) laser radiation information is fed into the computer which directs the movable jaw mechanism first to move into contact the adjacent surface of the flange segment and second to apply the precise amount of pressure to provide a precise stretching or shrinking to the flange segment.




Because the interrelationships of both lasers with the computer at both flanges


156


and


156




a


are independent of each other, the amount of stretching or shrinking of each flange is tailored to that flange and the curvature of the panel adjacent thereto. Such independence provides for a fine-tuning of the curving operation, and the consequent improved quality of the thus-produced curve and of the finished panels. While inspection is still needed, much less inspection is required.




Reference is now directed to FIGS.


21


(


a


) and


21


(


b


) which illustrate scissors apparatus


176


placed by machine


148


, at its back-side section


222


, in position to receive and support the curved panel as it exits therefrom. As shown also in

FIG. 22

, the panel, before it is curved, enters the machine at front-side section


224


, and rides on vertically-disposed supporting rollers


226


, and between horizontally disposed rollers


227


. Rollers


228


(see also

FIG. 23

) at back-side section


222


are positioned on the respective heads adjacent the jaws mechanisms for guiding the panel through the stretching/shrinking jaws. The scissors apparatus is carried on a trolley


230


, which is disposed to move towards and away from machine


148


on tracks


232


by means of a suitable coupling to a servo motor


233


.




Scissors apparatus


176


includes a linkage


234


comprising a plurality of bars


236


joined together at pivots


238


. The linkage is pivotally mounted on trolley


230


at its base


240


to permit it to be turned 180° and its also so joined to the trolley as to permit it to be raised and lowered into positions


176


(


a


) and


176


(


b


). Hydraulic cylinders are appropriately connected to the linkage and its components bars and to proportional directional control valve


186


for control by computer


150


. The linkage is further provided with three sets


242


,


244


and


246


of four rollers


248


journalled on axles


250


.




Both the pivoting of the linkage to adjust the heights and positions of rollers


248


and the 180° turning of the linkage permits the three sets of rollers to be adjusted respectively to the curvature and the concave or convex curve of the panel exiting from the machine. In a first 180° position, e.g., for a concavely curved panel, the front roller set of the scissors assembly is placed higher than its rear set of rollers. In the second 180° position, e.g., for a convexly curved panel, the front roller set of the scissors assembly is placed lower than its rear set of rollers. The respective heights among the three sets of rollers are adjusted to conform them with the particular curvatures of the respective concave and convex surfaces. The 180° is manually performed, while the extensions of the roller sets and their heights are set by the computer along with the initial setting of the machine.




As best shown in

FIG. 22

, both vertically disposed rollers


226


and horizontally disposed rollers


227


are carried on a pair of frame members


250


which are movable towards and away from one another in the direction of double-headed arrow lines


252


. Movement frame members


250


is effected by a motor


254


, as shown in

FIG. 21



a


, which is suitably coupled thereto by appropriate axles and worm and pinion gearing.




Reference is now made to the electrical connection diagram and the input/output connection diagram illustrated in

FIGS. 25



a


,


25




b


,


26




a


and


26




b


, respectively designated by indicia


260


and


262


. The connections amongst the various components are depicted by single-headed and double-headed arrow lines, each of which typically represents a plurality of electrical leads, conventionally arranged within a flat cable, a multi-conductor cable, or a single conductor cable/wire. The single-headed lines denote uni-directional flow of data and/or signals. The double-headed lines denote bi-directional flow of data and/or signals.




At the center of the system is an 8-channel motion control computer


264


to which a 4-channel expansion board


266


is connected. Both are supported on a conventional PC computer chassis


268


, all as circumscribed by computer


150


shown in

FIGS. 14 and 18

.




Computer


264


, which provides all motion control processing for machine


148


, is coupled directly through a plurality (here, four in number for its eight channels) of 2-channel analog interface boards


270


,


272


,


274


and


276


, or indirectly through expansion board


266


through a plurality (here, two in number for its four channels) of 2-channel analog interface boards


278


and


280


. While each of the interface boards is illustrated as a 2-channel analog interface board, it is not required that this specific 2-channel form of board be employed; any similarly functioning component may be used in its place. Its function is simply to provide the appropriate interconnect format, both electronically and mechanically, between motion control computer


264


and the intended driver or drive mechanism. In the present invention, the intended drive mechanisms comprise hydraulic servo valves (generically identified by indicia


182


,


184


and


186


, see

FIG. 14

) or servo motors


206


,


233


and


254


(see

FIGS. 18 and 21



b


, respectively). Each hydraulic servo valve is coupled to the intended drive mechanism, which comprises a hydraulic cylinder


282


for driving a piston


284


. Each servo motor


286


is connected to its analog interface board by a servo amplifier


286


.




Feedback to the computer from the several driving mechanisms provides a check on the proper orientations thereof. Feedback from hydraulic servo valves


182


and


184


is provided by magnetostrictive linear displacement transducer (MLDT) feedback circuitry


288


. Feedback to computer


264


from the several hydraulic servo valves


186


is provided by linear voltage displacement transducer (LVDT) feedback circuitry


290


, through an analog feedback terminal board


291


. Feedback to the computer from servo motors


206


,


233


and


254


is provided by encoder feedback circuitry


292


through their respective servo amplifiers


286


to their respective 2-channel analog interface boards. The feedback sensor type may be replaced by any standard type of position feedback device available with suitable interface format and is not restricted to the specific types discussed in this application.




More specifically, first 2-channel analog interface board


270


is connected through its “Channel


1


—Head Position Left” and its “Channel


1


—Head Position Right” channels respectively to proportional directional control valves


182


α and


182


β, respectively for driving jaw heads


162


α and


162


β.




Second 2-channel analog interface board


272


is connected through its “Channel


3


—Work Jaw Left” and its “Channel


4


—Work Jaw Right” channels respectively to proportional directional control valves


184


α and


184


β, respectively for driving the two sets of jaw halves


166




a


,


166




b


,


168




a


and


168




b


. Alternatively stated, four jaw halves on the “left-hand” side are driven by control valve


184


α and four jaw halves on the “right-hand” side are driven by control valve


184


β.




Third 2-channel analog interface board


274


is connected through its “Channel


5


—Sheet Index” and its “Channel


6


—Sheet Width” channels respectively to servo motors


206


and


254


. Servo motor


206


is employed to index or discretely move the panel being curved forwardly through machine


148


. Servo motor


254


is employed to place horizontally disposed rollers


227


(see

FIG. 22

) flush against flanges


156


, in accordance with the specified width of the specific panel being processed.




Fourth 2-channel analog interface board


276


is connected through its “Channel


7


—Scissor Position” and its “Channel


8


—Scissor Lift Cylinder” channels respectively to servo motor


233


and hydraulic servo valve


286




a


. Servo motor


233


is used to move trolley


230


and scissors apparatus


176


into its proper placement with respect to machine


148


. Hydraulic servo valve


286




a


is employed to operate appropriate ones of linkage


234


and bars


236


to extend or lift the scissors apparatus from its trolley


230


and to retract or fold the scissors apparatus back onto the trolley.




Fifth 2-channel analog interface board


278


is connected through its “Channel


9


—Scissor Cylinder A” and its “Channel


10


—Scissor Cylinder B” channels respectively to effect two positionings of others of linkage


234


and bars


236


(other than those effected by interface board


276


) to locate two of rollers set


242


,


244


and


246


in accordance with the curvature imparted to the processed panel.




Sixth 2-channel analog interface board


280


is connected through its “Channel


11


—Scissor Cylinder C” and its “Channel


12


—Hydraulic Pressure/Feedwheel” channels respectively to effect a third positioning roller set and to provide couplings to hydraulic pressure valve


193


and with a feed encoder


294


. The third positioning roller set of the remaining linkage


234


and bars


236


(other than those operated on by interface boards


276


and


278


) locates the third of rollers set


242


,


244


and


246


in accordance with the curvature imparted to the processed panel. Feed encoder


294


performs the function of detecting the position of the panel, to determine if there is slippage thereof, and to effect any needed correction.




Further included in the electrical connections, as shown in diagram


260


(see also FIG.


14


), are left and right jaw sensors


166


α and


166


β and left and right laser position sensors


296


α and


296


β, which are associated with laser devices


210


(


210


α and


210


β—see also FIG.


16


). Laser position sensors


296


α and


296


β provide the information which is compared with the desired curvature information stored in computer


150


, as stated previously with respect to

FIGS. 14 and 16

, by which lasers


210


α and


210


β monitor the curvature of panel


152


, specifically of its perforated face


154


adjacent its opposed flanges


156


and


156




a


, on both the left-hand side (α) and the right-hand side (β) of machine


148


.




All of hydraulic system pressure sensor


189


, left-hand reciprocable jaw mechanism


166


α, right-hand reciprocable jaw mechanism


166


β, left laser position sensor


296


α, right laser position sensor


296


β and hydraulic system temperature sensor


191


are connected to analog feedback terminal board


291


and, thus, to computer


264


.




Information from computer


274


is displayed on a monitor


298


, and data input to the computer is effected by a keyboard


300


and a mouse


302


.




Input and output coupling to other external devices is enabled by a 24-channel input/output board


304


, which is more fully illustrated in

FIGS. 26



a


and


26




b


. The input devices include a foot switch


306


, a material detect sensor


308


, an oil filter dirty switch


310


, and miscellaneous components


312


,


314


,


316


,


318


,


320


,


322


,


324


,


328


and


330


. The output devices include hydraulic pump


187


, circulation pump


190


, a cooling fan


332


coupled to


178


, an oil heater


334


coupled to temperature control


192


, air pressure pneumatic supply


174


, and circuitry


336


and


338


to move drive wheels


200


up and down.




Further information concerning the machine is as follows:




MACHINE COMPOSITION




Section 1 Axes Definition




There are eleven closed loop axes on the machine. Three of these axes are driven by an electric servo drive with incremental encoder feedback. (A quad B with marker). The other 8 axes are hydraulically controlled with Temposonics® feedback mounted in the cylinders. Four Temposonics® (e.g., U.S. Pat. No. 5,545,984) MLDT type and four are LVDT type. Six of the axes are considered set-up or material support axes, that is, they position, prior to the main cycle starting, and maintain that position as the machine runs. The other five axes are considered “work” axes and are constantly in use during the cycle. The machine axes are as follows:




1. Jaw position left. This hydraulic cylinder carries the work jaws into position for a given sheet width. The sheet width is a program variable; therefore, prior to running a cycle, the jaw positioners (left and right) move the work jaws to the correct width setting. Once the cycle is running, the jaw positioners oscillate around the position set by the selected sheet width. This oscillation is a program variable defined for the part to be run, and is in the range of ±0 to 0.050″, for a maximum oscillation cycle of 0.2″ (i.e., 0.05″ in, 0.1″ out and 0.05″ back to position). The frequency of this oscillation will be a program variable, set from 0 to 3 Hertz.




2. Jaw Position right. This hydraulic cylinder will be slaved to 1. These two master/slave axes mirror each other, i.e. a theoretical width command of zero would place both work jaws on the machine centerline. A theoretical width command of 20″ will place both work jaws 10″ off center.




3. Jaw Work System left. This hydraulic cylinder opens and closes the two piece pinch die, one side being in a fixed position. The sheet material runs through this die. The program variables of die stroke, velocity and pressure will dictate how much the material is stretched on each stroke, thus controlling the overall curvature of the panel after forming. This cylinder will stroke every time the sheet indexer comes to rest during a cycle. The sheet cannot be indexed until the jaw work system has finished its stroke. Although the jaw work system cylinder has a 1″ stroke, it should be preset based upon the program variable for sheet thickness to provide minimal clearance for the sheet to feed through, thus optimizing the stroke cycle to a minimum. During a part run, the stroke cylinder variables and the variable for sheet feed distance can be modified based upon sensing the curvature of the panel based upon the 2 sheet laser sensors. Refer to the section on Adaptive Control for a detailed description.




4. Jaw Work System right. This hydraulic cylinder work in mirror image to that described in paragraph 3 above. These two axes cannot be tied together as a master slave because individual modification of program variables are required, based upon the measurement derived from the two output lasers.




5. Sheet Indexer. This electric servo will drive a 4.95″ friction wheel for the purpose of feeding the material through the machine. The feed distance will be a program variable but, as in axes 3 and 4 can be modified during a part run in order to control the curvature of the output sheet based upon the measured value at the laser sensors. Programmable range of this parameter is 0.375″ to 4″ per index at a programmable speed of 0.1 to 3 inches per second.




6. Sheet width. This electric servo will drive a ball screw assembly connected to a support mechanism on the input side of the machine. This will support the sheet material as it is fed through the system. The program variable of the sheet width will drive this assembly to the proper position prior to starting the cycle.




7. Scissor position. This electric servo will drive the base support for the scissor mechanism to be used for material support on the output side of the machine. The program variable of position for a given part number is defined during the setup of a part being run for the first time.




8. Scissor lift. This hydraulic cylinder will provide the vertical positioning component of the scissor lift assembly. The program variable of position for a given part number will be defined during the setup of a part being run for the first time.




9. Scissor A cylinder. This hydraulic cylinder is secured to one of three individual arms which support the material on the output side of the machine. The program variable of position for a given part number is defined during the setup of a part being run for the first time.




10. Scissor B cylinder. This hydraulic cylinder is secured to one of three individual arms which support the material on the output side of the machine. The program variable of position for a given part number is defined during the setup of a part being run for the first time, by jogging each cylinder as the part runs. Once a satisfactory position has been reached, this position can then be stored.




11. Scissor C cylinder. This hydraulic cylinder is secured to one of three individual arms which support the material on the output side of the machine. The program variable of position for a given part number is defined during the setup of a part being run for the first time.




Section 2 Power Up and Initialization




1. Once the main disconnect has been turned on, the machine control system (PC) can be started.




2. After the machine control system has initialized, the operator is prompted to start the hydraulic pump.




3. Hydraulic system temperature is displayed while the oil is coming up to temperature. The oil heating system is controlled externally from the machine control system, but the system will not allow operation until proper temperature is reached.




4. As the hydraulic system is coming up to temperature, the operator is prompted to home the three electric axes which require homing, i.e., sheet indexer, sheet width, and scissor assembly positioner.




5. The system is now ready for operation.




Section 3 Mode Selection




1. Manual Mode—This mode of operation allows the operator to manually select and jog any of the machine axes. The manual jog screen allows for the following functions:




Axis select




% Feed rate select




Jog plus




Jog minus




2. Single cycle mode—This mode of operation allows the operator to manually enter the cycle parameters. Each time the START button is pressed, the machine moves through one sequence, feed sheet and then pinch. These values are then be stored as a part of the program.




3. Auto run mode—This mode allows the operator to activate a stored program defined by part number and to initiate the auto cycle once a panel has been loaded on the machine. The automatic cycle is as follows.




The operator elects the program for the part to be run.




1. If this is a new part, pressing the cycle start will cause the “set-up” axes to position per program value. If this is a start run, the operator will load a panel and, then by pressing cycle start, the auto operation will be initiated.




2. If this is a new part, the operator loads the panel after the set-up axes have positioned. By pressing the cycle start the second time, the auto operation is initiated. The sheet indexer (5) the feeds the panel into the machine. During this motion, the jaw position left and right (1 & 2) is oscillated to allow smooth material feed.




3. Upon detection of the panel at the work point by a machine sensor, the sheet indexer (5) continues to feed the programmed amount.




4. When the sheet indexer (5) is in position, the jaw position left and right (1 & 2) should be in position at the programmed width (null).




5. Once the sheet index (5) and jaw position left and right (1 & 2) are in position, the jaw work left and right (3 & 4) executes the programmed stroke.




6. Once the programmed stroke has been executed and the jaw work left and right (3&4) is in position, the sheet will index as described in paragraph (d) above.




7. Consecutive jaw work left and right (3 & 4) strokes may be modified, based upon the measured panel curvature derived from the laser feedback. This step maintains the programmed value for finished sheet curvature.




8. This sequence continues until the end of the sheet is detected.




Section 4 Program Variables.


















Minimum Value




Maximum Value











Nominal sheet radius




20″




 3600″






Tolerance




 0.05″




   0.5″






Sheet width




12″




 60″






Sheet thickness




 0.02″




  0.25″






Initial sheet feed




 0″




 50″






Sheet feed




 0.375″




  4″






Feed speed




 0.1




   3 I.P.S.






Work jaw clearance




 0.05″




  0.5″






Work jaw stroke




 0.01″




  0.1″






Work jaw stroke speed




0.1 I.P.S.




 1.0 I.P.S.






Work jaw pressure




 20 P.S.I.




2,000 P.S.I.






Jaw position oscillation




 0




  0.05″






Jaw position oscillation speed




 0




   3 Hz














Section 5 Adaptive Control




The control system is equipped with an adaptive control feature. This feature allows the control to modify program parameters, as needed or desired, based upon the feedback from the two laser sheet sensors. This feedback is equated with a panel radius, i.e. xx VDC=yy inches radius. As the part is run, this feedback is checked with the programmed nominal radius. Any one of two cycle variables can then be modified to maintain the finished panel within proper dimension±tolerance. These variables are:




1. Work jaw pressure (left and right), (higher pressure=tighter radius and vice-versa)




2. Sheet feed (shorter feed means more pinch cycles=tighter radius and vice-versa)




The machine employs adaptive cycle control as follows:




1. When a work jaw stroke cycle is called, the control commands the two work jaw axes to the programmed stroke dimension. The work jaw cylinder pressure is constantly monitored. When this pressure reaches the set value for work jaw pressure, the stroke is terminated as if the programmed position were reached.




2. During the cycle, if the curvature of the output panel is such that the bend needs to be increased, the pressure set point will be increased in increments based upon a limited access system parameter until the panel is within tolerance.




3. Conversely, if the curvature of the output panel is such that the bend needs to be decreased, the pressure set point will be decreased in increments based upon a limited access system parameter until the panel is within tolerance.




4. During the above parameter modifications, if either the upper (2,000 P.S.I.) or lower (20 P.S.I.) limits are reached, the parameter for sheet feed will be modified in steps based upon a limited access system parameter to achieve the correct curvature.




5. Should the limits of pressure and sheet feed be reached without the panel being within tolerance, accommodation can be made in the control system to use the work jaw stroke speed as a last resort for panel curvature modification.




COMPUTER FLOW CHART




1. Turn on main power




a. Start computer




2. Start startup program




a. Main pump will start.




b. The computer will start oil circulation pump and check oil temperature.




c. If low it will start heaters to heat oil to preset temperature.




d. If too high, it will start the cooler and lower the temperature to the preset temperature. Once the oil is at proper temperature, the computer allows the startup program to continue.




e. The computer will lower the scissors, if needed.




f. The computer will zero all servomotors to ready position.




g. The computer will start the main pump motor.




h. The computer will check the oil pressure to be sure that the bypass is working properly and at preprogrammed pressure.




i. The computer will run the jaw position cylinders through their full cycle to circulate the oil.




j. The computer will run the jaw cylinders through their full cycle to circulate the oil.




3. Operator must scan previous programs or write a new program




a. The computer will set at pressure as shown in program.




b. The computer will set jaw position at the width as shown in the program.




c. The computer will set jaw cylinder distance as shown dimension in the program.




d. Panel width servo will set at width as shown in the program.




e. Feed will be set as shown in the program.




f. Speed will be set as shown in the program.




g. If known, the computer will set the laser for curve distance.




h. If known, the computer will set the scissors lift distance.




i. If known, the computer will set the scissors lift support arms.




4. Machine is now ready to start curving program




a. The electric eye will see panel and tell the computer that it can now start the curving program.




5. Pushing start button will now start the curving program




a. Drive system will now close on panel.




b. Jaw position cylinder will move jaws into crimping position.




c. Jaws will now close to set pressure.




d. After crimping, the jaw position cylinder advances the jaw cylinder to the amount set in the program to clear the panel.




6. Servomotor will advance the panel to the set dimension




a. Distance wheel checks to make sure that the panel has moved the correct amount.




b. If the panel hasn't moved to the set distance, the error light will light and stop further action.




c. If all checks out, the cycle will continue as described in paragraphs 5B-6C.




7. When the panel reaches the laser, it reads the curve as set in program




a. Then adjust the jaw distance as necessary to keep the panel within program parameters.




b. If necessary, the computer will raise the hydraulic pressure to reach the new set dimension.




c. If no laser setting is in the program, it can be set now, or later as needed.




8. The program continues to the point where the scissors lift is needed for support.




a. If already in the program and no adjustment is necessary, the program continues.




b. If adjustment is needed, the operator jogs the lift or any of the three arms into the necessary position.




c. If not in the program, the scissors lift must now be adjusted.




d. Jog the scissors to the approximate position.




e. Raise the lift to the approximate position.




f. Adjust the arms to the approximate position.




g. As the panel runs, the operator fine tunes, as needed, the lift by adjusting all items as described in paragraphs 9a.-9c.




9. When the electric eye no longer sees the panel, the cycle will continue the preset number of crimps and stop.




10. When the remote switch is activated by the operator, the drive system opens and the panel is removed from the machine.




Although the invention has been described with respect to particular embodiments thereof, it should be realized that various changes and modifications may be made therein without departing from the spirit and scope of the invention.



Claims
  • 1. A method for curving a panel having a center portion and flanges angularly depending therefrom, comprising the steps of:simultaneously and substantially equally applying lengthwise dimensional changes in opposed side portions of the flanges to impart a curvature to the panel adjacent the dimensionally changed opposed side portions either (a) by stretching the panel opposed side portions to impart a concave curvature to the or (b) by shrinking the opposed side portions to impart a convex curvature to the panel; appropriately repeating said stretching and shrinking steps to successive opposed side portions of the flanges; sensing the panel during said applying steps to obtain information of the curvature; comparing the curvature information thus obtained with a pre-established specification; and adjusting said applying and repeating steps to conform the curvature to the specification.
  • 2. A method for curving a panel having a center portion and flanges angularly depending therefrom, comprising the steps of:simultaneously and substantially equally applying lengthwise dimensional changes in opposed side portions of the flanges to impart a curvature to the panel adjacent the dimensionally changed opposed side portions by utilizing, for each flange, paired opposing jaws, each including jaw halves disposed to move towards and away from one another; positioning each of the paired opposing jaws on either side of its flange at a segment thereof for enabling the flange segment sandwiched therebetween to be gripped by the jaw halves, and moving the jaw halves towards one another to shrink the flange segment and to effect a convex shape to the curvature, and away from one another to stretch the flange segment and to effect a concave shape to the curvature; repeating said applying step to successive opposed side portions of the flanges; sensing the panel during said applying steps to obtain information of the curvature; comparing the curvature information thus obtained with a pre-established specification; and adjusting said applying and repeating steps to conform the curvature to the specification.
  • 3. A method according to claim 2 further comprising the steps of housing each of the opposing jaws in a head, one for each on the flanges, and moving the heads towards and away from one another to accommodate different widths of the panel.
  • 4. A method for curving a panel having a center portion and flanges angularly depending therefrom, and a lengthwise axis parallel to the flanges and a crosswise axis positioned normal to the lengthwise axis, comprising the steps of:simultaneously and substantially equally applying lengthwise dimensional changes in opposed side portions of the flanges to impart a curvature to the panel adjacent the dimensionally changed opposed side portions by (1) utilizing a pair of opposing jaws, each including jaw halves disposed to move towards and away from one another along the lengthwise axis; and (2) supporting the jaw pair in a head such that (a) the jaw pair, as an entity, is capable of movement parallel to the crosswise axis when the head is likewise so moved, (b) one of the jaws is fixed with respect to the head and c) the other of the jaws is movable with respect to the head along the crosswise axis and, thus, movable towards and away from the fixed one of the jaws; and repeating said applying step to successive opposed side portions of the flanges, in which in each said applying step, for each flange as representative of the other flange, and commencing when both the fixed one and the movable other of the jaws are gripping the flange, (1) retracting the movable other of the jaws from gripping the flange segment in a first direction; (2) retracting the head from the flange segment in a second direction which is opposite from the first direction, and for a distance that permits both the fixed one and movable other of the jaws to be out of contact with the flange; (3) indexing the panel along the lengthwise axis to position a new segment of the flange between the fixed one and movable other of the jaws; (4) moving the head in the first direction to place the fixed one of the jaws into contact with the new flange segment; (5) moving the movable other of the jaws in the second direction to place it in contact with the new flange segment and, with the fixed one of the jaws, to securely grip the new flange segment between the fixed one and movable other of the jaws; and (6) moving the jaw halves towards one another to shrink the flange segment and to effect a convex shape to the curvature, and away from one another to stretch the flange segment and to effect a concave shape to the curvature.
  • 5. A method for curving a panel having a center portion and flanges angularly depending therefrom, comprising the steps of:simultaneously and substantially equally applying lengthwise dimensional changes in opposed side portions of the flanges to impart a curvature to the panel adjacent the dimensionally changed opposed side portions either (a) by stretching the opposed side portions to impart a concave curvature to the panel or (b) by shrinking the opposed side portions to impart a convex curvature to the panel; appropriately repeating said stretching and shrinking steps to successive opposed side portions of the flanges; sensing the panel during said applying steps to obtain information of the curvature; comparing the curvature information thus obtained with a pre-established specification; and adjusting said applying and repeating steps to conform the curvature to the specification.
  • 6. A method according to claim 5 in which said sensing step comprises the step of exposing the panel with laser radiation.
  • 7. A method according to claim 5 further comprising the steps of supporting the fully curved panel after said applying and repeating steps at a plurality of spaced locations on the panel for minimizing variations in the curvature for deformation.
  • 8. A method for curving a panel having a center portion and flanges angularly depending therefrom, comprising the steps of:simultaneously and substantially equally applying lengthwise dimensional changes in opposed side portions of the flanges to impart a curvature to the panel adjacent the dimensionally changed opposed side portions; repeating said applying step to successive opposed side portions of the flanges; sensing the panel during said applying steps to obtain information of the curvature; comparing the curvature information thus obtained with a pre-established specification; adjusting said applying and repeating steps to conform the curvature to the specification; and supporting the fully curved panel after said applying and repeating steps at a plurality of spaced locations on the panel for minimizing variations in the curvature for deformation by utilizing supports and coupling the supports with the comparing apparatus for effecting a configuration of the supports that mirrors the curvature for fully supporting all parts of the panel.
  • 9. Apparatus for curving a panel having a center portion and flanges angularly depending therefrom, comprising:grippers for gripping opposed side portions of each of the flanges; dimensionally changing mechanisms coupled to said grippers for simultaneously and substantially equally applying lengthwise dimensional changes in the opposed side portions of the flanges to impart a curvature to the panel adjacent the dimensionally changed opposed side portions, said dimensionally changing mechanisms alternately operable (a) to stretch the opposed side portions to impart a concave curvature to the panel and (b) to shrink the opposed side portions to impart a convex curvature to the panel; and an indexing mechanism for indexing the flanges in incremental steps for enabling said grippers and said dimensionally changing mechanisms to apply, in seriatim, the lengthwise dimensional changes in successive segments of the opposed side portions of the flanges.
  • 10. Apparatus according to claim 9 further including sensors adjacent said grippers for sensing the panel to obtain information of the curvature, comparing apparatus for comparing the curvature information thus obtained with a pre-established specification, and adjusting mechanisms for adjusting said grippers to conform the curvature to the specification.
  • 11. Apparatus according to claim 10 further including lasers coupled to said sensors for providing radiation directed to the panel for providing the information.
  • 12. Apparatus for curving a panel having a center portion and flanges angularly depending therefrom, comprising:grippers for gripping opposed side portions of each of the flanges, each of said grippers including a pair of opposing jaws, and each said jaw each includes jaw halves disposed to move towards and away from one another along an axis which is parallel to the flanges; dimensionally changing mechanisms coupled to said grippers for simultaneously and substantially equally applying lengthwise dimensional changes in the opposed side portions of the flanges to impart a curvature to the panel adjacent the dimensionally changed opposed side portion; an indexing mechanism for indexing the flanges in incremental steps for enabling said grippers and said dimensionally changing mechanisms to apply, in seriatim, the lengthwise dimensional changes in successive segments of the opposed side portions of the flanges; sensors adjacent said grippers for sensing the panel to obtain information of the curvature; comparing apparatus for comparing the curvature information thus obtained with a pre-established specification; adjusting mechanisms for adjusting said grippers to conform the curvature to the specification; and a head, for each of said grippers, supporting said respective jaw pair and including apparatus that (a) enables said jaw pair, as an entity, to move parallel to an axis which is normal to the lengthwise axis, when said head is likewise so moved, (b) fixes one of said jaws with respect to said head and c) enables the other of said jaws to move with respect to said head along the crosswise axis and, thus, to move said movable other of said jaws towards and away from said fixed one of the jaws.
  • 13. Apparatus according to claim 12 in which said head apparatus is operable to retract the movable other of the jaws from gripping the flange segment in a first direction;retraction apparatus for retracting the head from the flange segment in a second direction which is opposite from the first direction, and for a distance that permits both the fixed one and movable other of the jaws to be out of contact with the flange; indexing apparatus for indexing the panel along the lengthwise axis to position a new segment of the flange between the fixed one and movable other of the jaws; head moving apparatus (a) for moving the head in the first direction to place the fixed one of the jaws into contact with the new flange segment, (b) for moving the movable other of the jaws in the second direction to place it in contact with the new flange segment and, with the fixed one of the jaws, to securely grip the new flange segment between the fixed one and movable other of the jaws, and for moving the jaw halves towards one another to shrink the flange segment and to effect a convex shape to the curvature, and away from one another to stretch the flange segment and to effect a concave shape to the curvature.
  • 14. Apparatus according to claim 13 further including scissors apparatus for supporting the panel as it exits with the curvature from said grippers.
  • 15. Apparatus according to claim 14 in which said scissors apparatus includes linkages and bars, a plurality of sets of rollers spaced apart from one another and articulation mechanisms coupled to said linkages and bars for providing said rollers with a configuration that mirrors the curvature for supporting parts of the panel.
  • 16. Apparatus according to claim 15 further including interconnections between said scissors apparatus and said comparing apparatus for effecting the roller configuration.
  • 17. Apparatus for curving a panel having a center portion and flanges angularly depending therefrom, comprising:grippers for gripping opposed side portions of each of the flanges, each of said grippers including a pair of opposing jaws, and each said jaw each includes jaw halves disposed to move towards and away from one another along an axis which is parallel to the flanges; dimensionally changing mechanisms coupled to said grippers for simultaneously and substantially equally applying lengthwise dimensional changes in the opposed side portions of the flanges to impart a curvature to the panel adjacent the dimensionally changed opposed side portion; and a head supporting said jaw pair and including apparatus that (a) enables said jaw pair, as an entity, to move parallel to an axis which is normal to the lengthwise axis, when said head is likewise so moved, (b) fixes one of said jaws with respect to said head and c) enables the other of said jaws to move with respect to said head along the crosswise axis and, thus, to move said movable other of said jaws towards and away from said fixed one of the jaws.
  • 18. Apparatus according to claim 17 in which said head apparatus is operable to retract the movable other of the jaws from gripping the flange segment in a first direction;retraction apparatus for retracting the head from the flange segment in a second direction which is opposite from the first direction, and for a distance that permits both the fixed one and movable other of the jaws to be out of contact with the flange; indexing apparatus for indexing the panel along the lengthwise axis to position a new segment of the flange between the fixed one and movable other of the jaws; head moving apparatus (a) for moving the head in the first direction to place the fixed one of the jaws into contact with the new flange segment, (b) for moving the movable other of the jaws in the second direction to place it in contact with the new flange segment and, with the fixed one of the jaws, to securely grip the new flange segment between the fixed one and movable other of the jaws, and for moving the jaw halves towards one another to shrink the flange segment and to effect a convex shape to the curvature, and away from one another to stretch the flange segment and to effect a concave shape to the curvature.
  • 19. Apparatus according to claim 18 further including scissors apparatus for supporting the panel as it exits with the curvature from said grippers.
  • 20. Apparatus according to claim 19 in which said scissors apparatus includes linkages and bars, a plurality of sets of rollers spaced apart from one another and articulation mechanisms coupled to said linkages and bars for providing said rollers with a configuration that mirrors the curvature for supporting parts of the panel.
  • 21. Apparatus according to claim 20 further including interconnections between said scissors apparatus and said comparing apparatus for effecting the roller configuration.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Applications, No. 60/212,603, filed Jun. 19, 2000, and No. 60/245,131, filed Nov. 2, 2000.

US Referenced Citations (8)
Number Name Date Kind
922942 McGill May 1909 A
1015429 Fahrney Jan 1912 A
1617069 McLauglin Feb 1927 A
1998509 Keith Apr 1935 A
4955222 Reccius Sep 1990 A
5249445 Morello Oct 1993 A
5359871 Morello Nov 1994 A
5584198 Morello et al. Dec 1996 A
Foreign Referenced Citations (3)
Number Date Country
238537 Feb 1926 GB
256962 Feb 1927 GB
116934 Jul 1983 JP
Provisional Applications (2)
Number Date Country
60/212603 Jun 2000 US
60/245131 Nov 2000 US