The invention relates to panel elements as set forth in the preamble of claim 1.
Panel elements for forming floor coverings are usually rectangular and elongated, although they may also feature other contours in being configured square, for example. Accordingly, in keeping with the usual rectangular configuration terms such as “side”, “end” or the like are employed in the following without the invention being restricted to elongated panel elements. These terms serve in addition merely to distinguish first and second edges of the panel element each arranged parallel to the other in pairs and at an angle relative to the edges designated otherwise so that the geometry of the panel element provided for the “side” may also be provided at the other, for example, “end”.
Known from GB 2,256,023 A is a generic panel element. It is provided for in the floor covering formed of several such panel elements that the individual panel elements feature a certain mobility relative to each other. This enables, especially when the panel elements are made of wood and the wood “works” due to exposure to the weather or due to the influence of moisture, any opening up of joints between adjoining panel elements to be avoided since the clearance possible between adjoining panel elements as provided is designed to accommodate such movements of the natural material wood.
In some applications and depending on the furnishing style it may however be desirable to restrict the mobility of adjoining floor panel elements in preventing dirt from gaining access to the gaps as may materialize between adjoining panel elements. This is why it is known to fabricate non-generic floor coverings such that the tongue and groove geometries provided therein do not already prevent parting of adjoining floor panel elements so that these elements can be first simply jointed, namely married and not fixedly connected until glued and safeguarded against the cited parting forces whilst, on the one hand, being regularly sealed by the aforementioned glueing procedure so that at the joints of two adjoining panel elements neither moisture nor dirt is able to gain access.
Known from EP 0 085 196 A1 is a non-generic mat for forming a floor covering in which the complete edge is provided with coupling elements each complementary to the other. The coupling elements are configured at two edges as a groove open upwards and at the two other edges as a key extending downwards in thus enabling a mat to be joined to further mats of the same kind by it being urged at two edges simultaneously with its key facing downwards into the upwards open groove of mats already laid.
It is known in the field of the generic panel elements from WO 96/27719 to configure a groove from two adjoining edges of an elongated panel element, i.e. a side and an end, and to provide the lower cheek of the groove as a protruding element including a channel for receiving a complementary interlocking element at the opposite side in each case. The complementary interlocking element is configured to a certain extent at the underside of a tongue for inserting into the groove. As cited in this document these interlocking contours are configured the same on all four edges, it further being stated that laying is done in rows. This means that the panel elements of one row to be laid juxtaposed first need to be married at their ends before then being connected married by their sides to the sides of the panels already laid. Such a procedure is, however, relatively laborious and a nuisance since several panel elements interlocked by their ends need to be handled.
By contrast it is known from DE 200 01 788 U1 to configure interlocking contours provided at a tongue and groove joint of the sides such that a second panel is swiveled in place with an already laid first panel before then being down-swivelled so that the tongue accesses the groove. By a subsequent shifting movement made parallel to the side edge a tongue provided at the end and including an interlocking element configured thereon is introduced into the groove of an already laid laterally adjoining panel. For this purpose at least the lower cheek of the groove provided at the end is configured flexible so that the tongue of the newly laid panel together with its interlocking element enters into the groove and can be interlocked by means of a retaining channel configured on one cheek of the groove. There is, however, likewise room for improving this procedure in simplifying laying.
Known from FR 2 278 876 A are panel-type elements provided at all four edges with interlocking means by means of which a panel to be newly laid can be interlocked with already laid adjoining panels by an urging movement made substantially perpendicular to the panel surface. A similar arrangement can be seen from EP 0 085 196 A1.
In conclusion, WO 00/47841 A1 describes floor panels provided at all four edges with projections or receiving grooves so that a panel can be urged in the vertical direction by the lateral interlocking means into the interlocking means of already laid panels, formed complementary thereto.
The invention is based on the objective of providing panel elements for forming a floor covering permitting simple glueless laying of the floor covering whilst achieving and reliably maintaining a snug clearance-free contact in joining adjoining panel elements.
The objective forming the basis of the invention is achieved by the panel elements having the features as set forth in claim 1.
In accordance therewith two first edges, termed sides, of the panel elements in accordance with the invention comprise, on the one hand a groove and on the other a tongue. In other words, the one side of a rectangular, more particularly elongated panel element is provided with a groove and the other opposite side a tongue. It is understood that the panel elements in accordance with the invention may be just as well configured square so that two first edges, which must not be necessarily longer than the two edges as detailed in the following, are provided with a tongue and groove. At these first edges grooves and tongues formed complementary thereto are configured such that a second panel is located for laying at an angle to a first panel already laid before being swiveled about the side downwards in a plane with the already laid panel element such that the tongue of the panel element to be laid is introduced into the groove of the already laid panel element.
In the final laid condition the tongue of the second panel element cooperates with the groove of the first panel element of the same type adjoining the second panel element in the final condition such that the two married panel elements are safeguarded against parting forces acting in the two axes oriented perpendicular to the side of the panel elements. In other words, the cooperation of the tongue and groove prevents any of the two panel elements from being lifted out of place relative to the other in a direction perpendicular to the laying plane, i.e. perpendicular to the face surface of the panel elements. For another thing, tongue and groove comprise interlocking contours as detailed in the following for preventing parting of the two panel elements from each other in a direction perpendicular to the sides and parallel to the face surface.
In accordance with the invention retaining means are also provided at two edges termed ends of the panel element which form an end joint of two adjoining panel elements. These retaining means, just like the retaining means at the sides in accordance with the invention prevent the married panel elements from being lifted relative to each other or parted from each other in a direction perpendicular to the ends and parallel to the laying plane. Any suitable means may be provided as such retaining means. More particularly, these must not be necessarily configured as an interlockable tongue and groove. Instead, in general a groove or a channel suitable undercut may be provided into which a protruding element, i.e. a tongue having protuberances corresponding to the undercut of the groove configured complementary thereto or a latching protuberance or hook, engages.
In a completely novel approach as compared to prior art the end retaining means can be married by means of a lowering movement made substantially transversely to the laying plane of a panel element to be laid in the direction of a similar panel element already laid. In other words, in a departure from known from prior art, end interlocking is now achieved in that a panel element to be laid is correctly arranged also as regards the end on laying and that a swivel movement in the laying plane not only causes the tongue at the side to engage the corresponding groove but also at the same time a lowering movement produced at the same time perpendicular to the laying plane likewise engages the retaining means, i.e. the tongue or the latching protuberance at the end. This interlocking feature is configured more particularly in accordance with the invention so that two panel elements to be married as described are now reliably safeguarded at the ends against parting forces acting perpendicular to the end and parallel to the laying plane as well as against lifting forces acting substantially perpendicular to the laying plane. The result is a particularly simple yet reliable laying of a floor covering comprising several panel elements in accordance with the invention. Now, namely a single swivel or turning movement suffices to interlock a panel element to be laid at both its side and its end. To this extent, the invention also relates to a laying method characterized by locating a panel element to be laid by its tongue at the side at an angle to an already laid panel element and joining it thereto at both the side as well as, without any further shift in the direction of the side, at the end by a swivel-down movement.
In configuring the interlocking contours at the side, more particularly of the retaining channel and rib, a prominent profiling may be provided to achieve high retaining forces of the married panel elements. In a departure from the laying method as is often employed, in which a panel element is shift-located horizontally to the already laid panel element, it is now provided for in accordance with the invention that the panel elements when laying the floor covering are no longer shifted into each other horizontally, but guided into each other by means of a swivel movement. This now permits selecting a prominent profiling of retaining channel and rib which would not permit two panel elements to be shifted into each other horizontally. However, by making use of a less prominent profiling and flexible configuration of the edge portion it is still possible to make use of the usual purely horizontally shifting method in laying.
It is to be noted that the invention is not restricted to the way of marrying and interlocking the sides as described above. Instead, it is just as conceivable and as is cited as a novelty at this point that an interlocking contour can now be provided at all edges of a substantially rectangular floor panel as may be provided as a laminate having a HDF or MDF centerply or as a finished parquet having both a HDF or MDF centerply as well as centerply of wood. On being inserted into the interlocking contours of adjoining floor panels already laid, this interlocking contour latches in place in a direction substantially perpendicular to the face surface of the panels. In other words, the interlocking contour provided in accordance with the invention at the ends, which on laying by being guided into the interlocking contour complementary thereto engages in a substantially horizontal direction, may also be provided at the sides. For example, an end and the adjoining side may be provided with one form of such a interlocking contour, and the two other edges may comprise the form complementary thereto. In the course of laying, such a panel element is positioned at both the side and the end to some extent to the interlocking contours of the already laid panel element before then being urged into the interlocking contours substantially perpendicular to the face surface to form a joint at these locations. It is to be noted in this context that all embodiments of the interlocking contours as described in the following relative to the ends are just as suitable and conceivable likewise for the sides. It is further again emphasized that the embodiment as described above can be used to advantage also without the swivable joint as otherwise described at the sides. In summary the “snap fastener” solution as described in accordance with the invention for the end may be provided at all edges of the panel.
The panel element in accordance with the invention develops its advantages particularly also in the preferred embodiment involving, as is to be preferred, not a laminate having a HDF or MDF centerply, but a finished parquet which may feature a centerply of HDF, MDF, plastics, some other wood-based material or also popular pinewood fingers. It is especially as regards the popular centerply of pine fingers comprising a comparatively irregular and rough face surface including faults, rosin galls and the like that the panel element in accordance with the invention offers the advantage that two panel elements adjoining each other by their sides now do not need to be shifted relative to each other. If this were the case, finished parquet on which the interlocking contours in accordance with the invention are provided at the sides could only be shifted with difficulty and with the aid of tools parallel to the sides to also interlock the ends. Now, in accordance with the invention no shifting in this direction is needed. Instead, the ends can now be engaged and latched during the same movement, namely the swivel-in movement ensuring interlocking at the sides, substantially without any horizontally shift.
Preferred further embodiments read from the sub-claims.
As regards the interlocking reliability, especially at the side, it is good practice to configure the tongue such that it comprises at its underside a rib running in the longitudinal direction of the tongue and that the groove corresponding features at its underside, i.e. at the lower cheek of the groove, a retaining channel for receiving the rib. Good results have been achieved therewith in rendering laying both simple and reliable.
It is preferably provided for that the groove opens upwards at its mouth in thus facilitating insertion of the tongue of a panel element located at an angle. This enables the rib provided on the underside of the tongue to protrude comparatively far downwards from the tongue in enabling high retaining forces to materialize after the floor covering has been laid. This reliably prevents parting of the two adjoining panel elements in the laying plane of the floor, in other words in preventing them from being pulled apart transversely to the longitudinal direction of the panel element. Furthermore, bevelling the upper cheek of the groove, instead of the underside of the tongue, offers the advantage that the tongue comes into contact with the groove at both the top and bottom in a portion located relatively deeply in the groove in thus assuring a particularly rugged joint since the dimension between the two points of contact and joint spaced the most away from each other in the joint is comparatively large.
It is preferably provided for that the geometry of the tongue and groove results in a total of four contact locations between the two panel elements so that in this way the result is relatively rugged in also counteracting any parting forces acting transversely to the laying plane of the floor and which could otherwise cause, for example, the adjoining panel element to lift or tilt. A swivel movement acting opposite to the swivel movement about the side as needed for interlocking at this location could prompt or facilitate an unwanted release. The four contact locations counteract such an unwanted swivel movement of two joined panel elements and can produce a regular latching connection requiring a latching force to be first overcome to release the two joined panel elements. More particularly, two first contact locations are provided at the upper side and underside of the tongue. The third and fourth contact location are advantageously separate from each other such that at the third contact location, preferably between retaining rib and retaining channel, a contact is formed in a direction parallel to the laying plane, i.e. usually horizontally, more particularly at the sidewall of the retaining channel. At the fourth contact location preferably located at leading end of the lower cheek of the groove and at a location alongside the rib, contact is made at an angle to the direction of the third contact location, preferably substantially vertically so that the location of two joined panel elements is precisely defined in the vertical direction, more particularly perpendicular to the laying plane.
It is further preferred that the plane of the groove or tongue is displaced downwards so that above the groove or tongue a material thickness is provided at least equal to or even thicker than that below the groove or tongue. This enables the human or furniture forces exerted in day-by-day use of the floor covering to be better accommodated in reducing the load on the tongue and groove joint so that two adjoining panel elements are subjected to diminished parting forces.
Preferably provided above the tongue is an upper contact surface area extending up to the upper side of the panel element and to advantage a glue receiving channel is provided should the panel elements need to be laid permanently married by being glued. This glue receiving channel may be provided in the form of a recess extending longitudinally to and above the tongue, below the upper edge of the panel element, since it is in the region of this upper edge that a contact surface area for contacting an adjoining panel element is provided.
It may further be of advantage to provide two contact surface areas between two adjoining panel elements which prevent any movement in both directions transversely to the longitudinal direction of the panel element, i.e. on the one hand the contact surface area between the two panel elements so that the two panel elements cannot be shifted closer to each other, on the other, a second contact surface area as the contact surface area between the retaining channel, on the one hand, and the rib, on the other, so that the adjoining panel elements are safeguarded against forces tending to pull them apart. In this way, it is now possible to install the panel elements not only with zero clearance but also free of any gap in thus achieving a hygienically satisfactory floor covering featuring a practically closed face surface.
Tongue and groove interlocking the sides is additionally facilitated when the underside of the tongue runs rising to the free end of the tongue in thus enabling a panel element to be laid to be located at an angle to an already laid panel element particularly simply by its tongue before then being swivelled into place.
During the swivel movement on laying a panel element a latching point need to be overcome, it being this latching point that, after laying, reliably maintains the location of the laid panel elements. To achieve a smooth latching characteristic in thus simplifying laying, it is good practice to configure this latching point between the rib, on the one hand, and the retaining channel, on the other. In this arrangement the retaining channel in the region of this latching point is rounded with as large a radius as possible so that no sudden, but a gradual increase in the latching pressure to be overcome materializes.
It is provided for to advantage that the side groove of the panel element permits adjoining at the right-hand end of the end groove. In this context the terms “right-hand” and “left-hand” have been selected in a view from above and outside, i.e. not from the centerpoint of the panel element in viewing a panel element oriented ready for laying with its decorative face facing upwards. This groove arrangement is unusual in the normal procedure for laying panel elements and surprising since it is usually so that the side groove of a panel element adjoins the left-hand end of the end groove.
The usual systematic approach in laying floor coverings as implemented by professionals and as known from the instructions for laying commercially available floor panel element systems prescribes starting from a specific corner of the room. To reliably achieve a good joint of two adjoining panel elements a specific pressure force usually needs to be exerted, this usually involving use of a block, located on the groove edge of the panel element to be newly laid, and intended to receive and distribute the hammer blow so that the panel element to be newly laid is urged by the its tongue into the groove of an already laid panel element.
It may happen, especially when the floor is laid by non-professionals, that the block fails to be applied square on the groove edge with the risk of the edge being subjected to excessive force when struck, resulting in the edge of the panel element being deformed and the face surface damaged. This may result in an unwanted gap at the deformed location or a trip joint. Apart from this, this may endanger the wet seal of the floor.
The geometry as proposed in the present contributes towards an unusual systematic approach in laying the floor in which whilst keeping to the direction of laying as usual the block is now not located on the edge of a groove but on the edge of the tongue of the panel element. The forces need to be applied by the hammer blow to marry the two panel elements are not sufficient to cause deformation of the tongue as could obstruct proper joint of the two panel elements. Now, in any case, by applying the block to the tongue the face surface of the panel element does not suffer in thus reliably assuring the desired face surface quality of the floor covering.
For interlocking the ends preference is given to an embodiment in which the end groove and the end tongue each feature a preferably slotted recess, the recesses being oriented in the final laying condition to receive an extraneous tongue by means of which two panel elements adjoining each other at the ends are safeguarded in this case from lifting out of place.
As an alternative, good results have been obtained with one embodiment in which the end tongue is provided with at least one hook-shaped protuberance configured preferably on one or both sidewalls of the tongue. The hooks may be configured as latching hooks, they being configured bevelled in the insertion direction and featuring a protuberance oriented substantially parallel to the laying plane to prevent lifting out of place. As an alternative such protuberances may of course also be configured at the side flanks of the end groove.
In conclusion good results have also been obtained with an embodiment in which the tongue is provided, preferably at its end, with at least one bulge or bead which can be received by suitable recessed portions at the edges at the bottom of the end groove. To create additionally flexibility for such an interlocking feature these recesses may be configured larger than the bulges of the tongue.
Example embodiments of the invention will now be detailled with reference to the drawings in which
Referring now to
The two panel elements 1 are safeguard against being lifted out of place by the meshing effect of the groove 2, on the one hand, and of the tongue 3 on the other, they likewise being safeguarded against compression forces acting downwards in addition to the support of the panel element 1 by the sub-floor on which the two panel elements 1 are laid.
The panel elements 1 are safeguarded against parting forces acting transversely to the longitudinal direction of the panel elements 1 by a contact surface area 4. Located along this contact surface area 4 a rib 5 configured at the underside of the tongue 3 contacts the sidewall of a retaining channel 6.
The forces acting contrary to these parting forces tending to urge the two panel elements 1 together are accommodated by a contact surface area 7 at which the two panel elements 1 are in contact with each other and which extends downwards from the upper edge of the two panel elements 1.
In the laid condition as evident from
In
Referring now to
Likewise the tongue 3 comprises an underside 12 ramped in the direction of the free end of the tongue 3 so that the right-hand panel element 1 can be inserted into the groove 2 as far as possible in its angled position as evident from FIG. 2. This insertion movement is defined, on the one hand, by the tongue 1 contacting the upper and lower defining edges of the groove 2 and, on the other, by the two panel elements 1 in contact with each other in the region of their upper contact surface area 7.
Referring now to
It is due to this “smooth” rounding between the section 14 and the retaining channel 6 that a latching pressure is built up slowly on further insertion of the tongue 3 into the groove 2 which needs to be overcome when laying the right-hand panel element 1 until the two panel elements are then arranged married as shown in FIG. 1. In this laid condition the two panel elements 1 are mated snug, but also free of stress, the rib 5 being received by the retaining channel 6 free of stress. The latching pressure, which again needs to be overcome for the laid panel element 1 to be lifted out of place, locks the marriage of the two panel elements 1. It is to be noted in addition that the interlocking contours are configured such that at the receiving tongue 3 an oversize is formed. In other words, the dimension at the panel comprising the tongue 3 between the contact surface area 7 and the edge (on the right in
Referring now to
The corresponding undercuts of the side groove 2 and tongue 3 respectively, i.e. particularly the configuration of the rib 5 and retaining channel 6 may in some circumstances be selected so pronounced that there could be a problem in horizontally mating in the laying plane. Now, however, such pronounced undercuts are not provided in the end tongue and groove geometry so that by shifting two adjoining panel elements 1 longitudinally relative to each other the end of the shifted panel element 1 can be joined to a further, third panel element 1.
Referring now to
For such a configuration of the end groove 15b and tongue 16b a method of laying is selected in which the panel element 1 to be laid is located at an angle to the already laid panel element and is then swivelled downwards in the way as already described. Then, however, this panel element is no longer shifted horizontally. Instead, the panel element is arranged right from the start to overlap by its end the end of an already laid panel element 1 so that swivelling down the panel element to be laid causes its end with the tongue 16b to engage the groove 15b of the end of the already laid panel element 1. Although this movement of the lowered panel element 1 is a swivelling movement in actual fact, the mating of groove 15b and tongue 16b can be substantially described as a lowering movement occurring transversely to the face surface area of the panel element 1.
In this arrangement, the groove 15b comprises an undercut and the tongue 16b is contoured with corresponding protuberances, i.e. in the example aspect as illustrated purely diagrammatic with a slightly bulging contour so that on overcoming a latching force with which the tongue 16b is urged into the groove 15b retaining forces can be built up which safeguard a laid panel element 1 from lifting out of place also at its edge portion in now making it possible to configure a smooth floor face surface free of trip edges even in the region of parting locations at the ends of two adjoining panel elements.
Contouring the tongue 16b and groove 15b as shown purely diagrammatically and bulging in
The groove 15b comprises to advantage a larger free cross-section than the cross-section of the tongue 16b so that the tongue 16b can be retained “dead” or by a prestress acting downwards within the groove 15b in thus assuring even for certain dimension tolerances of the tongue 16b that no pressure locations materialize between the tongue 16b and groove 15b urging the tongue 16b upwards and which could produce a trip edge in the region of the parting location between the two ends of adjoining panel elements. Instead, it is now provided for to advantage that contact is made exclusively in each upper region between the groove 15b and tongue 16b so that the tongue 16b is reliably retained in the groove 15b due to the undercut therein.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Number | Date | Country | Kind |
---|---|---|---|
100 01 076 | Jan 2000 | DE | national |
This application is a continuation of prior application number PCT/EP01/00359, filed on Jan. 12, 2001, entitled PANEL ELEMENT, and now pending.
Number | Name | Date | Kind |
---|---|---|---|
1124228 | Houston | Jan 1915 | A |
2740167 | Rowley | Apr 1956 | A |
4426820 | Terbrack et al. | Jan 1984 | A |
5295341 | Kajiwara | Mar 1994 | A |
5348778 | Knipp et al. | Sep 1994 | A |
5540025 | Takehara et al. | Jul 1996 | A |
5630304 | Austin | May 1997 | A |
5797237 | Finkell, Jr. | Aug 1998 | A |
6094882 | Pervan | Aug 2000 | A |
6098365 | Martin et al. | Aug 2000 | A |
6101778 | Mårtensson | Aug 2000 | A |
6205639 | Pervan | Mar 2001 | B1 |
6209278 | Tychsen | Apr 2001 | B1 |
6216409 | Roy | Apr 2001 | B1 |
6247285 | Moebus | Jun 2001 | B1 |
6332733 | Hamberger et al. | Dec 2001 | B1 |
6345481 | Nelson | Feb 2002 | B1 |
6385936 | Schneider | May 2002 | B1 |
6497079 | Pietzer et al. | Dec 2002 | B1 |
6505452 | Hannig et al. | Jan 2003 | B1 |
6510665 | Pervan | Jan 2003 | B1 |
6521314 | Tychsen | Feb 2003 | B1 |
6526719 | Pletzer et al. | Mar 2003 | B1 |
Number | Date | Country |
---|---|---|
991373 | Jun 1976 | CA |
562377 | Nov 1972 | CH |
2940945 | Apr 1981 | DE |
3343601 | Feb 1987 | DE |
4122099 | Oct 1992 | DE |
19503948 | Aug 1996 | DE |
42 42 530 | Dec 1996 | DE |
29710175 | Aug 1997 | DE |
29803708 | May 1998 | DE |
19718319 | Nov 1998 | DE |
19851200 | Nov 1998 | DE |
20001788 | Feb 2000 | DE |
29922649 | Apr 2000 | DE |
20008708 | May 2000 | DE |
0085196 | Oct 1983 | EP |
0562402 | Mar 1993 | EP |
0877130 | Apr 1994 | EP |
0715037 | Jun 1996 | EP |
0855482 | Dec 1999 | EP |
1045083 | Oct 2000 | EP |
2278876 | Oct 1973 | FR |
2785633 | May 2000 | FR |
424057 | Jul 1934 | GB |
812671 | Jun 1956 | GB |
1161838 | Aug 1969 | GB |
1 430 423 | Mar 1976 | GB |
2256023 | Nov 1992 | GB |
3-169967 | Jul 1991 | JP |
6-200611 | Jul 1994 | JP |
7-180333 | Jul 1995 | JP |
7-300979 | Nov 1995 | JP |
WO 9627719 | Sep 1996 | WO |
WO 9627721 | Sep 1996 | WO |
WO 9858142 | Jun 1997 | WO |
WO 9747834 | Dec 1997 | WO |
WO 0047841 | Aug 2000 | WO |
WO 0063510 | Oct 2000 | WO |
WO 0102669 | Jan 2001 | WO |
WO 0102670 | Jan 2001 | WO |
WO 0148332 | Jul 2001 | WO |
WO 0188306 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030037504 A1 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCTEP01/00359 | Jan 2001 | US |
Child | 10192338 | US |