The present invention relates to office workstations. More particularly, it relates to panels for use in constructing office workstations.
“Workstations” or “cubicles” are commonly used in modern offices to partition larger open spaces into smaller work areas or units. The term “workstation” is hereinafter used interchangeably in this specification and claims to fully encompass both the terms “cubicles” and “workstations”. Such workstations may be arranged as stand-alone entities, as is common in, for example, reception areas, or may be grouped together in rows or clusters, as is common in, for example, general office areas. In either case, each such workstation is typically comprised of two or more wall sections of variable height, which do not typically reach the ceiling of the office in which they are situated, interconnected to one another, and quite often of three or more of such wall sections, which together partially enclose a work area for one or more users of the workstation. A work surface is typically mounted on one or more of the wall sections by means of cantilever arms or the like, as may be one or more office furniture accessories such as, for example, shelves, cabinets, bins, drawers and the like.
Workstations of this general type have, for a variety of reasons, including, without limitation, design flexibility, more efficient space utilization, and greater user comfort and efficiency, become very popular over the last several decades, to the extent that they have, to a significant extent, replaced free-standing desks in larger, open-area office environments.
Wall panel systems for constructing workstations can be divided into two major types as follows: those having wall sections comprised of a single monolithic wall panel; and those having wall sections comprised of a plurality of smaller wall panels stacked one above the other in substantially parallel relation to form each wall section. The latter type of stacked wall panel system evolved from the former monolithic panel type, and appears, of late, to be gaining ascendancy thereover. This is likely due to several factors. For example, stacked wall panel systems offer greater design flexibility than monolithic wall panel systems, as different types of wall panels can be used alternately and interchangeably in a single wall section (for example, a single wall section may have a lowermost solid wall panel resistant to deformation or marking by the shoes of a user, above which is positioned one or more thicker, fabric-covered sound-absorptive panels, above which is mounted a relatively thin light transmitting panel etc.). Additionally, stacked wall panel systems have individual components that are generally smaller and lighter; i.e., monolithic wall panels are by their very nature larger and heavier, as compared to stackable wall panels, which makes their handling more difficult and dangerous for moving, storage and assembly of the resulting workstations.
Although stackable wall panels are typically lighter than monolithic panels, they may still be unreasonably heavy, depending on their size and the materials used in constructions. The stackable wall panels in general usage are a structural component of the workstation and, as such, have material and strength requirements that suggest a more robust construction. Any advantage in weight and handling is restricted to that which is achieved by a reduction in size. There is a need for a stackable wall panel which is of a construction that is inherently lightweight over current designs.
Another issue that arises is the disposal process for wall panels which are damaged or otherwise no longer suitable for use. Given the structural requirements for existing wall panels, they are typically not recyclable or utilize a very low percentage of recyclable materials in their construction. There is a need for a wall panel which can be recycled and, ideally, can be made from recycled materials as well. In additional to being recyclable, the wall panels should continue to be capable of long-term use and storage.
Additionally, such wall panels should be available at a lower cost than existing prior art panels which are constructed from virgin materials. The recyclable panels also reduce associated fuel and shipping costs, as the panels are lighter than those found in the prior art. Their lighter weight also makes them easier for installers to lift and manipulate during installation.
It is an object of this invention to partially or completely fulfill one or more of the above-mentioned needs and to, more generally, overcome one or more disadvantages associated with prior art panels suitable for use with workstations.
The invention consists of a panel for mounting on a support frame for a wall assembly for a workstation, comprising: a) a substantially planar core member having a front layer and a rear layer each attached to a central lattice structure to form a plurality of closed geometric cavities within the core member, b) a sound-deadening layer, overlying the front layer, and c) a decorative layer overlying the sound deadening layer. The closed geometric cavities are preferably hexagonal in plan outline, but need not be.
The panel may further include an attachment means, preferably comprising a notched extrusion that extends in a parallel direction for a fraction of the full length of the vertical edge of the panel on which it is secured.
The panel may still further include a reinforcement means extending in adjacent parallel relation to at least one of the longer edges of the panel. The reinforcement means preferably comprises a U-shaped channel section mounted on the core member in surrounding relation to said at least one longer edge. The reinforcement means further preferably comprises, but need not be, a hollow tube section conjoined to the base of said U-shaped channel section in longitudinally extending parallel relation thereto.
Preferably, most, if not all, of the panel elements are recyclable, with the core member being preferably constructed of cardboard, with the attachment means being preferably constructed of polyvinyl chloride plastics material, and with the reinforcement means being preferably constructed of aluminum or other lightweight rigid metals.
Other and further advantages and features of the invention will be apparent to those skilled in the art from the following detailed description thereof, taken in conjunction with the accompanying drawings.
The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings, in which like numbers refer to like elements, wherein:
Within this specification, the “front” side of a panel is the side exposed to view after assembly of the workstation and the “rear” side of the panel is the side concealed from view after assembly of the workstation. Thus, in
In many workplaces, rather the using fixed offices, individuals are often assigned to work in a modular workstation, similar to one of the four workstations 10 and 10′ shown in
The workstation 10′ illustrated in
Each wall section 20 typically comprises a substantially rectangular support frame 200 having one or more panels 100a, 100b constructed according to the invention releasably mounted thereon in a manner described more fully below. The individual panels 100a, 100b are secured to either side of the support frame 200 to form the wall section 20.
In
For ease of description and brevity, this detailed description will proceed further with reference to the selected wall section 20a shown in
The selected wall section 20a illustrated in
Panels 100a and 100b are constructed according to the invention, and comprise five main components, as best seen in cut-away view in
A preferred material for the lattice structure 102 is cardboard, which is lightweight, recyclable and inexpensive, although lightweight plastics are one of many possible construction materials. The rear layer 120 and front layer 130 can similarly be constructed of cardboard, plastic, laminated plastic, wood, fiberboard, metal, metal foil, or laminated combinations of these materials. Again, the preferred materials are lightweight, recyclable and inexpensive, but the present invention is not in any way to be considered as limited to the named materials. The materials used in construction of the lattice structure 102 and in the rear 120 and front layers 130 can be made more fire- and water-resistant than their native states, if necessary for the panel 100a to comply with necessary safety codes and to reduce degradation of the panel 100a while in storage, through, for example, mould, mildew or moisture penetration. Such making can be by way of any conventional means, such as, for example, by treatment with fire-resistant chemicals, by lamination with metal foils or the like, and all operable permutations and combinations thereof are within the spirit and scope of the present invention. A particularly preferred combination has each of the front layer 130, the rear layer 120, and the lattice structure 102 constructed from cardboard material, with the rear layer 120 having its rear face laminated with a metal foil layer 107 to increase resistance to fire and moisture penetration (see
A layer of sound-deadening material 140, such as, for example, a non-woven fiberglass batt material, is placed over the front layer 130 and the entire assembly is covered with a decorative layer 150, preferably being a textile layer, to assist in securing the sound-deadening layer 140 in place and to provide an esthetically pleasing visual appearance to the front side of the finished panel 100a. The sound-deadening layer 140 may, but need not, be additionally glued to the front face of the front layer 130. The combination of the sound-deadening layer 140 and the decorative layer 150 additionally provides a more pleasant surface feel than the front layer 130. The decorative layer 150 can be chosen from a long list of flexible materials, both textile and non-textile, for its various properties, including, without limitation, its appearance, its ease of cleaning, its durability, its sound absorptive properties, its fire resistance, its resistance to mildew penetration, etc., etc
It will be appreciated that the perimeter of the core member 110 defines the overall size and shape of the respective panel 100a, which, as shown in the Figures, is preferably of quadrilateral, and most preferably, of rectangular outline in shape, having its two longer edges 111,111 horizontally aligned when installed, and having its two shorter edges 115,115 vertically aligned as two opposed vertical edges, when the panel 100a is installed. The front 130 and rear 120 layers can be secured to the core member 110 by gluing, by mechanicals means (e.g., heat bonding, tape or staples), or any other suitable fastening means or techniques, or may all formed together in one operation to create the core member 110.
The panel 100a may additionally and advantageously, but not necessarily, include a reinforcement means 160 longitudinally extending in parallel relation to at least one of said longer edges 111 which reinforcement means 160 assists in preventing buckling and deformation of the panel 100a, particularly for larger panels, such as the monolithic panel 100b shown in
After the reinforcement means 160 is secured to the panel 100a as described above, it is preferably covered, for aesthetic and durability reasons, by an extension of the decorative layer 150 around the rear side of each panel 100a, as can be seen in
Each panel 100a further preferably comprises at least one attachment means 170 mountable on the core member 110 for releasable engagement with the support frame 200. In the preferred embodiment illustrated in the Figures, each panel 100a has two attachment means 170, secured one each to the core member 110 adjacent the opposed vertical edges 115 of each panel 100a, as best seen in
Each attachment means 170 may be permanently or semi-permanently attached or secured to the core member 110 of the panel 100a as a step in the assembly process for the panel 100a, as with the preferred attachment means shown in the Figures, or can be a separate element (not shown) that selectively interacts with the panel 100a and one or more frame rails 202, 204 of the support frame 200 (as in the nature of a clamp, clip or other similar attachment mechanism), or may be in the nature of a threaded fastener, or the like, which passes through the core member 110 of a panel 110a for releasable securement of the panel 100a to one or more to the frame rails 202, 204 of the support frame 200. All such embodiments and modalities of attachment means are expressly envisioned by the inventor as being within the scope of the present invention. As with the other components of the panel 100a, the attachment means 170 is preferably recyclable, and preferable materials include plastics, including PVC plastic, and metals, including mild steel and aluminum.
A preferred attachment means 170 is illustrated in
After the attachment means 170 is secured to the panel 100a, it is preferably covered, for aesthetic and durability reasons, by an extension of the decorative layer 150 to the rear side of each panel, as can be seen in
Each preferred attachment means 170 further preferably comprises one or more spring clip members 180 extending in a parallel direction along a portion of the length of the adjacent vertical edge 115, with each clip member 180 being formed by one or more longitudinal tab sections 184 projecting outwardly, rearwardly from one of the side arms 173 of the U-shaped channel section 171. In the preferred embodiment illustrated, three tab sections 184 are used in each clip member 180 (see
In
Panel 110a is similarly assembled in releasable engagement with the support frame 200, with analogous reference to
The panel 100a is to be secured strongly enough (by calibration of the spring clip member 180) to the adjacent vertical side rail 202 of the support frame 200 to prevent it from become dislodged during movement or through incidental contact; however, is should be removable under reasonable force to enable replacement of individual panels 100a.
The reinforcement means 160 and the attachment means 170 may be separate structures, or may be joined to one another during manufacture of a panel 100a, 100b, as by gluing, welding, taping, riveting, screwing or the like, or any combination thereof to form a unitary, rigid panel frame. Alternatively, such unitary, rigid panel frame may be initially formed by, for example, stamping or roll forming of metal components, with the core member 110 thereafter being mounted as a finished sub-assembly within the panel frame, prior to being covered by the decorative layer 150.
The use of ‘horizontal’ and ‘vertical’ is meant to illustrate the relative disposition of the reinforcement means 160 and attachment means 170 to each other and not necessarily to the orientation of the panel 100 when installed, although the conventional meaning reflects the preferred disposition.
This concludes the description of a presently preferred embodiment of the invention. The foregoing description has been presented for the purpose of illustration only, and is not intended to be exhaustive or to limit the invention to the precise form disclosed. Various other modifications and alterations may be used in the design and manufacture of panels for workstations according to the present invention without departing from the spirit and scope of the invention, which is limited only by the accompanying claims. For example, another alternate attachment means within the scope of the present invention takes the form of one or more key hole slots or T-slots (not shown) formed in the rear side arm 173 of each U-shaped channel section 171, with each such slot dimensioned and otherwise adapted to accept in mating relation a corresponding plurality of flat-headed machine screw heads (not shown) mounted in projecting relation on the opposed side arm portions 202b and 202c of the side frame rails 202. With this arrangement, the panels 100a and 100b can be easily lifted, at will, onto or off of the machine head screws by a user. In yet another alternative arrangement, the key hole or T-slots could be formed in the opposed side arm portions 202b and 202c of the side frame rails 202 and the plurality of flat-headed machine screw heads could be mounted in projecting relation on the rear side arm 173 of each U-shaped channel section 171.
By way of another example of possible modification, and with reference to an alternate embodiment of panel 100a illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2 606 272 | Oct 2007 | CA | national |