This application relates to sandwich panels and, more particularly, to sandwich panels having an insert, such as a threaded insert, connected thereto.
Sandwich panels are typically formed from a core sandwiched between two face sheets. The core may be relatively thick, yet lightweight, as compared to the face sheets. The face sheets may be relative thin, yet stiff. Therefore, sandwich panels typically possess relatively high strength and stiffness at relatively low weight. As such, sandwich panels are used in various applications, including aerospace applications, automotive applications, residential and commercial building applications and the like.
For example, sandwich panels are used in the construction of aircraft, such as commercial aircraft. Specifically, sandwich panels are used as the flooring, walls and bulkheads that define the passenger cabin of an aircraft. Therefore, such sandwich panels often are connected to the airframe of the aircraft such that loads applied to the sandwich panels are transferred to the airframe.
Connecting a sandwich panel to an airframe is typically effected with mechanical fasteners, such as bolts, that engage threaded inserts connected to the sandwich panel. The threaded inserts are typically potted (with an adhesive) into appropriately sized holes formed in the sandwich panel. The adhesives commonly used require long cure times, add undesired weight, and offer only limited pull strength protection since the load is transferred to the panel only through the adhesive. Also, care must be taken such that the threaded inserts are not placed too high in the holes, which may result in a gap being formed, or placed too low in the holes, which may result in unintentional pullout during tightening of the mechanical fastener.
Accordingly, those skilled in the art continue with research and development efforts in the field of sandwich panels.
In one embodiment, the disclosed panel-insert assembly may include a panel having a core and a skin layer positioned over the core, wherein the skin layer defines an opening therein, and an insert positioned below the skin layer, wherein the insert is aligned with the opening.
In another embodiment, the disclosed panel-insert assembly may include a sandwich panel and an insert. The sandwich panel may include a core having a first major side and a second major side opposed from the first major side, a first skin layer positioned over the first major side, wherein the first skin layer defines an opening, and wherein the opening is elongated along an opening axis, and a second skin layer positioned over the second major side. The insert may be positioned below the skin layer, wherein the insert defines a threaded bore, and wherein the threaded bore is aligned with the opening.
In another embodiment, disclosed is a method for connecting an insert to a panel, the panel including a core and a skin layer, the method including (1) forming an opening in the skin layer; (2) inserting the insert through the opening such that the insert is positioned below the skin layer; and (3) rotating the insert relative to the opening.
Other embodiments of the disclosed panel-insert assembly and method will become apparent from the following detailed description, the accompanying drawings and the appended claims.
Referring to
As best shown in
While the layered structure 13 of the sandwich panel 12 is shown with three layers 18, 20, 22, additional layers, such as additional core layers, additional skin layers and/or additional other layers, may be included without departing from the scope of the present disclosure. The second skin layer 22 may be optional and, therefore, may be omitted from the layered structure 13 of the sandwich panel 12 without departing from the scope of the present disclosure.
The core 18 of the sandwich panel 12 may include a first major side 24 and an opposed second major side 26. The first skin layer 20 may be connected (e.g., adhered, welded, braised, mechanically fastened etc.) to the first major side 24 of the core 18 and the second skin layer 22 may be connected (e.g., adhered, welded, braised, mechanically fastened etc.) to the second major side of the core 18, thereby sandwiching the core 18 between the first skin layer 20 and the second skin layer 22.
The cross-sectional thickness T1 of the core 18 of the sandwich panel 12 may be relatively thick, as compared to the cross-sectional thicknesses T2, T3 of the first skin layer 20 and the second skin layer 22 (e.g., T1>T2 and T1>T3). For example, the cross-sectional thickness T1 of the core 18 may be two or more times greater (e.g., five times greater) than the cross-sectional thickness T2 of the first skin layer 20. However, the core 18 may have a relatively lower density (basis weight divided by cross-sectional thickness), as compared to the densities of the first skin layer 20 and the second skin layer 22.
Structurally, the core 18 of the sandwich panel 12 may be solid. However, lower densities may be achieved using a non-solid structure. As one specific, non-limiting example, the core 18 may be (or may include) a foam. As another specific, non-limiting example, the core 18 may be fluted or may include fluting. As yet another specific, non-limiting example, the core 18 may be (or may include) a honeycomb structure.
Compositionally, the core 18 may be formed from the same, similar or different materials than the first 20 and second 22 skin layers. However, the core may typically be a structure with less density than the skin layers 20, 22. As one specific, non-limiting example, the core 18 may be formed from a polymer (e.g., expanded polystyrene). As another specific, non-limiting example, the core 18 may be a honeycomb structure formed from a composite, such as a carbon fiber-reinforced composite or a fiberglass composite. As yet another specific, non-limiting example, the core 18 may be a honeycomb structure formed from a ceramic or metal, such as titanium, steel, aluminum or an aluminum alloy.
The first skin layer 20, which may be single ply or multi-ply, may be any material capable of being layered over and connected to the core 18. As one specific, non-limiting example, the first skin layer 20 may be a polymer, such as a polymer film, sheet or mesh. As another specific, non-limiting example, the first skin layer 20 may be a composite, such as a carbon fiber-reinforced composite or a fiberglass composite. As another specific, non-limiting example, the first skin layer 20 may be a ceramic. As yet another specific, non-limiting example, the first skin layer 20 may be a metal film, sheet or mesh.
The second skin layer 22, which may be single ply or multi-ply, may be formed from the same, similar or different material than the first skin layer 20. As one specific, non-limiting example, the second skin layer 22 may be a polymer, such as a polymer film, sheet or mesh. As another specific, non-limiting example, the second skin layer 22 may be a composite, such as a carbon fiber-reinforced composite or a fiberglass composite. As yet another specific, non-limiting example, the second skin layer 22 may be a metal film, sheet or mesh.
In
Still referring to
The opening 16 in the first skin layer 20 of the sandwich panel 12 may have a maximum length L and a maximum width W that allow the insert 14 to pass therethrough. The width W of the opening 16 may be dictated by the cross-sectional thickness T4 (
As best shown in
The opening 16 in the first skin layer 20 of the sandwich panel 12 may be formed using various techniques. As one non-limiting example, the opening 16 may be formed by cutting out, such as with a blade, a portion of the first skin layer 20. As another non-limiting example, the opening 16 may be formed by machining, such as with a router, a portion of the first skin layer 20.
Referring to
Referring to
In one particular implementation, the major axis M1 may be perpendicular to the minor axis M2, as shown in the drawings with an ellipse-shaped (in plan view) insert 14. However, it is also contemplated that the major axis M1 may be transverse to, but not perpendicular to, the minor axis M2.
While an ellipse-shaped insert 14 is shown in the drawings, those skilled in the art will appreciate that inserts 14 of various shapes may provide the disclosed major and minor dimensions D1, D2, and may be used without departing from the scope of the present disclosure. As one alternative example, the insert 14 may be a non-elliptical oval. As another alternative example, the insert 14 may be rectilinear (e.g., a rectangle). As yet another alternative example, the insert 14 may have an irregular and/or non-symmetric shape.
The body 30 of the insert 14 may define a bore 36 therein. The bore 36 may be sized and shaped to receive and engage a mechanical fastener, such as a screw, a bolt, a rivet or the like. In one particular implementation, the bore 36 of the insert 14 may be threaded to receive and engage a threaded fastener (e.g., a screw or a bolt).
Optionally, the portion of the body 30 surrounding the bore 36 may have a greater cross-sectional thickness T4 than the rest of the body 30 to provide the bore 36 with greater depth. For example, the body 30 of the insert 14 may have a flanged or T-shaped profile, as shown in
The insert 14 may be formed from various materials or combination of materials. As one general, non-limiting example, the insert 14 may be formed from metal, such as steel. As another general, non-limiting example, the insert 14 may be formed from a polymer, such as polyethylene terephthalate. As another general, non-limiting example, the insert 14 may be formed from a combination of materials, such as a polymer body having a metallic threaded insert (defining the bore 36) connected thereto. For example, the metallic threaded insert may be press-fit into the polymer body. As yet another general, non-limiting example, the insert 14 may be formed from a combination of materials, such as a ceramic body having a metallic threaded insert (defining the bore 36) connected thereto. For example, the metallic threaded insert may be press-fit into the ceramic body. As one specific, non-limiting example, the insert 14 may be a steel, such as a stainless steel, nut plate.
As shown in
Also disclosed is a method for connecting an insert to a sandwich panel. One embodiment of the disclosed method is shown in
At Block 102, the method 100 may begin with the step of forming an opening 16 in the skin layer 20 of the sandwich panel 12, as shown in
At Block 104, the insert 14 may be inserted through the opening 16 in the skin layer 20 of the sandwich panel 12, as shown in
The insert 14 may be inserted such that it is positioned below the skin layer 20 of the sandwich panel 12. In one optional variation, a portion of the skin layer 20 may be delaminated from the core 18 to facilitate receiving the insert 14 below the skin layer 20 (e.g., between the skin layer 20 and the core 18). In another optional variation, a portion of the core 18 may be removed (e.g., cut out) to form a void sized and shaped to accommodate the insert 14.
At Block 106, the insert 14 (particularly the threaded bore 36 of the insert) may be aligned with the opening 16 in the skin layer 20 of the sandwich panel 12, as shown in
At Block 108, the insert 14 may be rotated relative to the opening 16, as shown by arrow R in
Thus, in the final, rotated configuration, the major axis M1 (
Examples of the disclosure may be described in the context of an aircraft manufacturing and service method 200, as shown in
Each of the processes of method 200 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft manufacturers and major-system subcontractors; a third party may include without limitation any number of venders, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
The disclosed panel-insert assembly 10 and method 100 may be employed during any one or more of the stages of the aircraft manufacturing and service method 200. For example, components or subassemblies corresponding to component/subassembly manufacturing 208, system integration 210, and or maintenance and service 216 may be fabricated or manufactured using the disclosed panel-insert assembly 10 and method 100. Also, one or more apparatus examples, method examples, or a combination thereof may be utilized during component/subassembly manufacturing 208 and/or system integration 210, for example, by substantially expediting assembly of or reducing the cost of an aircraft 202, such as the airframe 218 and/or the interior 222. Similarly, one or more of system examples, method examples, or a combination thereof may be utilized while the aircraft 202 is in service, for example and without limitation, to maintenance and service 216.
The disclosed system and method are described in the context of an aircraft; however, one of ordinary skill in the art will readily recognize that the disclosed service system may be utilized for a variety of different components for a variety of different types of vehicles. For example, implementations of the embodiments described herein may be implemented in any type of vehicle including, e.g., helicopters, passenger ships, automobiles and the like.
Although various embodiments of the disclosed panel-insert assembly and method have been shown and described, modifications may occur to those skilled in the art upon reading the specification. The present application includes such modifications and is limited only by the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1912100 | Rosenberg | May 1933 | A |
2129167 | Cunnington | Sep 1938 | A |
2400072 | Burke | May 1946 | A |
2784759 | Modrey | Mar 1957 | A |
2793351 | Willans | May 1957 | A |
2836215 | Rapata | May 1958 | A |
2967593 | Cushman | Jan 1961 | A |
3008552 | Cushman | Nov 1961 | A |
3042156 | Rohe | Jul 1962 | A |
3061054 | Simmonds | Oct 1962 | A |
3451181 | Neuschotz | Jun 1969 | A |
3621557 | Cushman | Nov 1971 | A |
3678980 | Gutshall | Jul 1972 | A |
3766636 | Sygnator | Oct 1973 | A |
3884006 | Dietlein | May 1975 | A |
4303361 | Moryl et al. | Dec 1981 | A |
4341053 | Dettfurth | Jul 1982 | A |
4428705 | Gelhard | Jan 1984 | A |
4428708 | Burt | Jan 1984 | A |
4577450 | Large | Mar 1986 | A |
4717612 | Shackelford | Jan 1988 | A |
4729705 | Higgins | Mar 1988 | A |
4800643 | Higgins | Jan 1989 | A |
5082405 | Witten | Jan 1992 | A |
5240543 | Fetterhoff | Aug 1993 | A |
5980174 | Gallagher | Nov 1999 | A |
7641427 | Zhang | Jan 2010 | B2 |
9284972 | Reeves | Mar 2016 | B1 |
20030039529 | Ward | Feb 2003 | A1 |
20070009712 | Roth | Jan 2007 | A1 |
20090258185 | Holland | Oct 2009 | A1 |
20120219355 | Masuda | Aug 2012 | A1 |
20120251235 | Klaukien | Oct 2012 | A1 |
20140286769 | Otsu | Sep 2014 | A1 |
20150298423 | Holemans | Oct 2015 | A1 |
20160186441 | Reeves | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1246638 | Aug 1967 | DE |
3330297 | Mar 1985 | DE |
102006018051 | Oct 2006 | DE |
2 636 004 | Mar 1990 | FR |
2985276 | Jul 2013 | FR |
1 353 236 | May 1974 | GB |
60063134 | Apr 1985 | JP |
61100424 | May 1986 | JP |
61261033 | Nov 1986 | JP |
05116267 | May 1993 | JP |
06126869 | May 1994 | JP |
09164615 | Jun 1997 | JP |
11198259 | Jul 1999 | JP |
11348154 | Dec 1999 | JP |
2007168397 | Jul 2007 | JP |
2007332539 | Dec 2007 | JP |
2007332983 | Dec 2007 | JP |
2008133934 | Jun 2008 | JP |
2008202260 | Sep 2008 | JP |
2009097298 | May 2009 | JP |
2009127344 | Jun 2009 | JP |
2009293272 | Dec 2009 | JP |
2011126296 | Jun 2011 | JP |
Entry |
---|
Machine Translation of JP 2009293272 A, Dec. 2009. |
Extended European Search Report, EP 15 17 7477 (2015). |
Number | Date | Country | |
---|---|---|---|
20160031184 A1 | Feb 2016 | US |