This invention relates generally to connector modules that interface network components and, more particularly, to an interface module for shielded connectors.
Electronic components are typically connected to an electronic network using patch panels that allow connections between components in the network. In some applications, an interface module may be retained in the patch panel, or any number of other network structures that interconnect two or more separate network components. The interface module provides for easier mounting of a plurality of modular jacks into a single opening in the patch panel or other network structure. In a typical application, the interface module is mounted to the patch panel and the modular jacks are then loaded into the interface module.
Existing interface modules allow a plurality of unshielded jacks to be loaded therein. However, to meet the current performance requirements, new jack designs may be shielded, for example, using a metal housing that may increase the size of the jack. Effective shielding requires that all components be shielded and all shields be sufficiently bonded. However, in addition to not accommodating the increased jack sizes, current interface modules do not enable shielded jacks to be bonded and/or grounded to the patch panel.
In one embodiment, an interface module is provided including a housing having a plurality of jack openings configured to receive shielded modular jacks therein. The housing has a mounting wall extending along one side of the jack openings. A bond bar is coupled to the mounting wall, wherein the bond bar has a jack interface configured to engage respective ones of the shielded modular jacks and a panel interface configured to engage a mating surface of a panel. The bond bar is configured to create an electrical connection between respective ones of the shielded modular jacks and the mating surface of the panel.
Optionally, a single bond bar is provided that engages multiple ones of the shielded modular jacks. Alternatively, multiple bond bars may be coupled to the housing, wherein each bond bar is configured to engage at least one of the shielded modular jacks. The bond bar may include a plurality of flexible beams provided on the panel interface, wherein the flexible beams are configured to be loaded against the mating surface of the panel to maintain connection between the bond bar and the panel. Optionally, the jack interface and the panel interface may be spaced apart from one another and extend generally parallel to one another, and the bond bar may includes an end wall extending between the jack interface and the panel interface.
In another embodiment, an interface module is provided that includes a housing configured to be mounted to a panel, wherein the housing has a plurality of jack openings configured to receive shielded modular jacks therein. A bond surface is provided on the housing, wherein the bond surface has a jack interface configured to engage the shielded modular jacks and a panel interface configured to engage a mating surface of the panel. The bond surface is configured to electrically common the shielded modular jacks and the panel. A latch mechanism is provided on the housing, wherein the latch mechanism is configured to securely couple the housing to the panel.
In a further embodiment, an interface module is provided that includes a plurality of shielded modular jacks and a housing having a plurality of jack openings that receive respective ones of the shielded modular jacks. The housing is configured to be mounted to a panel such that the plurality of shielded modular jacks are simultaneously mounted to the panel. A bond bar is coupled to the housing, wherein the bond bar has a jack interface engaging respective ones of the shielded modular jacks and a panel interface configured to engage a mating surface of the panel. The bond bar is configured to create an electrical connection between the respective ones of the shielded modular jacks and the mating surface when the housing is mounted to the panel.
As illustrated in
As illustrated in
In an exemplary embodiment, the interface module 12 includes a housing 26 that includes a dielectric body fabricated from a dielectric material, such as a plastic material. The housing 26 includes a bond surface for interconnecting the shielded modular jacks 14 and the panel 10. For example, in an exemplary embodiment, the housing 26 is selectively plated with a conductive material, such as a metal material, to create the bond surface. Thus, when the shielded modular jacks 14 are loaded into the housing 26, the conductive plating engages the shielded modular jack 14 to create a bond and ground therebetween. When the interface module 12 is mounted into the panel 10, the conductive plating engages the panel 10 to create a bond and ground path therebetween. Accordingly, when the shielded modular jacks 14 are assembled into the interface module 12, which is then mounted into the panel 10, a ground path is made for the shielded modular jacks 14. In an exemplary embodiment, the conductive plating may constitute a bond bar 28 (shown in
In an alternative embodiment, rather than the conductive plating, the interface module 12 may be die cast or may be selectively metalized during a manufacturing process, such as an injection molding process, to create the bond surface. In such embodiments, the ground path is established by the shielded modular jacks 14 contacting the interface module 12 and the interface module 12 then contacting the panel 10.
As shown in
The housing 26 also includes a plurality of jack openings 48 at the rear 40 that receive the shielded modular jacks 14 therein. The jack openings 48 are adapted to provide the proper opening dimensions for holding the shielded modular jacks 14 therein. The jack openings 48 provide access to jack cavities 50 that are sized and shaped to receive the shielded modular jacks 14. In the illustrated embodiment, the jack cavities 50 are generally box-shaped, but may be shaped differently if the shielded modular jacks 14 are shaped differently. A bottom wall 52 defines a portion of the jack openings 48. In an exemplary embodiment, the shielded modular jacks 14 are mounted to the bottom wall 52, which defines a mounting wall 52. The bottom wall 52 includes an inner, or first, wall surface 54 that faces and extends at least partially along the jack cavities 50. The bottom wall 52 also includes an outer, or second, wall surface 55, generally opposite to, and extending substantially parallel to, the inner surface 54, and an end surface 56 extending between the inner and outer surfaces 54, 55. In the illustrated embodiment, the surfaces 54, 55, 56 are generally flat, but the surfaces 54, 55, 56 may have a different, more complicated geometry in alternative embodiments.
As illustrated in
In an exemplary embodiment, the housing 26 is fabricated as a single piece, however, the various components of the housing 26 may be assembled together.
In an exemplary embodiment, the bond bar 28 is a metallic j-shaped bar having a first flat portion extending along the longitudinal length of the bond bar 28 that defines a jack interface 60, a second flat portion extending along the longitudinal length of the bond bar 28 that defines a panel interface 62, and an end wall 64 extending between the jack interface 60 and the panel interface 62 forming the j-shape. The bond bar 28 is attached to the housing 26 so that the jack interface 60 of the bond bar 28 significantly covers the inner surface 54 of the housing 26. When the bond bar 28 is attached to the housing 26, the panel interface 62 of the bond bar 28 significantly covers the outer surface 55. Similarly, when the bond bar 28 is attached to the housing 26, the end wall 64 of the bond bar 28 significantly covers the end surface 56. In the illustrated embodiment, one leg of the j-shaped bond bar 28, namely the panel interface 62, is wider then the other leg, however both legs may be substantially equal in width in alternative embodiments forming more of a c-shaped bond bar 28. Additionally, in other alternative embodiments, the bond bar 28 may have a more complex shape to substantially conform to the housing 26.
As illustrated in
As shown in
As illustrated in
In an exemplary embodiment, the shielded modular jacks 14 are loaded into the jack cavities 50 until the mating end 114 abuts the faceplate 42. A fixed latch 118 is provided along the bottom 112 and a flexible latch 120 is provided along the top 110. The fixed and flexible latches 118, 120 are used to mount the shielded modular jacks 14 to the housing 26. For example, the flexible latch 120 is depressed and the shielded modular jack 14 is inserted into the jack opening 48 so that the fixed latch 118 engages the bottom wall 52. The flexible latch 120 is then aligned with a top wall 122 of the housing 26, and the flexible latch is released from a deflected or depressed position to engage the top wall 122. When the latches 118, 120 engage the walls 52, 122, the shielded modular jack 14 is securely coupled to the housing 26. In an exemplary embodiment, the flexible latch 120 biases the shielded modular jack 14 against the bottom wall 52, in the direction of arrow A shown in
As illustrated in
During assembly, once the shielded modular jacks 14 are coupled to the housing 26 and bonded to the bond bar 28, the interface module 12 is mated to the panel 10. The interface module 12 is loaded into the panel opening 20 from the front and latched into place with the latches 44, 46 (shown in
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means—plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This application claims the benefit of U.S. Provisional Application No. 60/852,207 titled INTERFACE MODULE and filed on Oct. 16, 2006, the subject matter of which is herein expressly incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3366918 | Johnson et al. | Jan 1968 | A |
5639261 | Rutkowski et al. | Jun 1997 | A |
5647765 | Haas et al. | Jul 1997 | A |
5735712 | Haas et al. | Apr 1998 | A |
6066001 | Liptak et al. | May 2000 | A |
6227911 | Boutros et al. | May 2001 | B1 |
6269008 | Hsu | Jul 2001 | B1 |
7033210 | Laurer et al. | Apr 2006 | B1 |
7357675 | Barringer et al. | Apr 2008 | B2 |
20040229501 | Caveney et al. | Nov 2004 | A1 |
20040246693 | Lloyd et al. | Dec 2004 | A1 |
20050136747 | Caveney et al. | Jun 2005 | A1 |
20050164548 | Spears et al. | Jul 2005 | A1 |
20050282432 | Murr et al. | Dec 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080090461 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60852207 | Oct 2006 | US |