The present disclosure relates to storing panels used to partition a room. More particularly, the present disclosure relates to a system for feeding panels from and receiving panels into a storage area.
Partitions are often used to divide large rooms such as theaters, conference rooms, convention halls or gymnasiums. Such partitions can include panels that hang from an overhead track and slide or unfold horizontally along the track from a storage location to partition a room. Such partitions often require a team of many people to move panels out of or into a storage area and to move the panels along a track. Even advanced systems that may include automation to move panels into place can still require people and time to move the panels into or out of a storage area.
In addition, panel storage areas can take up a relatively large area to allow for storage of all of the panels and to provide room for an operator to access the panels. The storage of panels and the need to manually access the panels generally does not provide for an efficient use of space in the storage area. Furthermore, conventional panel storage may not allow for the tracking of panels into or out of the storage area.
The features and advantages of the embodiments of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit the scope of what is claimed.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the present disclosure. It will be apparent, however, to one of ordinary skill in the art that the various embodiments disclosed may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail to avoid unnecessarily obscuring the various embodiments.
In the example of
The wall partition movement system of
Track switches 120 can be used to switch the track followed or engaged by trollies of panels 300. In some implementations, the trollies may include one or more wheels that allow panels 300 to travel along the tracks. Track switches 120 in
When not in use, panels 300 are stored in storage area 202 and suspended from storage tracks 110 and 112, which support panels 300. As shown in
As used herein, a storage area generally refers to an area where panels 300 are stored by wall panel storage system 100. Storage area 202 in
When needed to form a wall partition, panels 300 are driven out of storage area 202 using wall panel storage system 100, which includes a first wall panel storage device 102 and a second wall panel storage device 104, adjacent storage tracks 110 and 112, respectively. In the example of
As shown in the example of
Wall panel storage system 100 in the example of
For example, different panels 300 may have different capabilities or constructions that allow the panels to serve a particular function. In one example, a panel may be identified by its identifier as a pass-door panel that includes a doorway. In another example, a panel may be identified by its identifier as a jam panel that has a seal that can be expanded against a wall. Each panel may also be uniquely identified to associate maintenance information with the panel, such as an indication of how long the panel has been in service or if the panel is moving quicker or slower through different portions of the wall partition movement system or wall panel storage system 100.
For example, controller 117 may monitor a motor current needed to move a particular panel along a drive mechanism 126 or a corner drive mechanism 116. Controller 117 may then compare a recent motor current used to move the panel to an earlier motor current needed to move the same panel, or to a threshold current to determine if the recent current falls below the threshold current or if the difference between the recent current and an earlier current is greater than a threshold difference. Such changes in the current needed to move the panel may indicate that a trolley of the panel is in need of replacement due to wear, since the amount of force needed to move panels often decreases over time due to wear on the trollies. Controller 117 may then provide an indication, such as an alert on a display of controller 117, or via a text message, email, or webpage, that a trolley of the particular panel may need replacement.
Identification detector 115 can identify the different panels as they enter and/or leave storage area 202 so that the wall partition movement system can automatically direct the proper panel to an intended location using drive mechanisms 126, corner drive mechanisms 116, and track switches 120. As shown in
In some implementations, sensors in addition to, or in place of panel identification detectors 115 can be used to provide an indication of a location of a panel entering or exiting panel storage system 100, along main track 118, and/or along auxiliary tracks 122 and 124. Such sensors can include a proximity sensor, such as an electromagnetic or inductive sensor. In other implementations, the sensors can include an optical sensor, or a physical contact sensor or switch. Controller 117 can use the panel location information provided from such sensors and/or panel identification detectors 115 to turn particular drive mechanisms on or off, to control a speed of a drive mechanism, or to switch a track switch.
Controller 117 can include a Programmable Logic Controller (PLC) or a microprocessor controller that executes computer readable instructions stored in a memory of controller 117 to control operation of wall panel storage system 100, drive mechanisms 126, corner drive mechanisms 116, and/or track switches 120. In this regard, controller 117 can sequence the turning on and off of wall panel storage system 100 based on a user input at controller 117 or remote from controller 117, as in a case where controller 117 also acts as a web server that can be accessed via the internet or a Local Area Network (LAN).
In operation, controller 117 can simultaneously initiate first panel storage device 102 and second panel storage device 104 along storage tracks 110 and 112 to begin feeding panels 300 from storage area 202 to corner drive mechanisms 116 to transition the panels 300 onto main track 118. In some implementations, looped elements of first and second panel storage devices 102 and 104 are simultaneously driven in fixed increments to move the looped elements a fixed distance by starting and stopping in an indexing fashion to feed panels 300 out of storage area 202 one at a time onto corner drive mechanisms 116.
In other implementations, looped elements of first and second panel storage devices 102 and 104 may continuously run for a period of time to deliver multiple panels to corner drive mechanisms 116 in one operation. In such implementations, corner drive mechanisms 116 may operate at a faster speed to clear a received panel out of the way (i.e., past storage track 112 along main track 118) and make room to receive the next panel from first and second panel storage devices 102 and 104. Regardless of whether first and second panel storage devices 102 and 104 operate to feed one or more panels at a time, the speeds and timing of operation between corner drive mechanisms 116 and first and second panel storage devices 102 and 104 may need to be sequenced to clear a panel from the area in front of storage tracks 110 and 112 in time for a next panel.
In feeding panels 300 from storage area 202, controller 117 controls corner drive mechanisms 116 so that a contact element of each corner drive mechanism 116 moves in a first direction (e.g., a clockwise direction in the example of
In more detail, controller 117 may make sure that the connector track is initially in a position so that storage track 112 is connected to main track 118. After a first portion of a first panel 300 passes the connector track, controller 117 can control track switch 114 to move the connector track so that main track 118 is no longer connected to storage track 112, and main track 118 continues through track switch 114 so that a second portion of the panel 300 can pass through track switch on main track 118. Controller 117 may receive an indication from a sensor that the first portion of the panel 300 has reached or passed the connector track. The sensor may include, for example, a contact sensor, proximity sensor, optical sensor, or switch located on or near track switch 114. In other implementations, controller 117 may control the switching of the connector track based on a speed of corner drive mechanisms 116.
In feeding panels 300 into panel storage system 100 and storage area 202, controller 117 controls corner drive mechanisms 116 so that the contact element of each corner drive mechanism 116 moves in a second direction (e.g., a counter-clockwise direction in the example of
In more detail, controller 117 may make sure that the connector track is initially in a position so that main track 118 continues through track switch 114. After a first portion of a panel 300 passes the connector track, controller 117 can control track switch 114 to move the connector track so that storage track 112 connects to main track 118 so that a second portion of the panel 300 can continue onto storage track 112 as the first portion of the panel 300 continues onto storage track 110. Controller 117 may receive an indication from a sensor that the first portion of the panel 300 has reached or passed the connector track. In other implementations, controller 117 may control the switching of the connector track based on a speed of corner drive mechanisms 116.
In feeding panels into storage area 202, controller 117 can simultaneously initiate first panel storage device 102 and second panel storage device 104 along storage tracks 110 and 112 to begin feeding panels 300 from corner drive mechanisms 116 to transition the panels 300 onto storage tracks 110 and 112. Looped elements of first panel storage device 102 and second panel storage device 104 are driven in an opposite direction than when feeding panels out of storage area 202. In some implementations, looped elements of first and second panel storage devices 102 and 104 are simultaneously driven in increments of fixed distances by starting and stopping in an indexing fashion to feed panels 300 into storage area 202 one at a time from corner drive mechanisms 116.
In other implementations, looped elements of first and second panel storage devices 102 and 104 may be continuously run for a period of time to receive multiple panels from corner drive mechanisms 116 in one operation of first and second panel storage devices 102 and 104. In such implementations, corner drive mechanisms 116 may operate at a faster speed to deliver a panel in time to be pushed into storage area 202 by spacers of the first and second panel storage devices 102 and 104. Regardless of whether first and second panel storage devices 102 and 104 operate to feed one or more panels at a time, the speeds and timing of the operation of corner drive mechanisms 116 and first and second panel storage devices 102 and 104 may need to be sequenced so that panels are delivered to first and second panel storage devices 102 and 104 at a rate that allows the panels to be sandwiched between spacers of first and second panel storage devices 102 and 104.
In some implementations, panel identifier detector 115 can be used to indicate to controller 117 that a new panel 300 is ready for movement into storage area 202 via first and second panel storage devices 102 and 104. As discussed above, panel identifier detector 115 can read a panel identifier 302 on panel 300. In addition, panel identifier detector 115 may also be used to sequence corner drive mechanisms 116 to start and stop when a new panel 300 is ready to be fed out of storage area 202.
In other implementations, corner drive mechanisms 116 may run continuously as panels 300 are fed into or out of storage area 202. In addition, some implementations may instead, or in addition to panel identifier detector 115, include a sensor such as a proximity sensor or a physical contact or switch to determine when a new panel 300 is ready to be fed from storage area 202 or fed into storage area 202.
A Variable Frequency Drive (VFD) can be used with motors 103 and 105 to control the speed at which first panel storage device 102 and second panel storage device 104 move panels 300 into or out of panel storage system 100. For example, when panel storage system 100 begins fully loaded with panels 300 in storage area 202 (e.g., as in the example of
Controller 117 may also adjust the torque output by motors 103 and 105 based on the number of panels in storage area 202. Panel identifier detector 115 or another sensor such as a physical contact switch may allow controller 117 to keep count of the number of panels 300 in storage area 202. As the number of panels 300 in panel storage area 202 increases, controller 117 may increase the torque output by motors 103 and 105 to compensate or adjust for the greater load. As the number of panels 300 in panel storage area 202 decreases, controller 117 may decrease the torque output by motors 103 and 105 to compensate or adjust for the smaller load.
In some implementations, corner drive mechanisms 116 and/or a first drive mechanism 126 outside of panel storage system 100 may also allow for panels 300 to be driven at different speeds than at other locations in the wall partition movement system. This may be done by tuning the motors of these components or by more dynamically using a VFD. In such examples, the speed of a first drive mechanism 126 and/or corner drive mechanisms 116 in panel storage system 100 can be adjusted to provide for slowing panels 300 down as they enter or exit panel storage system 100.
First and second panel storage devices 102 and 104 may also include one or more limit switches configured to stop motors 103 and 105 from driving looped elements if a current limit in supplying power to a motor is exceeded. This can ordinarily provide a safety measure and prevent damage to the motors if an obstacle is blocking a path of travel of a panel.
Motors 103 and 105 may also include a clutch that disengages or stops the motor from driving a looped element after encountering a resistance to rotation. The clutches or stopping of motors 103 and 105 can also be controlled by controller 117 so that controller 117 can disengage the motors or stop movement of a panel 300 through an override switch or an input received from an operator at controller 117. Similarly, the direction of movement of the looped elements can be controlled by controlling the output of motors 103 and 105 so that the looped elements are moved in a clockwise or counter-clockwise direction corresponding to feeding panels 300 into or out of storage area 202.
As appreciated by those of ordinary skill in the art, the wall partition movement system and wall panel storage system 100 in other implementations can include more or less components than those shown in
First panel storage device 102 and second panel storage device 104 are arranged with respect to storage tracks 110 and 112 so that the lengths of panels 300 are parallel to each other when stored in storage area 202. In other words, panels 300 are stored in panel storage system 100 with their lengths side by side to each other such that the distance between the panel lengths have the same distance continually between them. By storing panels 300 with their lengths parallel to each other, as opposed to storing the panels linearly along a single track, the size of storage area 202 can be significantly reduced.
In the example of
As shown in
Spacers 106 and 108 can be made of a material to protect panels from damage that may otherwise result from contact with the spacers or with other panels. Such protective materials can include, for example, a rubber material or plastic materials such as High-Density Polyethylene (HDPE), Plyvinyl Chloride (PVC), Low-Density Polyethylene (LDPE), Polypropylene (PP), or Polycarbonate (PC). In some implementations, spacers 106 and 108 may be integral with looped elements moving the spacers.
As shown in
As discussed above, in feeding a panel 300 into storage area 202, the actuation of track connector 128 can be sequenced so that after trolley 313 passes track switch 114, track connector 128 is moved from the first position to the second position so that trolley 315 is guided to storage track 112 as trolley 313 is guided to storage track 110. In feeding a panel 300 out from storage area 202, the actuation of track connector 128 is reversed so that after trolley 315 passes track switch 114, track connector 128 is moved to the first position (e.g., to the left in
In the example of
An interior side of contact element 143 contacts curved guide 142 of corner drive mechanism 116. Curved guide 142 guides contact element 143 along curved guide 142 so that drivable element 316 of panel 300 can be carried or led in the direction that contact element 143 is being moved to thereby move panel 300 onto or from a storage track, depending on the direction of movement of contact element 143. As drivable element 316 moves along curved guide 142, the point of contact between drivable element 316 and contact element 143 may change, such as when contact element 143 is a chain or timing belt that progresses along teeth of drivable element 316. In other implementations, drivable element 316 may rotate about suspension rod 314 as drivable element 316 moves along curved guide 142.
In the example of
Drivable element 316 is affixed on suspension rod 314 so as to contact or engage contact element 143 of corner drive mechanism 116. Corner drive mechanism 116 includes curved guide 142 which provides a surface against which contact element 143 moves to ensure contact between contact element 143 and drivable element 316. In some implementations, curved guide 142 and contact element 143 can be approximately 0.50 to 2 inches in height. The height of contact element 143 and curved guide 142 can vary based on design considerations such as a weight of the panels or the torque of motor 138.
As shown in
Tension roller 135 can be used to facilitate removal of contact element 143 for replacement or maintenance. Tension roller 135 is mounted on tension arm 151 and is moved along slot 144 in frame 145 against the resistance of spring 150 when removing contact element 143 to loosen contact element 143. The tension of spring 150 and the location of tension roller 135 in slot 144 can be adjusted using tension adjusters 146 and 148. In other embodiments, a gas cylinder or other mechanism for maintaining tension of contact element 143 can be used instead of spring 150. In yet other embodiments, tension roller 135, slot 144, spring 150, tension adjusters 146 and 148, and tension arm 151 can be omitted.
The embodiment of
Corner drive mechanism 116 may also include a torque limiter to protect contact element 143 from over-tensioning. In other implementations, an electric clutch can disengage motor 138 when a current limit is exceeded so as to protect contact element 143 from over-tensioning. Motor 138 can be sized based on various design considerations such as power supply or a weight of panels 300. In one implementation, motor 138 can provide a torque of approximately 50 inch-pounds and rotate at a speed of approximately 50 revolutions per minute. The specifications of motor 138 can vary in other implementations.
In some embodiments, motor 138 may include a magnetic starter to allow for motor 138 to start after rotation of drive wheel 136 to allow for the automatic starting of corner drive mechanism 116 after being fed a panel 300, such as by a first drive mechanism 126 or from a panel storage device. In addition, motor 138 may also include a clutch that disengages or stops motor 138 from driving drive wheel 136 after encountering a resistance to rotation of drive wheel 136. In other implementations, motor 138 may stop on its own after encountering a resistance to rotation of drive wheel 136. Such resistance to rotation may be detected from a current used by motor 138 exceeding a current limit. In such an implementation, corner drive mechanism 116 can automatically stop when a panel 300 driven by corner drive mechanism 116 reaches a position where spacers of first and second panel storage devices 102 and 104 prevent further movement of the panel 300 into storage area 202. In addition, such an automatic stop can also serve as a safety feature to cause the panel 300 to automatically stop when encountering an obstacle along its path.
The clutches or stopping of motor 138 can also be controlled by controller 117 so that controller 117 can sequence the motor 138 off or can stop movement of a panel 300 through an override switch or an input received from an operator at controller 117. Similarly, the direction of movement of contact element 143 can be controlled by controlling the output of motor 138 so that contact element 143 is moved in a clockwise or counter-clockwise direction corresponding to feeding panels 300 into or out of storage area 202.
Trollies 313 and 315 are connected to suspension rods 312 and 314, respectively, for engaging storage tracks 110 and 112 (as shown in
As shown in
When spacers 106 and 108 push a panel 300 out of storage area 202, the panel 300 is handed off or delivered to corner drive mechanisms 116 with contact elements 143 grabbing or pulling drivable elements 316 and 318 to move panel 300 away from spacers 106 and 108. Looped elements 156 and 158 move or rotate in a first direction (e.g., clockwise in the example of
Panel 300 is handed off or delivered from corner drive mechanisms 116 to spacers 106 and 108 with contact elements 143 grabbing or pulling drivable elements 316 and 318 toward spacers 106 and 108. Looped elements 156 and 158 move or rotate in a second direction opposite the first direction (e.g., counter-clockwise in the example of
In some implementations, controller 117 may control corner drive mechanisms 116 to move contact elements 143 in a first direction for feeding panel 300 into first and second storage devices 102 and 104. Controller 117 may also control corner drive mechanisms 116 to move contact elements 143 in a second direction opposite the first direction for feeding panel 300 out of first and second storage devices 102 and 104. In other implementations, corner drive mechanisms 116 may automatically start or stop in the first or second directions by using a magnetic starter as discussed above with reference to
As shown in
As discussed above, spacers 106 and 108 may be formed of a protective material such as rubber or plastic to reduce damage to panels 300 in storage area 202, which may otherwise be caused by contact with other panels. In addition, spacers 106 and 108 may have rounded edges as shown in
Looped elements 156 and 158 can include, for example, a conveyor belt or chain. Spacers 106 and 108 are attached to looped elements 156 and 158, respectively, by being mechanically or otherwise attached or affixed, or may be integrally formed as part of looped elements 156 and 158. In the example of
Powered wheels 152 and 154 are driven by motors 103 and 105 (not shown in
As shown in the example of
As discussed above, powered wheels 152 and 154 may be driven based on a number of panels 300 in storage area 202. For example, controller 117 may adjust the torque output by motors 103 and 105 based on a number of panels 300 determined to be in storage area 202. Panel identifier detector 115 may be used to keep track of the number of panels in storage area 202 that are currently being handled by first and second storage devices 102 and 104. Controller 117 may then increase the torque output by motors 103 and 105 when panels are added to storage area 202, and decrease the torque output by motors 103 and 105 when panels leave storage area 202. In other implementations, the number of panels in storage area 202 may be monitored by other means, such as with a contact or proximity sensor.
The example of
In
As shown in
When receiving panels into storage area 202, looped element 156 progresses or travels in the opposite direction (i.e., counter-clockwise in
As discussed above, storing panels with their lengths parallel to each other can reduce the space needed to store panels as compared to other storage arrangements where panels are stored along a single track with their lengths in line with each other. The spacers of the disclosed panel storage system also help protect panels from damage, while allowing for a more compact storage of panels.
In addition, the use of the panel storage system described herein can ordinarily allow the feeding of panels to and from a storage area to be performed with less operators and in less time than it takes to manually feed panels into or out of a storage area.
Those of ordinary skill in the art will appreciate that the various illustrative logical blocks, modules, and processes described in connection with the examples disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Furthermore, the foregoing processes can be embodied on a computer readable medium which causes a processor, controller, or computer to perform or execute certain functions.
To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, and modules have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Those of ordinary skill in the art may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
The various illustrative logical blocks, units, modules, and controllers described in connection with the examples disclosed herein may be implemented or performed with a general purpose processor, a Digital Signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The activities of a method or process described in connection with the examples disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. The steps of the method or algorithm may also be performed in an alternate order from those provided in the examples. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable media, an optical media, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC.
The foregoing description of the disclosed example embodiments is provided to enable any person of ordinary skill in the art to make or use the embodiments in the present disclosure. Various modifications to these examples will be readily apparent to those of ordinary skill in the art, and the principles disclosed herein may be applied to other examples without departing from the spirit or scope of the present disclosure. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the disclosure is, therefore, indicated by the following claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.