This invention relates generally to the construction field and, more particularly, to a cast veneer wall panel, a backing panel for a cast veneer wall panel and a method of making a cast veneer wall panel.
Cast veneer wall panels have been developed as a quick and efficient way to provide a masonry appearance for a building while simplifying construction and lowering construction costs. Such panels typically include a front plate or panel carrying a series of design or masonry elements. These design elements simulate brick, stone, tile and other masonry building components or materials commonly used in the construction of buildings. Examples of cast veneer wall panels are disclosed in U.S. Pat. No. 3,332,187 to Arcari and co-pending U.S. patent application Ser. No. 11/647,679, entitled “Fiber Reinforced Concrete Stone Panel System” owned by the assignee of the present invention and incorporated herein by reference.
Cast veneer wall panels are typically made from reinforced construction materials such as fiberglass reinforced concrete. While cast veneer wall panels made from such reinforced materials are more resistant to damage from handling during packaging, shipping and installation, further improvements in durability to reduce loss due to breakage are still desired. The present invention relates to a cast veneer wall panel of enhanced durability providing significantly improved handling characteristics due to light weight construction and ability to fasten by nailing. The cast veneer wall panel is also easier and quicker to orient, seat and install.
In accordance with the purposes of the present invention as described herein, an improved cast veneer wall panel is provided. The cast veneer wall panel comprises a backing panel including a rear face and a front face. The front face includes a casting field at least partially encircled by a boundary wall. In addition, the cast veneer panel includes a facing panel formed from a cast material that is received and held within the casting field on the backing panel. The facing panel includes at least one design element such as a simulated stone, brick or tile. Typically the facing panel includes multiple design elements at spaced locations.
The backing panel preferably further includes a continuous, or substantially continuous, abutment extending around a perimeter of the casting field. Further, the backing panel includes a mounting flange that extends beyond a first portion of the continuous abutment. In addition, at least one locating slot is provided in the first portion of the continuous abutment. That locating slot may extend into the mounting flange.
Further, the cast veneer panel includes at least one locating tab projecting from a second portion of the continuous abutment. The first and second portions of the continuous abutment are provided opposite one another on the backing panel. Accordingly, the at least one locating tab on one cast veneer wall panel may be received in and held in the at least one locating slot of another, adjacent cast veneer wall panel and thereby properly align multiple panels during installation. The rear face of the backing panel preferably includes a concavity and that concavity nests in the at least one design element. Further, the at least one locating slot may extend into the concavity. The backing panel also includes apertures in the concavity. Casting material forming the facing panel extends through the apertures into the concavity to key the backing panel and the facing panel together.
In accordance with an additional aspect of the present invention the rear face of the backing panel includes a series of dimples that project outwardly from the rear face. In one possible embodiment a row of dimples are provided along the mounting flange. The row of dimples provides a minimum flow area of about 65%.
In accordance with still another aspect of the present invention a cast veneer wall panel comprises a backing panel including (a) a rear face, (b) a front face including a casting field, (c) at least one locating slot along a first edge and (d) at least one locating tab, which may form a hook, along a second edge. The cast veneer wall panel also includes a facing panel formed from a cast material received and held on the casting field. The facing panel includes at least one design element.
The wall panel further includes a mounting flange that extends beyond the first edge. In one possible embodiment the at least one locating slot extends into the mounting flange. Further, the rear face of the backing panel includes a concavity and the concavity nests in the at least one design element. The at least one locating slot may extend into this concavity.
Still further, the backing panel includes apertures in the concavity. Casting material forming the facing panel extends through the apertures into the concavity to key the backing panel and the facing panel together.
In accordance with yet another aspect of the present invention a backing panel is provided for a cast veneer wall panel. The backing panel comprises a body including a rear face and a front face. The front face includes a casting field at least partially encircled by a boundary wall. The backing panel preferably further includes a continuous abutment extending around a perimeter of the casting field. In addition, the backing panel has a first mounting flange extending beyond a first portion of the continuous abutment. At least one locating slot is provided in the first portion of the continuous abutment. The at least one locating slot may also extend into the first mounting flange.
The backing panel further includes at least one locating tab projecting from a second portion of the continuous abutment. The first and second portions of the continuous abutment are provided opposite one another on the backing panel.
Still further, the backing panel includes a series of dimples projecting outwardly from the rear face. A row of dimples may be provided along the mounting flange. The row of dimples may provide a minimum flow area of about 65%. In addition the backing panel includes a second mounting flange extending beyond a third portion of the continuous abutment provided between the first and second portions.
In accordance with yet another aspect of the present invention a backing panel for a cast veneer wall panel comprises a body including (a) a rear face, (b) a front face including a casting field, (c) at least one locating slot along a first edge and (d) at least one locating tab along a second edge. A first mounting flange extends beyond the first edge. The at least one locating slot extends into the first mounting flange. In addition the rear face of the backing panel includes a concavity and the at least one locating slot may extend into that concavity.
In the following description there is shown and described several different embodiments of the invention, simply by way of illustration of some of the modes best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
The accompanying drawings incorporated herein and forming a part of the specification, illustrate several aspects of the present invention and together with the description serve to explain certain principles of the invention. In the drawings:
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Reference is now made to
The backing panel 12 may be made from any suitable material such as wood, treated wood, metal, such as galvanized steel, aluminum, copper or as a single molded piece from a polymer material or a composite material. Polymer materials useful for making the backing panel 12 include various thermoplastic and thermoset resins, including but not limited to polyolefins, polyesters, polyvinyl chloride, polypropylene, polyethylene, polyamide, epoxy, vinyl ester, acrylic, polystyrene, ABS, melamine and mixtures thereof. Composite materials used to make the backing panel 20 include reinforcing material and a matrix binder. Appropriate reinforcing materials useful in the present invention include but are not limited to glass fibers, natural fibers, mineral fibers, basalt fibers, carbon fibers, kanaf fibers, jutte fibers, hemp fibers, E-glass fibers, C-glass fibers, R-glass fibers, S-glass fibers, ECR-glass fibers, AR-glass fibers and mixtures thereof. It should be appreciated that substantially any type of glass fiber may be used for reinforcement fibers. Glass fibers appropriate for use in the present invention may be loose chopped strand or glass mat and include those available from Owens Corning with headquarters in Toledo, Ohio, under the trademarks Hypertex and Advantex. Matrix binder materials useful for this purpose include but are not limited to polyolefins, polyesters, polyvinyl chloride, polypropylene, polyethylene, polyamide, epoxy, vinyl ester and mixtures thereof.
The facing panel 14 is formed from a cast material received and preferably held within the casting field 22 by the upstanding, encircling boundary wall 20. The facing panel 14 includes at least one design element 24. In the illustrated embodiment the cast veneer wall panel 10 includes a series of a masonry or design elements 24. The design elements 24 are illustrated as simulated bricks aligned in a regimented pattern in accordance with standard masonry practices. In other embodiments, the design elements 24 comprise stones, such as ledgestones, limestone, or substantially any other stone texture available for example from Owens Corning of Toledo, Ohio under the Cultured Stone® brand. The facing panel 14 also includes a mortar bed area 26 between the design elements 24. Following installation the mortar bed area 26 is typically grouted by injecting mortar between the design elements 24 so as to provide a finished masonry appearance. In an alternative embodiment, certain textures may resemble a dry stack, and not include the mortar.
While the design elements 24 illustrated in the drawing figures correspond to simulated bricks, it should be appreciated that substantially any other masonry material known in the art may be simulated including bricks of different sizes, stones of different shapes and sizes, tiles of different shapes and sizes and the like. The facing panel 14 is made from a cast material such as concrete, reinforced concrete, reinforced cementitious material and mixtures thereof. Typically the cast material reinforcement comprises fibers selected from a group of materials consisting of glass fibers, mineral fibers, natural fibers, polymer fibers and mixtures thereof. Where glass fibers are used they are typically of the E-glass or AR-glass type, which exhibit some alkali resistance.
As best illustrated in
As best illustrated in
As best illustrated in
The backing panel 12 further includes a series of locating tabs 48 that project from a second portion 40 of the continuous abutment 36. The second portion 40 is opposite the first portion 38 of the abutment 36. When the cast veneer panel 10 is properly installed on the framework of a building (see
As best illustrated in
Reference is now made to
Once the wall panel 10 is properly seated on the wall panel 10′ with the locating tabs 48 fully received in the locating slots 46 and the ridges 20 of the two panels in abutting engagement (see
Reference is now made to
During the installation of a wall panel 10, including the backing panel 12, over the top of another such panel, the locating tabs or hooks 48′ are inserted in the cooperating locating slots 46 of a previously mounted wall panel 10′. Once the locating hooks 48′ are fully inserted in the locating slots 46 the new wall panel 10 is shifted laterally in the direction of arrow A (see
In summary, numerous benefits result from employing the concepts of the present invention. A quick and efficient method of installing cast veneer wall panels is created. The method includes the steps of (a) fastening a first cast veneer wall panel to a support structure, (b) aligning cooperating tabs and slots provided on the first cast veneer wall panel and a second cast veneer wall panel, (c) engaging the tabs in the slots and (d) fastening the second wall panel to the support structure. Specifically, the method effectively reduces the number of fasteners required to secure the cast veneer wall panels to a support structure such as a building and conveniently aligns the panels for installation. These benefits are accomplished by providing the wall panels with cooperating locating tabs and slots that are engaged during wall panel installation.
The foregoing description of the preferred embodiments of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. For example,
The embodiments were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled. The drawings and preferred embodiments do not and are not intended to limit the ordinary meaning of the claims in their fair and broad interpretation in any way.
This application is a continuation-in-part of prior U.S. patent application Ser. No. 11/647,751 filed on Dec. 29, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | 11647751 | Dec 2006 | US |
Child | 11933216 | US |