Panels comprising a mechanical locking device and an assembled product comprising the panels

Information

  • Patent Grant
  • 11448249
  • Patent Number
    11,448,249
  • Date Filed
    Thursday, July 6, 2017
    6 years ago
  • Date Issued
    Tuesday, September 20, 2022
    a year ago
Abstract
A set of panels includes a first panel having a first main plane and a second panel having a second main plane. The panels are provided with a mechanical locking device for locking a first edge of the first panel to a second edge of the second panel. The mechanical locking device includes an edge section groove at the first edge, wherein an edge section of the second edge is insertable into the edge section groove. A flexible tongue is arranged in an insertion groove provided in the edge section groove, and cooperates with a tongue groove provided at the edge section of the second panel. A first thickness of a core material between the edge section groove and the outermost surface of the first edge is greater than a minimum second thickness of a core material of the edge section of the second panel.
Description
TECHNICAL FIELD

The present disclosure relates to panels that may be arranged perpendicular to each other and locked together with a mechanical locking device. The panels may be assembled and locked together to obtain a furniture, such as a bookshelf, a cupboard, a wardrobe, a box, a drawer or a furniture component. The locking device may comprise a flexible tongue.


BACKGROUND

A furniture provided with a mechanical locking device is known in the art, as evidenced by WO2012154113(A1). The furniture comprises a first panel connected perpendicular to a second panel by a mechanical locking device comprising a flexible tongue in an insertion groove.


SUMMARY

One object of certain embodiments of the present disclosure is to provide an improvement over the above described technique and the known art. A specific objective is to improve the strength of a mechanical locking device at a corner of an assembled product, such as a furniture, a furniture component, a drawer, a cupboard, a bookshelf, a wardrobe, a kitchen fixture, or a box for storing or transporting.


A further object of embodiments of the present disclosure is to provide a furniture product with increased strength and stability.


At least some of these and other objects and advantages that will be apparent from the description have been achieved by a set of panels comprising a first panel having a first main plane and a second panel having a second main plane. The first panel and the second panel are provided with a mechanical locking device for locking a first edge of the first panel to a second edge of the second panel, wherein the first main plane is essentially perpendicular to the second main plane. Essentially perpendicular meaning that the first main plane is at an angle of 90°±10° of the second main plane. The first panel comprises a core comprising fibres arranged essentially parallel to the first main plane and the second panel comprises a core comprising fibres arranged essentially parallel to the second main plane. Essentially parallel meaning that the fibers are arranged at an angle of 0°±10° to the second main plane. The mechanical locking device comprises:

    • an edge section groove at the first edge, wherein an edge section of the second edge of the second panel is insertable into the edge section groove for locking the first panel and the second panel together in a first direction parallel to the first main plane; and
    • a flexible tongue arranged in an insertion groove provided in the edge section groove of the first edge, wherein said flexible tongue cooperates with a tongue groove arranged at the edge section of the second edge of the second panel, for locking the first panel and the second panel in a second direction parallel to the second main plane.


A first thickness of a core material of the first panel between the edge section groove and the outermost surface of the first edge in a direction parallel to the first main plane is greater than a minimum second thickness of a core material of the edge section of the second edge of the second panel. Further, a first thickness of the first panel between the edge section groove and the outermost surface of the first edge in a direction parallel to the first main plane is greater than a minimum second thickness of the edge section of the second edge of the second panel.


The mechanical locking device may be subject to the greatest stress in the first direction parallel to the first main plane. The stress in the first direction may arise from a pressure load applied on the side panel at the top of a furniture, such as a bookshelf, a cupboard or a wardrobe. The minimum second thickness may be rather thin since the edge section of the second edge of the second panel has the fibre direction essentially perpendicular to the stress in the first direction. The first thickness is preferably greater than the minimum second distance because the fibre direction of the edge section groove of the first panel is essentially parallel to the stress in the first direction. The stress in the first direction may also arise before the first panel and the second panel are assembled and locked together, for example, during transport, production or during an assembling and locking of the first panel and the second panel.


The first thickness ranges from between 1.1 and 3.0 times larger than the minimum second thickness, and may be at least about 1.25 times larger; preferably about 1.5 time larger; and more preferably about 2.0 times larger than the minimum second thickness.


The first direction is preferably perpendicular to the first edge of the first panel and second direction is preferably perpendicular to the second edge of the second panel.


The flexible tongue may alternatively be arranged in an insertion groove in the edge section of the second edge of the second panel, and the tongue groove may be arranged in edge section groove of the first edge of the first panel. However, a greater size of the insertion groove, as compared to the tongue groove, may be required. Therefore, the alternative with the insertion groove in the edge section groove of the first panel may be the preferred alternative.


The edge section groove may comprise a first wall and an opposed second wall, wherein the first wall is closer to the outermost surface of the first edge than the second wall, wherein the first thickness is measured between the first wall and the outermost surface of the first edge.


The insertion groove may extend along essentially the entire length of the edge section groove of the first edge.


The tongue groove may extend along essentially the entire length of the edge section of second panel.


The edge section of the second panel may also comprise two or more insertion grooves and/or flexible tongues. The edge section of the first edge may comprise two or more tongue grooves.


The edge section groove may extend along essentially the whole first edge, and is preferably covered by a decorative layer, such as a plastic foil or a veneer, at a front edge of the first panel and may also be covered by a decorative layer, such as a plastic foil or a veneer at a back edge of the first panel. A length of the edge section of the second edge (measured along the second edge) preferably matches a length of the edge section groove (measured along the first edge). The second panel may be provided with at least one dismantling groove at an inner or outer face of the second panel. The embodiment of the first panel that is provided with the edge section groove that is covered at the back and the front edge is preferably connected to the embodiment of the second panel that is provided with at least one dismantling groove at the inner or outer face of the second panel. The dismantling groove is preferably adapted for insertion of a dismantling tool. The dismantling tool may be inserted into the dismantling groove to un-lock the mechanical locking device. The tongue groove at the edge section of the second edge of the second panel may be open at a back edge of the second panel. A dismantling tool may be inserted into the tongue groove provided that the edge section groove and the tongue groove are open at the back of the first and the second panel.


The flexible tongue may be displaceable in the insertion groove.


The edge section of the second panel may be provided with a calibrating groove.


The first panel or the second panel may be provided with a dismantling groove or recess, wherein dismantling groove or recess is preferably adapted for insertion of a dismantling tool.


The edge section of the second panel may comprise a first wall and an opposite second wall, wherein the tongue groove may be provided in the first wall, and the minimum second thickness may be measured between a bottom of the tongue groove and the second wall.


The flexible tongue may have a first displacement surface and an opposite second displacement surface which are configured to be displaced along a third displacement surface and a fourth displacement surface, respectively, of the insertion groove.


The core material of the first panel and the second panel may comprise a wood fibre based board, such as a HDF, MDF, plywood, solid wood or particleboard, a reinforced plastic board or a wood fibre composite board.


The first panel and the second panel are preferably provided with a decorative layer.


The outermost surface of the first edge of the first panel may be essentially in the same plane as, for example, flush with, an outer face of the second panel.


A second aspect of the present disclosure is an assembled product, such as a furniture, comprising the set of panels described above. The assembled product is preferably configured to be assembled without tools.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure will by way of example be described in more detail with reference to the appended schematic drawings, in which:



FIGS. 1A-1B show panels provided with a mechanical locking system according to an embodiment of the present disclosure.



FIGS. 2A-2F show a flexible tongue according to an embodiment of the present disclosure.



FIGS. 3A-3B show a flexible tongue according to an embodiment of the present disclosure.



FIGS. 3C-3D show a mechanical locking system for a backside or bottom panel according to an embodiment of the present disclosure.



FIGS. 4A-4B show embodiments of an assembled product



FIG. 5 shows panels provided with a mechanical locking system according to an embodiment of the present disclosure.



FIGS. 6A-6B show panels provided with a mechanical locking system according to an embodiment of the present disclosure.



FIGS. 7A-7B show panels and a disassembling tool and groove according to an embodiment of the present disclosure.





DETAILED DESCRIPTION


FIGS. 1A-B show two panels 2, 4 that are arranged perpendicular to each other and locked together. The two panels may be a part of a furniture or a furniture component, such as a bookshelf, a cupboard, a wardrobe, a box, a drawer or a furniture component. The two panels may be a first panel 2 having a first main plane and a second panel 4 having a second main plane. The first panel 2 and the second panel 4 are provided with a mechanical locking device for locking a first edge of the first panel 2 to a second edge of the second panel 4, wherein the first main plane is essentially perpendicular to the second main plane. The first panel 2 comprises a core comprising fibres arranged essentially parallel to the first main plane, and the second panel 4 comprises a core comprising fibres arranged essentially parallel to the second main plane. The mechanical locking device comprises an edge section groove 21 at the first edge, and an edge section 22 at the second edge of the second panel 4. The edge section 22 is inserted into the edge section groove 21 for locking the first panel 2 and the second panel 4 in a direction parallel to the first main plane. The mechanical locking device further comprises a flexible tongue 30 arranged in an insertion groove 20 preferably provided in the edge section groove 21 as shown in FIG. 1A. The flexible tongue 30 cooperates with a tongue groove 10, preferably provided at the edge section 22 as shown in FIG. 1A, for locking the first panel 2 and the second panel 4 in a direction parallel to the second main plane. The edge section groove 21 and the tongue groove 10 are preferably formed by mechanically cutting, such as milling, of the first panel 2 and the second panel 4, respectively. The first panel comprises an inner face 60 and an outer face 61 that are preferably essentially parallel to the first main plane. The second panel 4 comprises inner face 62 and an outer face 63 that are preferably essentially parallel to the second main plane. The inner face 60 of the first panel 2 and the inner face 62 of the second panel are preferably configured to face toward an inside of an assembled product. The edge section 22 of the second panel 4 may be provided with a calibrating groove 40, which reduces the thickness of the edge section 22, at the inner face 62 and/or the outer face 63 of the second panel 4. The calibrating groove 40 is preferably formed by mechanically cutting, such as milling, of the second panel 4.



FIG. 1B shows that the flexible tongue 30 may alternatively be arranged in an insertion groove 20 in the edge section 22 of the second panel 4 and the tongue groove 10 may be arranged in edge section groove 21 of the first edge of the first panel 2. However, a greater size of the insertion groove 20, as compared to the tongue groove 10, may be required. Therefore, the embodiment in FIG. 1A with the insertion groove 20 in the edge section groove 21 may be the preferred embodiment.


An embodiment of the flexible tongue 30, which is displaceable in an insertion groove 20, is shown in FIGS. 2A-2D. FIGS. 2A-2B show the flexible tongue 30 in a locked portion and FIGS. 2C-2D show the flexible tongue 30 during assembling of the first panel 2 and the second panel 4. FIG. 2B shows a cross section of the flexible tongue 30 in FIG. 2A. FIG. 2D shows a cross section of the flexile tongue 30 in FIG. 2C. The flexible tongue 30 comprises bendable protruding parts 24. A space 23 is provided between the flexible tongue 30 and a bottom wall of the insertion groove 20. FIG. 2C shows that the flexible tongue 30 is pushed into the insertion groove 20 and towards the bottom wall of the insertion groove 20 during assembly of the first panel 2 with the second panel 4. The flexible tongue 30 springs back toward its initial position when the first panel 2 and the second panel 4 have reached a locked position. A recess 25 is preferably arranged at each bendable protruding part.


The flexible tongue 30 may have a first displacement surface 26 and an opposite second displacement surface 27, configured to be displaced along a third displacement surface 28 and a fourth displacement surface 29, respectively, of the insertion groove 20.


An alternative embodiment of the flexible tongue 30, without the protruding bendable parts 24, is shown in FIGS. 2E-2F. FIG. 2F shows a cross section of the flexible tongue 30 shown in FIG. 2E. The alternative embodiment is bendable in its length direction in order to accomplish the same function as the embodiment shown in FIGS. 2A-2D.


A further embodiment of the flexible tongue 30 is shown in FIGS. 3A-3B. FIG. 3A shows the flexible tongue 30 before the first panel 2 and the second panel 4 are locked in the direction parallel to the second main plane. The flexible tongue 30 comprises an inner part 31 provided with wedge elements and outer part for the locking of the first panel 2 and the second panel 4 in the direction parallel to the second main plane. The locking is obtained by applying a force P, in a direction parallel to the first edge of the first panel 2, at a short edge of the outer part. The force P displaces the outer part of the flexible tongue 30 in the direction parallel to the first edge of the first panel 2 and the wedge elements force the outer part of the flexible tongue 30 in a perpendicular direction, out of the insertion groove 20. The resulting displacement, shown with arrow 32, of the outer part of the flexible tongue 30 is therefore in a direction between the direction parallel to the first edge of the first panel 2 and the perpendicular direction. Each of the panels 2-6 may include a flexible tongue 30.



FIG. 4A shows an assembled product, such as furniture, with a frame that comprises a first set of the first panel 2 and the second panel 4 locked to a second set of the first panel 6 and the second panel 5. A first edge of the second panel 4, 5 may be essentially identical to the second edge of the second panel 4, 5 and a second edge of the first panel 2, 6 may be essential identical to the first edge of the first panel 2, 6 to enable locking the first set and the second set together as shown in FIG. 4A. The first panel 2 of the first set is arranged opposite to the first panel 6 of the second set. The second panel 4 of the first set is arranged opposite the second panel 5 of the second set. A third panel 3 configured essentially as the second panel and provided with the flexible tongue 30 at an edge section of the third panel, may be locked to the first panel 2 of the first set and the first panel 6 of the second set.



FIG. 4B shows an alternative embodiment of the frame with an alternative configuration of the first edge of the second panel 6 of the second set and the second edge of the first panel 2 of the first set. FIG. 4B shows that assembly involves, using the first panel 6 of the second set as an example, simply displacing the first panel in the direction of arrow 44 such that no further steps or tools may be necessary to lock the first panel 6 of the second set with other panels of the product. See also, Swedish patent application SE 1351060-7, which is expressly incorporated herein by reference in its entirety.


All edges of the panels 2-6 of the assembled product may be locked together with a mechanical device comprising the flexible tongue 30. The assembling may be completed without the use of tools and/or binding agents such as glue.


A fourth panel 8, such as a back panel or a bottom panel, may be arranged in a third main plane, which is essentially perpendicular to the first main plane and the second main plane. A first edge and a second edge of the fourth panel 8 may be locked by a mechanical locking device at a first back or bottom edge and a second back or bottom edge, respectively, of the frame. A third edge and a fourth edge of the fourth panel 8 are preferably inserted into a groove provided at a third back or bottom edge and a fourth back or bottom edge, respectively, of the frame. The frame may be subject so a force F during transportation, production or assembling of the assembled product. Locking of the fourth panel 8 to the frame by the mechanical locking device improves the strength and the stability of the assembled product. The fourth panel may comprise two or more elements 8a, 8b which are preferably locked together by a mechanical locking system. An embodiment of the mechanical locking system is shown in FIG. 3C, discussed below.


The first panel 6 of the second set may be locked to the other panels of the frame at a later occasion and/or at another location. The first panel 6 of the second set may be locked to the other panels of the frame and the bottom or back panel by simple displacement 44 as discussed above, and no further steps or tools may be necessary.



FIG. 3C shows an embodiment of a furniture panel 8, such as a back or bottom panel, comprising a first element 8a and a second element 8b provided with a mechanical locking system configured to lock the first 8a element and the second element 8b together.


The first main plane of the first element 8a is essentially parallel to a second main plane of the second element 8b, wherein the furniture panel comprises a first face 85 and an opposite second face 86 which are parallel to a main plane of the furniture panel 8. The mechanical locking system may include:

    • a first tongue 64 provided at a first edge of the first element 8a, wherein the first tongue 64 is configured to cooperate with a first tongue groove 50 provided at a second edge of the second element 8b for locking together the first element 8a and the second element 8b in a vertical direction V;
    • a second tongue 72 at the second edge of the second element 8b, wherein the second tongue 72 is configured to cooperate with a second tongue groove 73 at the first edge of the first element 8a for locking together the first element 8a and the second element 8b in the vertical direction V;
    • a first pair of locking surfaces 83 provided above the second tongue 72 and the second tongue groove 73 for locking together the first element 8a and the second element 8b in a horizontal direction H; and
    • second pair of locking surfaces 84 provided below the first tongue 64 and the first tongue groove 50 for locking together the first element 8a and the second element 8b in the horizontal direction H.


The first pair of locking surfaces 83 is preferably essentially vertical. The second pair of locking surfaces 84 is also preferably essentially vertical.


The first tongue 64 and the first tongue groove 50 cooperate at a third pair of locking surfaces 87 that is preferably arranged essentially horizontally.


The second tongue 72 and the second tongue groove 73 cooperate at a fourth pair of locking surfaces 74 that is preferably arranged at an angle 88 to the main plane of the furniture panel 8 that is greater than zero. The angle 88 has a range that allows the first element 8a to be locked to the second element 8b by an angling motion of the first element 8a relative to the second element 8b or of the second element 8b relative to the first element 8a, wherein the first tongue 64 is inserted in the first tongue groove 50.


The first face 85 of the first element 8a and the second element 8b is arranged upwards in the vertical direction, e.g., in the direction were the greatest load F1 is likely to be exerted on the furniture panel 8, to prevent the first element 8a and the second element 8b from being unlocked by a reversed angling motion. A second face 86 is arranged downwards in the vertical direction, e.g., in the direction where the smallest load F2 is likely to be applied on the furniture panel 8.


The second element 8b may include a strip 70 extending from first tongue groove 50 and including a protruding element 71 and the. The strip 70 may include a recess adjacent the protruding element 71. The protruding element 71 essentially matches a third groove 80 provided at the first edge of the first element 8a. The protruding element 71 may protrude upwards in the vertical direction V and the groove 80 may be open downwards in the vertical direction V. A third space 75, that extends in the horizontal direction H, may be provided between the protruding element 73 and the third groove 80. The third space 75 may facilitate the locking by an angling motion. FIG. 5 shows an embodiment that comprises a first thickness 55 of a core material of the first panel 2, between the edge section groove 21 and the outermost surface of the first edge in a direction parallel to the first main plane. The first thickness 55 is greater than a minimum second thickness 54 of a core material of the edge section 22 of the second panel 4. The first thickness 55 ranges from between 1.1 and 3.0 times larger than the minimum second thickness 54, and may be at least about 1.25 times larger; preferably about 1.5 times larger; and more preferably about 2.0 times larger than the minimum second thickness. In an embodiment, the edge section groove 21 comprises a first wall 56 and an opposed second wall 57, wherein the first wall 56 is closer to the outermost surface 53 of the first edge than the second wall 57. The first thickness 55 is preferably measured between the first wall 56 and the outermost surface 53 of the first edge. The first wall 56 and the second wall 57 are preferably connected by a bottom wall 58.


The edge section 22 of the second panel 4 may comprise a first wall 96 and an opposite second wall 98, wherein the tongue groove 10 is provided in the first wall 96. The minimum second thickness 54 may be measured between a bottom of the tongue groove 10 and the second wall 98.


In the embodiment, having the insertion groove 20 extend along essentially the entire length of the edge section groove 21 of first edge of the first panel may lead to an easier production of the first panel 2. Having the tongue groove 10 extend along essentially the entire length of the edge section 22 of the second panel 4 may also lead to an easier production of the second panel 4.


The outermost surface 53 of the first panel 2 is in a preferred embodiment essentially in the same plane as, for example, flush with, the outer face 63 of the of the second panel 4.


An edge of the opening of the edge section groove 21 may be provided with a bevel 59 or rounding in order to facilitate the insertion of the flexible tongue 30 into the insertion groove 20.



FIG. 6A shows an embodiment of a mechanical locking device for locking the fourth panel 8 to any first or second back or bottom edge 81 of a frame. An embodiment of the frame is shown in FIGS. 4A-4B. The mechanical locking device may be essentially identical to the mechanical locking device described above.



FIG. 6B shows an embodiment of a mechanical locking device for locking the third panel 3 to any first or second panel 82 of a frame. An embodiment of the frame is shown in FIGS. 4A-4B. The mechanical locking device may be essentially identical to the locking device described above.



FIGS. 7A-7B show an embodiment of a dismantling groove or recess 34 that is provided at the inner face 62 of the second panel 4. Said dismantling groove or recess 34 is preferably adapted for insertion of a dismantling tool 90. The mechanical locking system may be unlocked by insertion of the dismantling tool 90 into dismantling groove. The insertion tool 90 is preferably configured to push the flexible tongue 30 further into the insertion groove 20 in order to unlock the mechanical locking system.



FIG. 7B shows that a dismantling tool 90 may be inserted into the tongue groove 10 provided that the edge section groove 21 and the tongue groove 10 are open at the back and/or front of the first panel 2 and the second panel 4.


The insertion of the flexible tongue 30 into the insertion groove 20 may be facilitated if a top surface 92 of the first edge section of the first panel 2 at the first wall 56 of the edge section groove 21 is lowered. A lowered top surface 92 increases the distance between a plane 91 extending in a direction of a lower surface of the insertion groove 20 and the top surface 92. This increased distance may provide more space for a tongue insertion machine.


The core material of the panels and elements in the embodiments above preferably comprises a wood fibre based board, such as a HDF, MDF, plywood, solid wood or particleboard, a reinforced plastic board, or a wood fibre composite board.


When the word “about” is used in this specification in connection with a numerical value, it is intended that the associated numerical value include a tolerance of +/−10% around the stated numerical value.

Claims
  • 1. A set of wood fibre based boards comprising a first wood fibre based board having a first main plane and a second wood fibre based board having a second main plane, wherein the first wood fibre based board and the second wood fibre based board are provided with a mechanical locking device configured for locking a first edge of the first wood fibre based board to a second edge of the second wood fibre based board, wherein the locking device is configured to lock the first wood fibre based board to the second wood fibre based board at a corner of an assembled product, wherein the first main plane is essentially perpendicular to the second main plane, wherein the first wood fibre based board comprises a core comprising fibres arranged essentially parallel to the first main plane and the second wood fibre based board comprises a core comprising fibres arranged essentially parallel to the second main plane, and the mechanical locking device comprises: an edge section groove at the first edge of the first wood fibre based board, wherein an edge section of the second edge of the second wood fibre based board is insertable into the edge section groove for locking the first wood fibre based board and the second wood fibre based board together in a direction parallel to the first main plane; anda flexible tongue arranged in an insertion groove provided in the edge section groove, wherein said flexible tongue cooperates with a tongue groove provided at the edge section of the second wood fibre based board, for locking the first wood fibre based board and the second wood fibre based board in a direction parallel to the second main plane,wherein a first thickness of a core material of the first wood fibre based board between the edge section groove and an outermost surface of the first edge in a direction parallel to the first main plane is greater than a minimum second thickness of a core material of the edge section of the second wood fibre based board,wherein the edge section groove comprises a first wall and an opposed second wall, wherein the first wall is closer to the outermost surface of the first edge than the second wall is to the outermost surface of the first edge, the first thickness is measured between the first wall and the outermost surface of the first edge, andwherein the flexible tongue is displaceable in a first direction in the insertion groove during locking of the first wood fibre based board with the second wood fibre based board, the first direction forming a non-zero angle with the second main plane.
  • 2. The set of wood fibre based boards as claimed in claim 1, wherein the first thickness is between 1.1 and 3.0 times larger than the minimum second thickness.
  • 3. The set of wood fibre based boards as claimed in claim 2, wherein the first thickness is about 1.25 times larger than the minimum second thickness.
  • 4. The set of wood fibre based boards as claimed in claim 1, wherein the insertion groove extends along essentially the entire length of the edge section groove of the first edge.
  • 5. The set of wood fibre based boards as claimed in claim 1, wherein the tongue groove extends along essentially the entire length of the edge section of the second wood fibre based board.
  • 6. The set of wood fibre based boards as claimed in claim 1, wherein the edge section of the second wood fibre based board is provided with a calibrating groove.
  • 7. The set of wood fibre based boards as claimed in claim 1, wherein the first wood fibre based board or the tongue groove of the second wood fibre based board is provided with a dismantling recess, said dismantling recess being adapted for insertion of a dismantling tool.
  • 8. The set of wood fibre based boards as claimed in claim 1, wherein the edge section of the second wood fibre based board comprises a first wall and an opposite second wall, wherein the tongue groove is provided in the first wall, and the minimum second thickness is measured between a bottom of the tongue groove and the second wall.
  • 9. The set of wood fibre based boards as claimed in claim 1, wherein the flexible tongue has a first displacement surface and a opposite second displacement surface which are configured to be displaced along a third displacement surface and a fourth displacement surface, respectively, of the insertion groove.
  • 10. The set of wood fibre based boards as claimed in claim 1, wherein the outermost surface of the first edge of the first wood fibre based board is essentially flush with an outer face of the second wood fibre based board.
  • 11. An assembled product comprising the set of wood fibre based boards as claimed in claim 1, which are locked together to form the assembled product.
  • 12. The set of wood fibre based boards as claimed in claim 1, wherein the first direction forms an oblique angle with the first main plane.
Priority Claims (1)
Number Date Country Kind
1450022-7 Jan 2014 SE national
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 14/573,473, filed on Dec. 17, 2014, which is a continuation-in-part of U.S. application Ser. No. 14/158,165, filed on Jan. 17, 2014, which claims the benefit of Swedish Application No. 1450022-7, filed on Jan. 10, 2014. The entire contents of each of U.S. application Ser. No. 14/158,165 and Swedish Application No. 1450022-7 are hereby incorporated herein by reference in their entirety.

US Referenced Citations (292)
Number Name Date Kind
291032 Cleland Jan 1884 A
634581 Miller Oct 1899 A
701000 Ahrens May 1902 A
861911 Stewart Jul 1907 A
881673 Ellison Mar 1908 A
1533099 Carroll Apr 1925 A
1534468 Shea, Jr. Apr 1925 A
1800386 Hoffman Apr 1931 A
1800387 Greist Apr 1931 A
1802245 Foretich Apr 1931 A
1954242 Heppenstall Apr 1934 A
2360451 Stone Oct 1944 A
2362904 Kramer Nov 1944 A
2496184 Von Canon Jan 1950 A
2681483 Morawetz Jun 1954 A
3002630 Heisser Oct 1961 A
3195968 Freeman Jul 1965 A
3284152 Schörghuber Nov 1966 A
3313054 Madey Apr 1967 A
3347610 Pilliod Oct 1967 A
3410441 Rhyne Nov 1968 A
3722704 Piretti Mar 1973 A
3722971 Zeischegg Mar 1973 A
3742807 Manning Jul 1973 A
3765465 Gulistan Oct 1973 A
3784271 Schreiber Jan 1974 A
3884002 Logie May 1975 A
3885845 Krieks May 1975 A
3981118 Johnson et al. Sep 1976 A
4089614 Harley May 1978 A
4099887 MacKenroth Jul 1978 A
4116510 Franco Sep 1978 A
4142271 Busse Mar 1979 A
4211379 Morgan et al. Jul 1980 A
4222544 Crowder Sep 1980 A
4279397 Larsson Jul 1981 A
4299067 Bertschi Nov 1981 A
4308961 Kunce Jan 1982 A
4324517 Dey Apr 1982 A
4403886 Haeusler Sep 1983 A
4405253 Stockum Sep 1983 A
4509648 Govang Apr 1985 A
4593734 Wallace Jun 1986 A
4595105 Gold Jun 1986 A
4597122 Handler Jul 1986 A
4615448 Johnstonbaugh Oct 1986 A
4629076 Amstutz et al. Dec 1986 A
4750794 Vegh Jun 1988 A
4752150 Salice Jun 1988 A
4815908 Duran et al. Mar 1989 A
4817900 Whittington et al. Apr 1989 A
4844266 Small et al. Jul 1989 A
4883331 Mengel Nov 1989 A
4886326 Kuzyk Dec 1989 A
4888933 Guomundsson Dec 1989 A
4891897 Gieske et al. Jan 1990 A
4909581 Haheeb Mar 1990 A
4938625 Matsui Jul 1990 A
4944416 Petersen et al. Jul 1990 A
4961295 Kosch, Sr. et al. Oct 1990 A
5004116 Cattarozzi Apr 1991 A
5018323 Clausen May 1991 A
5109993 Hutchison May 1992 A
5114265 Grisley May 1992 A
5121578 Holz Jun 1992 A
5125518 Ward Jun 1992 A
5138803 Grossen Aug 1992 A
5209556 Anderson May 1993 A
5212925 McClinton May 1993 A
5299509 Ballard Apr 1994 A
5360121 Sothman Nov 1994 A
5375802 Branham, II Dec 1994 A
5423155 Bauer Jun 1995 A
5451102 Chuan Sep 1995 A
5458433 Statsny Oct 1995 A
5471804 Winter, IV Dec 1995 A
5475960 Lindal Dec 1995 A
5499667 Nakanishi Mar 1996 A
5499886 Short et al. Mar 1996 A
5507331 Nakanishi Apr 1996 A
5527103 Pittman Jun 1996 A
5658086 Brokaw et al. Aug 1997 A
5711115 Wirt Jan 1998 A
5775521 Tisbo Jul 1998 A
5810505 Henriott Sep 1998 A
5893617 Lee Apr 1999 A
5941026 Eisenreich Aug 1999 A
5944294 Baer Aug 1999 A
5950389 Porter Sep 1999 A
6045290 Nocievski Apr 2000 A
6050426 Leurdijk Apr 2000 A
6142436 Thurston et al. Nov 2000 A
6312186 Röck et al. Nov 2001 B1
6349507 Muellerleile Feb 2002 B1
6363645 Hunter Apr 2002 B1
6413007 Lambright Jul 2002 B1
6418683 Martensson Jul 2002 B1
6491172 Chance Dec 2002 B2
6505452 Hannig Jan 2003 B1
6547086 Harvey Apr 2003 B1
6578498 Draudt et al. Jun 2003 B1
6675979 Taylor Jan 2004 B2
D486676 Campbell et al. Feb 2004 S
6769219 Schwitte Aug 2004 B2
6772890 Campbell et al. Aug 2004 B2
6827028 Callaway Dec 2004 B1
6971614 Fischer et al. Dec 2005 B2
7127860 Pervan Oct 2006 B2
7223045 Migli May 2007 B2
7228977 Perkins et al. Jun 2007 B2
7300120 Shin Nov 2007 B2
7451535 Wells et al. Nov 2008 B2
7451578 Hannig Nov 2008 B2
7584583 Bergelin et al. Sep 2009 B2
7614350 Tuttle et al. Nov 2009 B2
7621092 Groeke et al. Nov 2009 B2
7641414 Joyce Jan 2010 B1
7717278 Kao May 2010 B2
7721503 Pervan et al. May 2010 B2
7793450 Chasmer et al. Sep 2010 B2
7818939 Bearinger Oct 2010 B2
7998549 Susnjara Aug 2011 B2
8033074 Pervan Oct 2011 B2
8038363 Hannig Oct 2011 B2
8042311 Pervan Oct 2011 B2
8146754 Apgood Apr 2012 B2
8220217 Muehlebach Jul 2012 B2
8234830 Pervan Aug 2012 B2
8365499 Nilsson et al. Feb 2013 B2
8387327 Pervan Mar 2013 B2
8464408 Hazzard Jun 2013 B2
8495849 Pervan Jul 2013 B2
8505257 Boo et al. Aug 2013 B2
8544230 Pervan Oct 2013 B2
8596013 Boo Dec 2013 B2
8602227 McDonald Dec 2013 B1
8615952 Engström Dec 2013 B2
8713886 Pervan May 2014 B2
8745952 Perra Jun 2014 B2
8764137 Fehre Jul 2014 B2
8776473 Pervan Jul 2014 B2
8833028 Whispell et al. Sep 2014 B2
8864407 Sorum Oct 2014 B1
8882416 Baur et al. Nov 2014 B2
8887468 Håkansson et al. Nov 2014 B2
9175703 Maertens Nov 2015 B2
9216541 Boo Dec 2015 B2
9290948 Cappelle et al. Mar 2016 B2
9375085 Derelöv Jun 2016 B2
9538842 Håkansson et al. Jan 2017 B2
9655442 Boo et al. May 2017 B2
9700157 Keyvanloo Jul 2017 B2
9714672 Derelöv et al. Jul 2017 B2
9723923 Derelöv Aug 2017 B2
9726210 Derelövet al. Aug 2017 B2
9745756 Hannig Aug 2017 B2
9758973 Segaert Sep 2017 B2
9763528 Lung Sep 2017 B2
9809983 Trudel Nov 2017 B2
9945121 Derelöv Apr 2018 B2
10034541 Boo et al. Jul 2018 B2
10202996 Håkansson et al. Feb 2019 B2
10378570 Broughton Aug 2019 B2
10415613 Boo Sep 2019 B2
10448739 Derelöv et al. Oct 2019 B2
10451097 Brännström et al. Oct 2019 B2
10486245 Fridlund Nov 2019 B2
10506875 Boo et al. Dec 2019 B2
10544818 Fridlund Jan 2020 B2
10548397 Derelöv et al. Feb 2020 B2
10669716 Derelöv et al. Jun 2020 B2
10670064 Derelöv et al. Jun 2020 B2
10830266 Fridlund Nov 2020 B2
10830268 Boo Nov 2020 B2
10871179 Håkansson et al. Dec 2020 B2
10876562 Pervan Dec 2020 B2
10876563 Derelöv et al. Dec 2020 B2
10968936 Boo et al. Apr 2021 B2
11076691 Boo Aug 2021 B2
11083287 Boo et al. Aug 2021 B2
11204051 Brännström et al. Dec 2021 B2
11246415 Derelöv et al. Feb 2022 B2
20020170258 Schwitte et al. Nov 2002 A1
20040165946 Areh et al. Aug 2004 A1
20050042027 Migli Feb 2005 A1
20050236544 Mancino Oct 2005 A1
20050247653 Brooks Nov 2005 A1
20060091093 Armari May 2006 A1
20060101769 Pervan et al. May 2006 A1
20060180561 Wisnoski et al. Aug 2006 A1
20060236642 Pervan Oct 2006 A1
20060273085 Casto Dec 2006 A1
20070006543 Engström Jan 2007 A1
20070028547 Grafenauer et al. Feb 2007 A1
20080010937 Pervan et al. Jan 2008 A1
20080066415 Pervan Mar 2008 A1
20080193209 Henderson Aug 2008 A1
20080216435 Nolan Sep 2008 A1
20080236088 Hannig et al. Oct 2008 A1
20080244882 Woxman et al. Oct 2008 A1
20090014401 Tallman Jan 2009 A1
20090064624 Sokol Mar 2009 A1
20100028592 Barkdoll et al. Feb 2010 A1
20100083603 Goodwin Apr 2010 A1
20100104354 Spalding Apr 2010 A1
20100173122 Susnjara Jul 2010 A1
20100289389 Crabtree, II Nov 2010 A1
20110023303 Pervan et al. Feb 2011 A1
20110225921 Schulte Sep 2011 A1
20110225922 Pervan et al. Sep 2011 A1
20110280655 Maertens Nov 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20120009383 Hardesty Jan 2012 A1
20120027967 Maertens Feb 2012 A1
20120073235 Hannig Mar 2012 A1
20120124932 Schulte et al. May 2012 A1
20120145845 Hightower Jun 2012 A1
20120180416 Perra et al. Jul 2012 A1
20120279161 Håkansson et al. Nov 2012 A1
20120286637 Fehre Nov 2012 A1
20130014463 Pervan Jan 2013 A1
20130048632 Chen Feb 2013 A1
20130071172 Maertens et al. Mar 2013 A1
20130081349 Pervan Apr 2013 A1
20130097846 Pettigrew Apr 2013 A1
20130111845 Pervan May 2013 A1
20130170904 Cappelle Jul 2013 A1
20130232905 Pervan Sep 2013 A2
20130287484 Phillips Oct 2013 A1
20140013919 Gerke et al. Jan 2014 A1
20140055018 Shein et al. Feb 2014 A1
20140111076 Devos Apr 2014 A1
20140286701 Sauer Sep 2014 A1
20140294498 Logan Oct 2014 A1
20150034522 Itou et al. Feb 2015 A1
20150035422 Håkansson et al. Feb 2015 A1
20150078807 Brännström et al. Mar 2015 A1
20150078819 Derelöv et al. Mar 2015 A1
20150196118 Derelöv Jul 2015 A1
20150198191 Boo Jul 2015 A1
20150230600 Schulte Aug 2015 A1
20150368896 Schulte Dec 2015 A1
20160000220 Devos Jan 2016 A1
20160007751 Derelöv Jan 2016 A1
20160145029 Ranade et al. May 2016 A1
20160174704 Boo et al. Jun 2016 A1
20160186925 Bettin Jun 2016 A1
20160192775 Andersson Jul 2016 A1
20160270531 Derelöv Sep 2016 A1
20170079433 Derelöv et al. Mar 2017 A1
20170089379 Pervan Mar 2017 A1
20170097033 Håkansson et al. Apr 2017 A1
20170159291 Derelöv Jun 2017 A1
20170208938 Derelöv et al. Jul 2017 A1
20170227031 Boo Aug 2017 A1
20170227032 Fridlund Aug 2017 A1
20170227035 Fridlund Aug 2017 A1
20170234346 Fridlund Aug 2017 A1
20170360193 Boo Dec 2017 A1
20180080488 Derelöv Mar 2018 A1
20180087552 Derelöv et al. Mar 2018 A1
20180112695 Boo et al. Apr 2018 A1
20180119717 Derelöv May 2018 A1
20180202160 Derelöv Jul 2018 A1
20180328396 Fransson et al. Nov 2018 A1
20190113061 Håkansson et al. Apr 2019 A1
20190166989 Boo et al. Jun 2019 A1
20190191870 Derelöv Jun 2019 A1
20190195256 Derelöv Jun 2019 A1
20190289999 Derelöv et al. Sep 2019 A1
20190320793 Boo Oct 2019 A1
20190323532 Boo Oct 2019 A1
20190323533 Boo Oct 2019 A1
20190323534 Derelöv Oct 2019 A1
20190323535 Derelöv Oct 2019 A1
20200003242 Brännström et al. Jan 2020 A1
20200055126 Fridlund Feb 2020 A1
20200069048 Derelöv et al. Mar 2020 A1
20200069049 Derelöv et al. Mar 2020 A1
20200102978 Fridlund Apr 2020 A1
20200214447 Derelöv et al. Jul 2020 A1
20200300284 Pervan Sep 2020 A1
20200337455 Boo et al. Oct 2020 A1
20200340513 Derelöv Oct 2020 A1
20210079650 Derelöv Mar 2021 A1
20210148392 Brännström et al. May 2021 A1
20210180630 Bruno et al. Jun 2021 A1
20210190112 Derelöv Jun 2021 A1
20210207635 Håkansson et al. Jul 2021 A1
20210222716 Derelöv et al. Jul 2021 A1
20210381251 Svensson Dec 2021 A1
20220018373 Boo Jan 2022 A1
Foreign Referenced Citations (131)
Number Date Country
365 507 Nov 1962 CH
685 276 May 1995 CH
696 889 Jan 2008 CH
698 988 Dec 2009 CH
705 082 Dec 2012 CH
101099618 Jan 2008 CN
102 917 616 Feb 2013 CN
203424576 Feb 2014 CN
1107910 May 1961 DE
24 14 104 Oct 1975 DE
25 14 357 Oct 1975 DE
26 35 237 Feb 1978 DE
31 03 281 Aug 1982 DE
228 872 Oct 1985 DE
42 29 115 Mar 1993 DE
94 17 168 Feb 1995 DE
198 31 936 Feb 1999 DE
298 20 031 Feb 1999 DE
198 05 538 Aug 1999 DE
203 04 761 Apr 2004 DE
299 24 630 May 2004 DE
20 2005 019 986 Feb 2006 DE
20 2004 017 486 Apr 2006 DE
20 2008 011 589 Nov 2008 DE
20 2009 008 825 Oct 2009 DE
10 2008 035 293 Feb 2010 DE
10 2009 041 142 Mar 2011 DE
10 2011 057 018 Jun 2013 DE
10 2013 008 595 Nov 2013 DE
10 2015 103 429 Oct 2015 DE
10 2014 110 124 Jan 2016 DE
0 060 203 Sep 1982 EP
0 060 203 Sep 1982 EP
0 357 129 Mar 1990 EP
0 362 968 Apr 1990 EP
0 675 332 Oct 1995 EP
0 871 156 Oct 1998 EP
0 935 076 Aug 1999 EP
1 048 423 Nov 2000 EP
1 048 423 May 2005 EP
1 650 375 Apr 2006 EP
1 650 375 Apr 2006 EP
1 671 562 Jun 2006 EP
1 863 984 Dec 2007 EP
1 922 954 May 2008 EP
2 017 403 Jan 2009 EP
2 037 128 Mar 2009 EP
1 922 954 Jul 2009 EP
2 333 353 Jun 2011 EP
1 863 984 Nov 2011 EP
2 487 373 Aug 2012 EP
3 031 998 Jun 2016 EP
2 062 731 Jun 1971 FR
2 517 187 Jun 1983 FR
2 597 173 Oct 1987 FR
2 602 013 Jan 1988 FR
245332 Jan 1926 GB
1 022 377 Mar 1966 GB
2 163 825 Mar 1986 GB
2 315 988 Feb 1998 GB
2 445 954 Jul 2008 GB
2 482 213 Jan 2012 GB
2 520 927 Jun 2015 GB
S53-113160 Sep 1978 JP
H06-22606 Mar 1994 JP
2003-239921 Aug 2003 JP
10-1147274 May 2012 KR
2014-0042314 Apr 2014 KR
WO 8707339 Dec 1987 WO
WO 9007066 Jun 1990 WO
WO 9922150 May 1999 WO
WO 9941508 Aug 1999 WO
WO 0066856 Nov 2000 WO
WO 0102669 Jan 2001 WO
WO 0102670 Jan 2001 WO
WO 0151733 Jul 2001 WO
WO 0153628 Jul 2001 WO
WO 02055809 Jul 2002 WO
WO 02055810 Jul 2002 WO
WO 03016654 Feb 2003 WO
WO 03027510 Apr 2003 WO
WO 03083234 Oct 2003 WO
WO 2004079130 Sep 2004 WO
WO 2005068747 Jul 2005 WO
WO 2006043893 Apr 2006 WO
WO 2006103500 Oct 2006 WO
WO 2006104436 Oct 2006 WO
WO 2007015669 Feb 2007 WO
WO 2007015669 Feb 2007 WO
WO 2007079845 Jul 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008017281 Feb 2008 WO
WO 2008017301 Feb 2008 WO
WO 2008017301 Feb 2008 WO
WO 2008150234 Dec 2008 WO
WO 2009136195 Nov 2009 WO
WO 2010023042 Mar 2010 WO
WO 2010070472 Jun 2010 WO
WO 2010070472 Jun 2010 WO
WO 2010070605 Jun 2010 WO
WO 2010070605 Jun 2010 WO
WO 2010082171 Jul 2010 WO
WO 2010087752 Aug 2010 WO
WO 2011012104 Feb 2011 WO
WO 2011012104 Feb 2011 WO
WO 2011085710 Jul 2011 WO
WO 2011151737 Dec 2011 WO
WO 2011151737 Dec 2011 WO
WO 2011151737 Dec 2011 WO
WO 2011151758 Dec 2011 WO
WO 2011151758 Dec 2011 WO
WO 2012095454 Jul 2012 WO
WO 2012154113 Nov 2012 WO
WO 2013009257 Jan 2013 WO
WO 2013025163 Feb 2013 WO
WO 2013080160 Jun 2013 WO
WO 2013093636 Jun 2013 WO
WO 2013093636 Jun 2013 WO
WO 2013118075 Aug 2013 WO
WO 2014072080 May 2014 WO
WO 2014108114 Jul 2014 WO
WO 201412141 Aug 2014 WO
WO 2015015603 Feb 2015 WO
WO 2015038059 Mar 2015 WO
WO 2015105449 Jul 2015 WO
WO 2015105450 Jul 2015 WO
WO 2015105451 Jul 2015 WO
WO 2016187533 Nov 2016 WO
WO 2018004435 Jan 2018 WO
Non-Patent Literature Citations (120)
Entry
U.S. Appl. No. 16/220,574, Peter Derelöv, filed Dec. 14, 2018.
U.S. Appl. No. 16/220,585, Peter Derelöv, filed Dec. 14, 2018.
U.S. Appl. No. 16/228,975, Niclas Håkansson and Darko Pervan, dated Dec. 21, 2018.
U.S. Appl. No. 16/361,609, Peter Derelöv, Johan Svensson and Lars Gunnarsson, filed Mar. 22, 2019.
U.S. Appl. No. 16/386,732, Christian Boo, filed Apr. 17, 2019.
U.S. Appl. No. 16/386,810, Christian Boo, filed Apr. 17, 2019.
U.S. Appl. No. 16/386,824, Christian Boo, filed Apr. 17, 2019.
U.S. Appl. No. 16/386,874, Peter Derelöv, filed Apr. 17, 2019.
U.S. Appl. No. 16/220,574, Derelöv.
U.S. Appl. No. 16/220,585, Derelöv.
U.S. Appl. No. 16/228,975, Håkansson et al.
U.S. Appl. No. 16/361,609, Derelöv.
U.S. Appl. No. 16/386,732, Boo.
U.S. Appl. No. 16/386,810, Boo.
U.S. Appl. No. 16/386,824, Boo.
U.S. Appl. No. 16/386,874, Derelöv.
Derelöv, Peter, U.S. Appl. No. 16/220,574 entitled “Set of Panels,” filed Dec. 14, 2018.
Derelöv, Peter, U.S. Appl. No. 16/220,585 entitled “Set of Panels,” filed Dec. 14, 2018.
Håkansson, Niclas, et al., U.S. Appl. No. 16/228,975 entitled “Mechanical Locking System for Building Panels,” filed Dec. 21, 2018.
Derelöv, Peter, et al., U.S. Appl. No. 16/361,609 entitled “Panels Comprising a Mechanical Locking Device and an Assembled Product Comprising the Panels,” filed Mar. 22, 2019.
Boo, Christian, U.S. Appl. No. 16/386,732 entitled “Set of Panels With a Mechanical Locking Device,” filed Apr. 17, 2019.
Boo, Christian, U.S. Appl. No. 16/386,810 entitled “Set of Panels With a Mechanical Locking Device,” filed Apr. 17, 2019.
Boo, Christian, U.S. Appl. No. 16/386,824 entitled “Set of Panels With a Mechanical Locking Device,” filed Apr. 17, 2019.
Derelöv, Peter, U.S. Appl. No. 16/386,874 entitled “Symmetric Tongue and T-Cross,” filed Apr. 17, 2019.
U.S. Appl. No. 15/562,254, Peter Derelöv, filed Sep. 27, 2017.
U.S. Appl. No. 15/567,507, Christian Boo, Peter Derelöv and Agne Pålsson, filed Oct. 18, 2017.
U.S. Appl. No. 15/794,491, Peter Derelöv, filed Oct. 26, 2017.
U.S. Appl. No. 15/848,164, Jonas Fransson, Andreas Blomgren and Karl Erikson, filed Dec. 20, 2017.
U.S. Appl. No. 15/923,701, Peter Derelöv, filed Mar. 16, 2018.
U.S. Appl. No. 15/562,254, Derelöv.
U.S. Appl. No. 15/567,507, Boo et al.
U.S. Appl. No. 15/794,491, Derelöv.
U.S. Appl. No. 15/848,164, Fransson, et al.
U.S. Appl. No. 15/923,701, Derelöv.
Derelöv, Peter, U.S. Appl. No. 15/562,254 entitled “Panel with a Slider”, filed Sep. 27, 2017.
Boo, Christian, et al., U.S. Appl. No. 15/567,507 entitled “Panel With a Fastening Device,” filed Oct. 18, 2017.
Derelöv, Peter, U.S. Appl. No. 15/794,491 entitled “Set of Panels with a Mechanical Locking Device”, filed Oct. 26, 2017.
Fransson, Jonas, et al., U.S. Appl. No. 15/848,164 entitled “Device for Inserting a Tongue”, filed Dec. 20, 2017.
Derelöv, Peter, U.S. Appl. No. 15/923,701 entitled “Panels Comprising a Mechanical Locking Device and an Assembled Product Comprising the Panels”, filed Mar. 16, 2018.
U.S. Appl. No. 15/956,949, Peter Derelöv, filed Apr. 19, 2018.
U.S. Appl. No. 15/978,630, Jonas Fransson, Niclas Håkansson and and Agne Pålsson, filed May 14, 2018.
U.S. Appl. No. 16/027,479, Christian Boo and Peter Derelöv, filed Jul. 5, 2018.
U.S. Appl. No. 15/956,949, Derelöv.
U.S. Appl. No. 15/978,630, Fransson, et al.
U.S. Appl. No. 16/027,479, Boo, et al.
Derelöv, Peter, U.S. Appl. No. 15/956,949 entitled “Panels for an Assembled Product”, filed Apr. 19, 2018.
Fransson, Jonas, et al., U.S. Appl. No. 15/978,630 entitled “Elements and a Locking Device for an Assembled Product,” filed May 14, 2018.
Boo, Christian, et al., U.S. Appl. No. 16/027,479 entitled “Panels Comprising a Mechanical Locking Device and an Assembled Product Comprising the Panels,” filed Jul. 5, 2018.
U.S. Appl. No. 14/486,681, Hans Brännström, filed Sep. 15, 2014 (Cited herein as US Patent Application Publication No. 2015/0078807 A1 of Mar. 19, 2015).
U.S. Appl. No. 14/573,572, Christian Boo, filed Dec. 17, 2014, (Cited herein as US Patent Application Publication No. 2015/0198191 A1 of Jul. 16, 2015).
U.S. Appl. No. 15/271,622, Peter Derelöv, filed Sep. 21, 2016, (Cited herein as US Patent Application Publication No. 2017/0079433 A1 of Mar. 23, 2017.
U.S. Appl. No. 15/308,872, Darko Pervan, filed Nov. 4, 2016, (Cited herein as US Patent Application Publication No. 2017/0089379 A1 of Mar. 30, 2017).
U.S. Appl. No. 15/379,791, Niclas Håkansson, filed Dec. 15, 2016, (Cited herein as US Patent Application Publication No. 2017/0097033 A1 of Apr. 6, 2017).
U.S. Appl. No. 15/366,704, Peter Derelöv, filed Dec. 1, 2016, (Cited herein as US Patent Application Publication No. 2017/0159291 A1 of Jun. 8, 2017).
U.S. Appl. No. 15/415,356, Peter Derelöv, filed Jan. 25, 2017 (Cited herein as US Patent Application Publication No. 2017/0208938 A1 of Jul. 27, 2017).
U.S. Appl. No. 15/422,798, Magnus Fridlund, filed Feb. 2, 2017 (Cited herein as US Patent Application Publication No. 2017/0227035 A1 of Aug. 10, 2017).
U.S. Appl. No. 15/428,469, Magnus Fridlund, filed Feb. 9, 2017 (Cited herein as US Patent Application Publication No. 2017/0227032 A1 of Aug. 10, 2017).
U.S. Appl. No. 15/428,504, Christian Boo, filed Feb. 9, 2017 (Cited herein as US Patent Application publication No. 2017/0227031 A1 of Aug. 10, 2017).
U.S. Appl. No. 15/432,190, Magnus Fridlund, filed Feb. 14, 2017 (Cited herein as US Patent Application Publication No. 2017/0234346 A1 of Aug. 17, 2017).
U.S. Appl. No. 15/584,633, Christian Boo, filed May 2, 2017.
U.S. Appl. No. 15/646,714, Peter Derelöv, filed Jul. 11, 2017.
U.S. Appl. No. 15/584,633, Boo.
U.S. Appl. No. 15/646,714, Derelöv et al.
International Search Report dated Apr. 16, 2015 in PCT/SE2014/051521, ISA/SE, Patent-och registreringsverket, Stockholm, SE, 4 pages.
Extended European Search issued in EP Patent Application No. 14877862.4 dated May 19, 2017, European Patent Office, Munich DE, 7 pages.
Boo, Christian, et al., U.S. Appl. No 15/584,633 entitled “Panels Comprising a Mechanical Locking Device and an Assembled Product Comprising the Panels”, filed May 2, 2017.
Derelöv, Peter, et al., U.S. Appl. No. 15/646,714 entitled “Assembled Product and a Method of Assembling the Product”, filed Jul. 11, 2017.
U.S. Appl. No. 16/564,438, Hans Brännström, Agne Pålsson and Peter Derelöv, filed Sep. 9, 2019, (Cited herein as US Patent Application No. 2020/0003242 A1 of Jan. 2, 2020).
U.S. Appl. No. 16/553,325, Peter Derelöv and Johan Svensson, filed Aug. 28, 2019.
U.S. Appl. No. 16/553,350, Peter Derelöv and Johan Svensson, filed Aug. 28, 2019.
U.S. Appl. No. 16/567,436, Peter Derelöv and Mats Nilsson, filed Sep. 11, 2019.
U.S. Appl. No. 16/663,603, Magnus Fridlund, filed Oct. 25, 2019.
U.S. Appl. No. 16/697,335, Christian Boo and Peter Derelöv, filed Nov. 27, 2019.
U.S. Appl. No. 16/703,077, Magnus Fridlund, filed Dec. 4, 2019.
U.S. Appl. No. 16/722,096, Peter Derelöv and Christian Boo, filed Dec. 20, 2019.
U.S. Appl. No. 16/553,325, Derelöv et al.
U.S. Appl. No. 16/553,350, Derelöv et al.
U.S. Appl. No. 16/567,436, Derelöv et al.
U.S. Appl. No. 16/663,603, Fridlund.
U.S. Appl. No. 16/697,335, Boo et al.
U.S. Appl. No. 16/703,077, Fridlund.
U.S. Appl. No. 16/722,096, Derelöv et al.
Extended European Search Report issued in EP Patent Application No. 19183663.4, dated Sep. 26, 2019, European Patent Office, Munich, DE, 9 pages.
Derelöv, Peter, U.S. Appl. No. 16/553,325 entitled “Set of Panels with a Mechanical Locking Device,” filed Aug. 28, 2019.
Derelöv, Peter, U.S. Appl. No. 16/553,350 entitled “Set of Panels with a Mechanical Locking Device,” filed Aug. 28, 2019.
Derelöv, Peter, U.S. Appl. No. 16/567,436 entitled “Panels Comprising a Mechanical Locking Device and an Assembled Product Comprising the Panels,” filed Sep. 11, 2019.
Fridlund, Magnus, U.S. Appl. No. 16/663,603 entitled “Element and Method for Providing Dismantling Groove,” filed Oct. 25, 2019.
Boo, Christian, et al., U.S. Appl. No. 16/697,335 entitled “Panels Comprising a Mechanical Locking Device and an Assembled Product Comprising the Panels,” filed Nov. 27, 2019.
Fridlund, Magnus, U.S. Appl. No. 16/703,077 entitled “Set of Panels for an Assembled Product,” filed Dec. 4, 2019.
Derelöv, Peter, et al., U.S. Appl. No. 16/722,096 entitled “Panels Comprising a Mechanical Locking Device and an Assembled Product Comprising the Panels,” filed Dec. 20, 2019.
U.S. Appl. No. 17/119,392, Jimmie Bruno and Zoran Simunic, filed Dec. 11, 2020.
U.S. Appl. No. 17/126,518, Peter Derelöv, filed Dec. 18, 2020.
U.S. Appl. No. 17/119,392, Bruno et al.
U.S. Appl. No. 17/126,518, Derelöv et al.
Bruno, Jimmie, et al. U.S. Appl. No. 17/119,392 entitled “Mechanical Locking System for Panels,” filed Dec. 11, 2020.
Derelöv, Peter, U.S. Appl. No. 17/126,518 entitled “Set of Panels with a Mechanical Locking Device,” filed Dec. 18, 2020.
U.S. Appl. No. 17/514,055, Marko Sostar, filed Oct. 29, 2021.
U.S. Appl. No. 17/524,293, Hans Brännström, Agne Pålsson and Peter Derelöv, filed Nov. 11, 2021.
Sostar, Marko, U.S. Appl. No. 17/514,055 entitled “Set of Panels, A Method for Assembly of the Same, and a Locking Device for a Furniture Product,” filed Oct. 29, 2021.
Brännström, Hans, et al., U.S. Appl. No. 17/524,293 entitled “Assembled Product and a Method of Assembling the Assembled Product,” filed Nov. 11, 2021.
U.S. Appl. No. 17/546,356, Peter Derelöv and Hans Brännström, filed Dec. 9, 2021.
U.S. Appl. No. 17/556,146, Christian Boo, filed Dec. 20, 2021.
U.S. Appl. No. 17/665,160, Oscar Rydsjö, Marko Sostar and Patrik Carlsson, filed Feb. 4, 2022.
Derelöv, Peter, et al., U.S. Appl. No. 17/546,356 entitled “Rail for Cabinets,” filed Dec. 9, 2021.
Boo, Christian, U.S. Appl. No. 17/556,146 entitled “Wedge-shaped Tongue Groove,” filed Dec. 20, 2021.
Rydsjö, Oscar, U.S. Appl. No. 17/665,160 entitled “Mounting Bracket,” filed Feb. 4, 2022.
U.S. Appl. No. 17/398,416, Thomas Meijer, filed Aug. 10, 2021.
Meijer, Thomas, U.S. Appl. No. 17/398,416 entitled “Panels with Edge Reinforcement,” filed Aug. 10, 2021.
U.S. Appl. No. 16/951,394, Niclas Håkansson and Darko Pervan, filed Nov. 18, 2020.
U.S. Appl. No. 16/953,608, Peter Derelöv, Hans Brännström and Agne Pålsson, filed Nov. 20, 2020.
U.S. Appl. No. 16/951,394, Håkansson et al.
U.S. Appl. No. 16/953,608, Derelöv et al.
Håkansson, Niclas, et al., U.S. Appl. No. 16/951,394 entitled “Mechanical Locking System for Building Panels”, filed Nov. 18, 2020.
Derelöv, Peter, et al., U.S. Appl. No. 16/953,608 entitled “An Assembled Product and Method of Assembling the Product,” filed Nov. 20, 2020.
U.S. Appl. No. 16/861,639, Derelöv et al.
U.S. Appl. No. 16/946,047, Pervan.
U.S. Appl. No. 16/915,258, Brännström et al.
Derelöv, Peter, U.S. Appl. No. 16/861,639 entitled “Panels Comprising a Mechanical Locking Device and an Assembled Product Comprising the Panels,” filed Apr. 29, 2020.
Pervan, Darko, U.S. Appl. No. 16/946,047 entitled “Mechanical Locking System for Building Panels,” filed Jun. 4, 2020.
Brännström, Hans, et al., U.S. Appl. No. 16/915,258 entitled “Assembled Product and Method of Assembling the Assembled Product,” filed Jun. 29, 2020.
Related Publications (1)
Number Date Country
20170298973 A1 Oct 2017 US
Continuations (1)
Number Date Country
Parent 14573473 Dec 2014 US
Child 15642757 US
Continuation in Parts (1)
Number Date Country
Parent 14158165 Jan 2014 US
Child 14573473 US