Paper Chain Factory Toy

Information

  • Patent Application
  • 20160067627
  • Publication Number
    20160067627
  • Date Filed
    September 10, 2014
    10 years ago
  • Date Published
    March 10, 2016
    8 years ago
Abstract
This invention is child-friendly craft toy consisting of tools for making paper chains by folding rectangular sheets, of paper. Included are means to make one or more precisely located and parallel creases in said rectangular paper to facilitate folding into a strip. Also included are means to make (three) precisely located and parallel creases in said strip to facilitate folding the strip into an interlocking paper chain link for assembly into paper chains. A crease tray is used in conjunction with a tapered stylus to make sharp precisely located creases in paper rectangles, said crease tray including at least one stop gauge to make precisely located ceases in said strip by pressing the strip against a gauge stop and against the opposite corner of said crease (the) tray. The outer segment creases of said paper strip are placed outside the quarter points of said strip to avoid fold interference and facilitate assembly.
Description

The history of the making of paper chains out of gum wrappers goes back to the late nineteenth century. Children without gum wrappers, used homework paper or whatever other paper was available to cut or tear paper into the paper rectangles to make paper chains. Today, casual survey suggests that paper chum making is becoming history, while new craft type toys are a fast growing market. Paper chain making is done by hand, folding paper rectangles into quarters to obtain a four-ply strip and folding said four-ply strip into quarters, forming a paper chain link. While quartering is a natural way to facilitate folding, it allows a variety of cutting and folding errors that weaken the chains and makes assembly tedious and difficult. The introduction of a device with the utility to make paper chain making easier and accessible to a wider age group of children would seem to be worth while and timely.


The length to width ratio of paper rectangles determines link assembly clearance and ease of assembly. However, calculation of final assembly clearance is not effective as estimated clearance can be reduced by as much as 70%. Typical cutting and folding variations as well as shape factors must be controlled, to allow the final assembly clearance for ease of assembly. Excessive final clearance, weakens the paper chain, while too little final clearance makes assembly difficult.


Used copy paper (8.5×11 sheets) provides an ample supply of paper rectangles (14 per sheet, 1.57×4:25 inches). Paper rectangles are folded into a four-ply strips, and then in similar procedure said strips are folded into four segments. The result is an interlocking V-shaped paper chain link with two inward folded legs.


U.S. Pat. No. 6,006,513 describes paper chain making, and references the difficulties in making four-ply paper chains. Said patent claims improvement over paper chain making by use of a synthetic strip, cut and folded by machine. While this facilitates chain making using the general shape of the interlocking paper chain link, it is a departure from the craft of hand making paper chains, and enters the fields of interlocking chain links and materials other than paper. Repeatable quality in making paper chain links is essential for ease in assembly. The challenge remained to minimize the difficulties in making and assembling paper chain links in the field of craft toys.


My development process began with the challenge to improve hand crafting of four-ply paper chains. An unexpected result of moving the crease lines outside the quarter points of the four-ply paper chain was the introduction of multiple ply options. The inventive question was, “what happens if we reduce the outer segments for maximum clearance?” The tour-ply chain link becomes (we-ply. Eliminating one outer segment would create a three ply chain link. This would be relevant if two-ply or three-ply chains have increased, or different utility.


The development of tools for making more precise paper chain links has brought the possibility of presenting “The Paper Chain Factory Thy” as a salable product, opening the door for a range of associated craft products such as precut and multicolor rectangles and perhaps a device for cutting a range of rectangles.


With the availability of 8.5 by 11 inch sheets of paper as a source, a three-ply strip offers 16 rather than 14 paper rectangles. The three-ply paper chain is more flexible and with about the same link size as the four-ply strip. A two-ply paper chain is even more flexible and offers 22 paper chain rectangles per sheet. This assumes all three options use 4.25 inch long paper rectangles.


Forcing, two four-ply legs into a “V” shaped inner space to Form a chain link creates shape error that impacts ease of assembly. Forcing two two-ply legs into a “V” shaped inner space creates substantially less shape error. The result is that two-ply strips offers 57 percent more chain links, tighter chains and less distortion than in four-ply chains. With less bulk, assembly is easier. Applications such as jewelry are suited to four-ply chains, whereas surface decorative applications are better served with two-ply chains.


A BRIEF SUMMARY OF THE INVENTION

My invention is a craft toy for children which emphasizes the child-made aspect and addresses said difficulties by facilitating the making, of more precise paper chain links. The first difficulty issue involves making the positions of the folds more precise and repeatable. A part of this issue is the making of sharp creases that prevent folds from wandering out of parallel on folding. The second difficulty issue is the elimination of fold interference between the outer leg segment(s) of both the paper rectangle and the strip.


Hand folding practice places the crease lines at the quarter points of both the paper rectangle and the four-ply strip. My invention places the crease line of the outer leg segment(s) of the paper rectangle and the strip outside the quarter points to provide fold clearance.


Because reducing the width of the outer segment(s) of the paper rectangle and strip are adjustments to a single piece of paper, a specific reduction in the width of an outer segment results in adding twice that width to the inner segment. This makes both the width and length of the paper chain link larger. This outer segment width reduction impacts assembly clearance.


Applying my invention to the three-ply strip, two crease lines rather than three are required. Again the single outer segment of the paper rectangle is narrower than the two inner segments that define the width of the strip. For the two-ply strip only one crease line is required. There are no outer segments with the two-ply paper rectangle. To maintain the 4.25 inch strip length, the two-ply strip is enlarged in width to reduce clearance and strengthen the chain. With the strip length a constant, the gauge stops for two, three and four-ply strips are the same, simplifying the paper chain tray design when adding a second or third ply option to a single paper tray embodiment.


Cutting an 8.5 by 11 sheet in Lift lengthwise provides 4.25 inches long rectangles for the two-ply, three-ply and four-ply strips. Cutting the sheet lengthwise into three equal parts provides 3.67 inch long paper chain strips. The strip width in this option requires the paper rectangle width to be reduced for correct assembly clearance, providing 39 paper rectangles per sheet. The number of paper rectangles per sheet depends on both the way the main sheet is cut and the number of ply in the strip. The result ranges from fourteen to thirty nine paper rectangles. Each change in paper rectangle length defines a class of embodiments.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

Drawing No. 1 shows the paper chain process steps for a tour ply-paper chain.



FIG. 1 This view shows a paper rectangle with three crease lines, defining a four-ply paper chain rectangle. Note the outer crease segments are narrower than the inner crease segments to avoid fold interference.



FIG. 2 This view shows a folded strip with crease lines. Note the outer crease segments are again narrower than the inner crease segments to avoid fold interference.



FIG. 3 This view shows the shape of an interlocking paper chain link



FIG. 4 This view shows an assembled length of paper chain.


Drawing No. 2 shows a molded paper chain tray having the three parallel channels of a four-ply paper chain.



FIG. 1 This view shows the edges of said channels closest to the hack support that become the loci for the paper crease lines. This view also presents the two depth gauges located on the back side of said hack support for creasing the four-ply strip in the center and at the two outer segments.



FIG. 2 The paper rectangle (2) is positioned on paper chain tray (1) and against the hack support (4) to locate the three crease lines. The stylus (3) is applied against said paper and inner channel edges, having a low angle with the tray surface while in guiding contact with the opposite edge of said same channel. The stylus is drawn along the channel, creasing the paper rectangle. The creasing end of said stylus is in point contact, while said guiding contact is in line contact due to the rectangular cross-section of the stylus, limiting rotation of the stylus. The paper chain tray is longer than the paper rectangle to provide a view of the channel crease edges to allow positioning the tapered stylus at the crease edges of the channels. The paper strip is pressed against Stop gauges (5&6) and adjacent corners (7&8) creasing the paper strip at its center and at two positions outside the quarter points of the strip. Drawing 2, FIG. 2 is suggested as a front page view.


Drawing No. 3 shows a molded or assembled embodiment of the invention.



FIG. 1 This view shows a channeled tray with back and side supports for a four-ply paper chain. The two gauge stops are shown on the back side of the paper tray's back support.



FIG. 2 This is an edge view of the paper tray showing the tray edge hatched, emphasizing the recessed tray surface and the storage space below. The back and sides are extended a distance below the channeled tray to provide a storage space for paper rectangles. The base of both sides are notched to accept the stylus that acts as the fourth side of the storage area.



FIG. 3 This is the same view of FIG. 2 with the stylus in place, the assembly held together by two elastic bands.



FIG. 4 This is a plan and edge view of a stylus. Both ends of the stylus are tapered, one end for creasing the paper rectangle and the second for probing open the legs of an assembled link to facilitate insertion of the next link. The crease end of said stylus has a thickness of roughly twice that of the probe end.


Drawing No. 4 shows the cross-section of an extruded paper chain tray with stop gauges to accommodate a single strip length for both the two-ply and four-ply options.



FIG. 1 This view shows one and three channel means to make crease lines for folding two-ply and four-ply paper chains. The hack support and one of two steps beneath the tray act as gauge stops for creasing center and outer segments of the two-ply and four-ply strips. The back support beneath said tray orients the two-ply paper rectangle relative to the inner edge of the single channel.



FIG. 2 This view shows the channel crease edges of the embodiment in relation to the crease lines in the paper rectangle of the two-ply and four-ply options





DETAILED DESCRIPTION OF THE INVENTION

Utilizing the channel design to position the crease lines allows the making of crease lines without removing and rotating the paper rectangle. Fewer manipulations make the design more efficient and child friendly.


Parallel channels are made in a paper chain tray with the inner most edge of each channel referenced to a back support. Said inner most edges of the channels provide the positioning of crease lines over the length of a paper rectangle. The paper rectangle is placed on the tray and against the back support. The stylus is forced against the inner crease edge of each channel and drawn the length of the paper rectangle, providing sharp crease lines for accurate folding.


The opposite edges of said same channels act to guide the stylus, said stylus operating at a low angle with the surface of the tray to make sharp creases. This design minimizes forcing of paper into the channels that can broaden the crease, alter the crease line positioning and prevent penetration of the paper.


By accurately controlling the crease lines of both the paper rectangles and the strips, the outer segment(s) of both can be held narrower than the inner segments, thereby avoiding fold interference between said infolded legs. Note that the two-ply rectangle does not have outer segments and this has no fold interference.


Paper strips are creased using gauge stops and corners. The strip is placed against the gauge stop and wrapped around the relevant corner. Pressing the strip against said corner creases said strip at the fold line position.


Handling paper chain links can sometimes collapse the passages between legs of said links, making assembly difficult Tapering one end of said stylus to a thin edge creates a tool for probing open said passages, allowing insertion of the next link.


Prototypes were made with wood. Plastic molding and extrusion are options. The invention can include single or multiple ply embodiments, or, by changing strip length, classes of embodiments. This invention is not intended to exclude such obvious extensions of the invention.

Claims
  • 1. I claim a paper chain crease tray having a back support, said tray and back support being equal to or longer than the length of a paper chain rectangle.
  • 2. I claim a paper chain crease tray according to claim 1, having a back support positioned to also act as a stop gauge.
  • 3. I claim a paper chain crease tray according to claim 1, having 1, 2, or 3 channel(s) parallel to said back support, the inner edge of said channel(s), in conjunction with said back support, defining the paper rectangle crease location(s).
  • 4. I claim a paper chain crease tray according to claims 1, 2 and 3, whose tray edge(s), being parallel to said back support, acts as a crease edge(s), requiring either 0 channels or 2 channels.
  • 5. I claim a paper chain strip wherein outer segment creasing is made outside the quarter points of said paper strip length.
  • 6. I claim a stylus having at least one tapered and rounded end of reduced end thickness, said end for use in conjunction with said paper chain crease tray to make creases the length of said paper rectangle, and an optional second end of lesser thickness than the creasing end of the stylus to probe open the leg passages of an assembled paper chain link to allow insertion of a next link.