Claims
- 1. A method of metering and leveling an excess layer of liquid coating material applied onto a web of paper traveling at a high rate of speed, comprising the steps of extending a doctor against and across the surface of the web, at a point downstream and spaced from the point of application of the excess coating layer onto the web, to doctor the coating on and remove excess coating from the surface; establishing an elongate chamber extending across the web upstream from the doctor, the chamber having an upper end adjacent to the web and a lower end; flowing excess coating removed from the web by the doctor into the chamber; forming the excess coating in the chamber into an eddy current pool of coating in the chamber upper end and extending transversely across the web in contact with the excess coating layer on the web substantially immediately upstream from the doctor to rewet, smooth and level nonuniformities in the excess coating layer on the web before it reaches the doctor; and controllably draining coating through an adjustable valve from and uniformly longitudinally along the chamber lower end at a rate to maintain the eddy current pool of coating in the chamber upper end uniformly in contact with the web across the transverse extent thereof, whereby the excess coating layer doctored on the web is very uniform and is doctored very uniformly.
- 2. A method as in claim 1, wherein said forming step forms the eddy current pool of coating at a nip between the doctor and web.
- 3. A method as in claim 1, wherein said controllably draining step maintains the eddy current pool of coating substantially unpressurized.
- 4. A method as in claim 1, including the step of establishing a gap, adjacent to and transversely across the web, at an upstream end of the chamber upper end, said controllably draining step comprising adjusting the valve to controllably drain coating from and uniformly longitudinally along the chamber lower end at a rate to prevent a reverse flow of coating from the chamber upper end through the gap.
- 5. A method as in claim 1, including the step of establishing a gap, adjacent to and transversely across the web, at an upstream end of the chamber upper end, said controllably draining step comprising adjusting the valve to controllably drain coating from and uniformly longitudinally along the chamber lower end at a rate to allow a limited reverse flow of coating from the chamber upper end through the gap.
- 6. A method as in claim 5, including the step of controlling the size of the gap to be sufficiently small to prevent the limited reverse flow of coating therethrough from spattering onto the excess coating layer on the web but sufficiently large to prevent the reverse flow of coating from forming a liquid seal in the gap.
- 7. A method as in claim 1, including the step of causing the web to travel at a speed of at least 2500 fpm.
- 8. A method of coating a surface of a moving web of paper, comprising the steps of applying an excess layer of liquid coating material onto the surface of the web with a dip roll applicator; extending a doctor against and transversely across the surface of the web at a point downstream and spaced from the dip roll applicator to doctor the coating on and remove excess coating from the web surface; moving the web across the dip roll applicator and doctor at a relatively high rate of speed; establishing an elongate chamber adjacent to and upstream from the doctor, the chamber having an upper end adjacent the web and a lower end; flowing excess coating removed from the web by the doctor into the chamber; forming the excess coating in the chamber into an eddy current pool of coating in the chamber upper end and extending transversely across the web in contact with the excess coating layer on the web substantially immediately upstream from the doctor to rewet, smooth and level nonuniformities in the excess coating layer on the web before it reaches the doctor; and controllably draining coating through an adjustable valve from and uniformly longitudinally along the chamber lower end at a rate to maintain the eddy current pool of coating in the chamber upper end uniformly in contact with the web across the transverse extent thereof, so that the excess coating layer doctored on the web is very uniform and is doctored very uniformly.
- 9. A method as in claim 8, wherein said forming step forms the eddy current pool of coating at a nip between the doctor and web.
- 10. A method as in claim 8, wherein said controllably draining step maintains the eddy current pool of coating substantially unpressurized.
- 11. A method as in claim 8, including the step of causing the web to travel at a speed of at least 2500 fpm.
- 12. A method as in claim 8, including the step of establishing a gap, adjacent to and transversely across the web, at an upstream end of the chamber upper end, said controllably draining step comprising adjusting the valve to controllably drain coating from and uniformly longitudinally along the chamber lower end at a rate to maintain the eddy current pool of coating in the chamber upper end but to prevent a reverse flow of coating from the chamber upper end through the gap.
- 13. A method as in claim 12, wherein said step of establishing a gap establishes a gap that is elongate in the direction of web travel and progressively increases in size from a downstream to an upstream end thereof.
- 14. A method as in claim 8, including the step of establishing a gap, adjacent to and transversely across the web, at an upstream end of the chamber upper end, said controllably draining step comprising adjusting the valve to controllably drain coating from and uniformly longitudinally along the chamber lower end at a rate to maintain the eddy current pool of coating in the chamber upper end and to cause a limited reverse flow of coating from the chamber upper end through the gap.
- 15. A method as in claim 14, including the step of controlling the size of the gap to be sufficiently small to prevent the limited reverse flow of coating therethrough from spattering onto the excess coating layer on the web but sufficiently large to prevent the reverse flow of coating from forming a liquid seal in the gap.
Parent Case Info
This is a continuation of copending application Ser. No. 07/172,377 filed on Mar. 24, 1988 now abandoned.
US Referenced Citations (7)
Continuations (1)
|
Number |
Date |
Country |
Parent |
172377 |
Mar 1988 |
|