This invention relates to a paper cutting apparatus, in particular such an apparatus adapted to cut out part of a piece of material, e.g. for paper craft purposes.
Existing paper crafting apparatus for cutting paper or cardboard are mostly hand-operated punches. Such paper punches have a lever operatively associated with a body with a generally horizontal slot allowing insertion of a sheet of paper or cardboard. The lever may then be pivoted downwardly by a user to move a die to punch or cut out a piece of shaped paper or cardboard from the piece of paper or cardboard.
Such apparatus are generally speaking small in size and are not suitable for cutting out large-sized pieces of patterned paper or cardboard from a sheet of paper or cardboard material. Even if some larger-sized punches may be available, a user has to spend much force to operate such punches.
It is thus an object of the present invention to provide a paper cutting apparatus and a method of cutting out part of a piece of paper or cardboard material in which the aforesaid shortcomings are mitigated, or at least to provide a useful alternative to the public.
According to a first aspect of the present invention, there is provided a paper cutting apparatus including a cylindrical cutting member with at least one closed-loop cutting ridge on its outer cylindrical surface; and a support member; wherein said cutting member is rotatable relative to said support member to move a piece of paper or cardboard material relative to and between said cutting member and said support member to cut out part of said piece of material.
According to a second aspect of the present invention, there is provided a method of cutting out part of a piece of paper or cardboard material, including the steps of providing a cylindrical cutting member with at least one closed-loop cutting ridge on its outer cylindrical surface; providing a support member; and rotating said cutting member relative to said support member to move said piece of paper or cardboard material relative to and between said cutting member and said support member.
Preferred embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Although the present invention will hereinafter be referred to as and described in the context of a paper cutting apparatus, it is envisaged that the present invention is also suitable for cutting cardboard and such like materials, and that the scope of protection should be construed accordingly.
In use, a user may rotate a handle 106 to rotate the cutting roller 102. As the cutting roller 102 is engaged with a gear 108 which is in mesh with a gear 110 engaged with the support roller 104, rotation of the cutting roller 102 will bring about simultaneous rotation of the support roller 104, although the rollers 102, 104 will rotate in two opposite directions.
An outer cylindrical surface 110 of the cutting roller 102 is provided with a number of continuous closed-loop patterned cutting ridges 112. The rollers 102, 104 are spaced slightly apart from each other to allow insertion of a piece of paper or cardboard 114 therebetween for cutting. Upon rotation of the rollers 102, 104, the piece of paper 114 will be caused to move relative to and between the rollers 102, 104. As shown more clearly in
A main difference between the apparatus 100 and the apparatus 200 is that, in the case of the apparatus 200, a piece of paper or cardboard 214 to be cut is placed on a plastics board 216 for support during cutting. As shown in
As shown in
Using the apparatus 100 for further illustration below, the structure of the cutting roller 102 and that of the support roller 104 are shown in
Similarly, the support roller 104 has an outer tube 136 with a hollow interior 138 for receiving a generally cylindrical plastics reinforcement member 140. The reinforcement member 140 has two diametrically opposed fingers 142 for engagement with two correspondingly sized, configured and positioned recesses 144 on an interior surface 146 of the tube 136, such that the tube 136 and the reinforcement member 140 are engaged for simultaneous rotational movement. The reinforcement member 140 has a longitudinal channel 148 for receiving an elongate rod 150. A cut portion 152 is formed at one longitudinal end of the rod 150, the function of which will be discussed below.
As shown in
As shown in
As shown in
The outer tube 120 is then positioned in a computerized numerical controlled sculpturing machine 164 further machining (see
Using a pattern in the form of the alphabet “A” as an example, an outer continuous closed-loop ridge 170 and an inner continuous closed-loop ridge 172 are formed on the outer tube 120 in the mould piece 160 (as shown in
It should be pointed out that the cutting roller 102 may be formed by other methods, e.g. powder formation.
It should be understood that the above only illustrates examples whereby the present invention may be carried out, and that various modifications and/or alterations may be made thereto without departing from the spirit of the invention.
It should also be understood that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any appropriate sub-combinations.
Number | Name | Date | Kind |
---|---|---|---|
3720126 | Kranz | Mar 1973 | A |
4374573 | Rouse et al. | Feb 1983 | A |
4625612 | Oliver | Dec 1986 | A |
4759247 | Bell et al. | Jul 1988 | A |
4982639 | Kirkpatrick | Jan 1991 | A |
5138923 | Kent et al. | Aug 1992 | A |
5189935 | Rosemann | Mar 1993 | A |
5647260 | Nabity | Jul 1997 | A |
6063094 | Rosenberg | May 2000 | A |
6520896 | Sohl | Feb 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20090000439 A1 | Jan 2009 | US |