This application claims the benefit under 35 U.S.C. § 119(a) of Korean Patent Application No. 2003-98035 entitled “Paper Detecting Device Of Paper Feeding Cassette And An Image Forming Apparatus Having The Same”, filed in the Korean Intellectual Property Office on Dec. 27, 2003, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an image forming apparatus. More particularly, the present invention relates to a paper detecting device of a paper feeding cassette that is capable of detecting the presence of papers in the paper feeding cassette, and an image forming apparatus having the same.
2. Description of the Related Art
Conventional image forming devices include devices such as laser printers, light-emitting diode (LED) printers, inkjet printers, photocopiers, facsimiles, and multi-function office machines. In each case, the image forming apparatus is provided with a paper feeding device which supplies sheets of paper.
As a printing job begins, a laser beam is projected from a laser scanning unit 120, thereby forming the electrostatic latent image on the photoconductive drums 121, 122, 123 and 124. A plurality of developing apparatus 131, 132, 133 and 134 then attach the toner onto the photoconductive drums 121, 122, 123 and 124, thereby forming toner images. A plurality of the toner images formed as described above are then superimposed on a transfer belt 141, and a final image on the transfer belt 141 is transferred to a paper P by a transfer roller 142. The paper P is continuously supplied from a paper feeding cassette 160 by a pickup roller 150.
If the paper P in the paper feeding cassette 160 is exhausted as shown in
However, in the conventional image forming apparatus 100 as described above and as shown in
Accordingly a need exists for a system and method to detect the exhaustion of the paper P in the paper feeding cassette 160 as quickly as possible, and more specifically, prior to a first developing being performed on the first photoconductive drum to minimize waste of toner.
An object of the present invention therefore, is to solve the above and other problems and/or disadvantages, and to provide at least the advantages described below. Accordingly, an object of the present invention is to provide a paper detecting device of a paper feeding cassette which is capable of detecting the exhaustion of paper in the paper feeding cassette within a time frame to avoid wasted developing steps, and an image forming apparatus having the same.
In order to achieve the above-described objects of the present invention, a paper detecting device is provided for detecting the presence of paper on a paper plate in the paper feeding cassette and which comprises a light-emitting device and a light-receiving sensor. An end-fence is movably mounted in the paper feeding cassette, and at least one of the light-emitting device and the light-receiving sensor are mounted on a base of the end-fence such that they are covered by the paper stack on the paper plate.
According to another embodiment of the present invention, a plurality of the light-emitting devices are provided in the paper plate, and can be distanced apart from each other along a path of the end-fence depending upon paper sizes being used.
According to another embodiment of the present invention, a plurality of the light-receiving sensors can be provided above the paper plate, and can also be distanced from each other along a path of the end-fence depending upon paper sizes being used.
According to still another embodiment of the present invention, both the light-emitting device and the light-receiving sensor can be mounted on the base of the end-fence.
In order to achieve the above-described objects of the present invention, an image forming apparatus is provided comprising a main body, a laser scanning unit, a photoconductive medium, a developing unit, a transfer unit, a paper feeding cassette, an end-fence, a pickup roller, a paper detecting device, and a control device. The paper detecting device comprises a light-emitting device and a light-receiving sensor, and wherein at least one of the light-emitting device and the light-receiving sensor is mounted on the base of the end-fence to be covered by the paper stacked on the paper plate.
The image forming apparatus according to another embodiment of the present invention further comprises a power supplying terminal mounted in the main body, an intermediate terminal mounted in the paper feeding cassette, and a connection terminal mounted in the end-fence.
The power supplying terminal, intermediate terminal and the connection terminal can further be electrically interconnected by a cable.
The above objects and other features of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Throughout the drawings, like reference numbers are used to refer to like features and structures.
Hereinafter, a paper detecting device of a paper feeding cassette, and an image forming apparatus having the same according to embodiments of the present invention, will be described in detail with reference to the accompanying drawing figures.
As shown in
The laser scanning unit 220 scans a laser and forms an electrostatic latent image on a photoconductive medium, such as photoconductive drums 231, 232, 233 and 234 of
The developing unit 240 comprises a first, second, third and fourth developing apparatus 241, 242, 243 and 244 that correspond to the photoconductive drums 231, 232, 233 and 234. Each of the developing apparatus 241, 242, 243 and 244 stores different colors of toner, for example, yellow, magenta, cyan and black. As more clearly shown in
The transfer unit 250 comprises a first, second, third and fourth intermediate transfer roller 251, 252, 253 and 254, a transfer belt 255, and a final transfer roller 256. The intermediate transfer rollers 251, 252, 253 and 254 are mounted to direct the transfer belt 255 toward the photoconductive drums 231, 232, 233 and 234, and transfer toner images formed on the respective photoconductive drums 231, 232, 233 and 234 to the transfer belt 255. The transfer belt 255 is supported and driven by a plurality of additional rollers, a number of which are shown for example purposes. On the transfer belt 255, a final image is formed, which is an overlap of the four colors of yellow, magenta, cyan and black. The final transfer roller 256 transfers the final image formed on the transfer belt 255 to a printing paper P.
The paper feeding cassette 260 is detachably mounted at a lower part of the main body 210 of the image forming apparatus. A paper plate 261 wherein the paper P is stacked, is provided in the paper feeding cassette 260, and the paper plate 261 is elastically supported by a spring 262. On a bottom member 263 of the paper feeding cassette 260, an end-fence 264 is movably mounted to arrange a rear edge of the paper P stacked on the paper plate 261. The end-fence 264 can be manually moved in a paper-moving direction A depending upon the paper sizes being used, and comprises a fence wall 265 and a base 266. As shown in
The pickup roller 270 picks up the paper P stacked on the paper plate 261 sheet by sheet, and transfers the picked-up paper P to the final transfer roller 256.
The paper detecting device 280 includes a first and a second light-emitting device 281 and 282, and a light-receiving sensor 283 in order to detect the presence of the paper P on the paper plate 261. The two light-emitting devices 281 and 282 are mounted above the paper plate 261, and the light-receiving sensor 283 is mounted on the base 266 of the end-fence 264. The first and the second light-emitting devices 281 and 282 can be mounted in the paper feeding cassette 260 or in the main body 210. The light-emitting devices 281 and 282 are spaced apart from each other at a predetermined distance along a path of the end-fence 264 such that each detection beam emitted from the light-emitting devices 281 and 282 can meet the light-receiving sensor 283 as positioned on the path depending upon the paper sizes being used, as illustrated by the positions of the fence 264 in
The light-receiving sensor 283 is electrically connected to a connection terminal 265a provided at one side of the end-fence 264. The connection terminal 265a is connected to an intermediate terminal 268 provided at one side of the paper feeding cassette 260 through a cable 267, and the intermediate terminal 268 is connected to a power supplying terminal 211 (See
As shown in
As shown in
Hereinbelow, the operation of the image forming apparatus according to an embodiment of the present invention will be described in greater detail with reference to the accompanying drawings.
With the application of a printing command to the image forming apparatus 200 as shown in
The paper P stacked on the paper plate 261 in the paper feeding cassette 260 is picked up sheet by sheet by the pickup roller 270, and is provided to the final transfer roller 256. The rear edge of the paper P is aligned into proper arrangement by contacting the fence wall 265 of the end-fence 264, and once positioned, covers the light-receiving sensor 283 mounted on the base 266 of the end-fence 264. Therefore, the detection beam from the first and second light-emitting devices 281 and 282 cannot reach the light-receiving sensor 283.
When the picked-up paper P arrives between the transfer belt 255 and the final transfer roller 256, the final image formed on the transfer belt 255 is transferred to the paper P by the final transfer roller 256. The paper P, including the final image, then passes through a fixing unit 213, and is discharged out of the main body 210 by a paper-discharging roller 215.
During the printing operation, the developing operation continues such that the toner images are sequentially formed by the photoconductive drums 231, 232, 233 and 234. Pickup of the paper P in the paper feeding cassette 260 also continues. As shown in
In addition to the distances L1 and L2 defined above, a third distance L3 is provided by the embodiments of the present invention and is defined as the distance from a sensing position S where the light-receiving sensor 283 senses the detection beam substantially concurrent with the pickup and transfer of the last paper sheet Pf, to a transfer position T where the final image is transferred by the final transfer roller 256. A fourth distance L4 is defined as the distance from a first developing position D where the toner is attached on the first photoconductive drum 231 by the first developing roller 245, to the transfer position T, and is substantially equal to the distance L1.
As noted above, in the conventional image forming apparatus 100 a first distance L1 is substantially longer than a second distance L2 (i.e., (L1=L4)>L2). Therefore the conventional paper detecting device detects the exhaustion of the paper P in the paper feeding cassette after a first developing is performed on the first photoconductive drum. Since the third distance L3 is longer than the fourth distance L4 in the embodiments of the present invention ((L1=L4)<L3), the printing work can be stopped before forming the electrostatic latent image on the photoconductive drums 231, 232, 233 and 234, and performing the developing operation.
In
In the paper detecting device 280′ of the above structure, if the paper plate 261 has the paper P stacked thereon, the detection beam emitted from the light-emitting device 281′ can not reach the first or second light-receiving sensor 283′ or 284′. However, when the stacked paper P is exhausted, the first or the second light-receiving sensor 283′ or 284′ senses the detection beam emitted from the light-emitting device 281′, thereby detecting the complete consumption of the paper.
Although a tandem-type color printer comprising the plurality of photoconductive drums 231, 232, 233 and 234, and the transfer belt 255 as a transfer medium has been described and illustrated in the embodiment examples, the present invention is not limited thereto. The embodiments of the present invention can be applied to any number of other diverse image forming apparatus.
As can be appreciated from the above description, before the developing operation is performed for a new image, the complete consumption of the paper P supply can be detected. Therefore, the toner and operation processes of the parts of the image forming apparatus can be economized.
While the invention has been shown and described with reference to certain embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-98035 | Dec 2003 | KR | national |