This invention relates in general to an image forming apparatus and more particularly, to pin corona devices that are used for media sheet detacking in electrostatographic imaging systems.
An electrostatographic copying process includes exposing a substantially uniform charged photoreceptive member to a light image of an original document. This exposure selectively discharges areas of the charged photoreceptive member that correspond to non-image areas in the original document, while maintaining the charge in the areas corresponding to image content. Selectively discharging areas on the photoreceptive member generates an electrostatic latent image of the original document on the photoreceptive member. The electrostatic latent image is subsequently developed into a visible image by a process in which a charged developing material is deposited onto the photoconductive surface of the photoreceptor. The developing material is attracted to the charged image areas of the photoreceptive member and then the developing material conforming to the latent image is then transferred from the photoreceptive member to a media sheet. The media sheet is transported to a fusing station where the image may be permanently affixed to provide a reproduction of the original document. In a final step, the photoconductive surface of the photoreceptive member is cleaned to remove any residual developing material in preparation for another imaging cycle.
The electrostatographic process is useful for light lens copying from original images, as well as, for printing documents from electronically generated or stored original images. Analogous processes also exist in other electrostatographic applications, such as, for example, iconography where charge is selectively deposited on a charge retentive surface in accordance with an image stored in electronic form.
Electrostatographic imaging machines often use corona devices for charging a surface with electrostatic fields generated by the corona devices. Such corona devices are primarily used to deposit charge on the photoreceptive member prior to exposure to the light image described above. Corona devices may also be used in the transfer of an electrostatic image from a photoreceptor to a transfer substrate, in the tacking and detacking of paper sheets to or from the imaging member by applying a neutralizing charge to the paper, and, in the conditioning of the imaging surface prior to, during, and after deposition of toner on the imaging surface to improve the quality of the xerographic output copy.
A corona generating device, or corotron, typically includes a pin array having a plurality of electrostatic field emitters that terminate in pointed ends. A corotron is coupled to a source of high voltage so electrostatic fields are generated at the pointed tips in the pin array. If the corotron is in the vicinity of the media path in an electrostatographic imaging machine, a potential hazard is presented to an operator or technician when a media sheet jams the media path in the area of the corotrons. This hazard arises from the requirement to reach into the machine past one or more corotrons to remove the jammed sheet or sheets. For example, to clear a paper jam in some current machines, the transfer deck needs to be pivoted away from the photoreceptor to release the sheets for removal from the media path. Reaching into this area, however, may result in injury if the operator or technician contacts the pointed ends of a pin array. This injury risk is addressed by the safety guard structure disclosed in the co-pending patent application entitled “Corotron Pin Guard” having Ser. No. 11/265,478 that was filed on Nov. 2, 2005, which is assigned to the assignee of this application.
Another way to reduce the risk of injury is to reduce the likelihood of a paper jam caused in the vicinity of the corotrons so that an operator need not remove a paper jam. One cause of paper jams in the vicinity of a detack corotron arises from curled paper edges getting caught in the detack corotron. A leading or trailing edge of a paper sheet may curl away from the photoreceptor and get caught in the detack corotron as the detack corotron applies charge to the back of the paper sheet to help release the sheet from the photoreceptor. Additional causes for curled paper edges include environmental factors in the media sheet path such as heat and other conditions occurring in the machine.
An improved detack corotron reduces the likelihood of a paper jam arising from a curled paper edge getting caught in the corotron. The detack corotron includes an electrically conductive coronode having a plurality of field emitters, each field emitter having a terminating end, the terminating ends of the field emitters being spatially separated from one another, and a paper edge guide having a plurality of generally planar members, the generally planar members being perpendicular to the conductive coronode and the generally planar members having a height that extends above the terminating ends of the field emitters. Such a detack corotron may be used in an electrostatographic machine to reduce the occurrence of paper jams at the detack corotron.
The term ‘printer’ or ‘reproduction apparatus’ as used herein broadly encompasses various printers, copiers or multifunction machines or systems, xerographic or otherwise, unless otherwise defined in a claim. The term ‘sheet’ herein refers to any flexible physical sheet or paper, plastic, or other useable physical substrate for printing images thereon, whether precut or initially web fed.
Various features noted above and further features and advantages will be apparent to those skilled in the art from the specific embodiments, including the drawing figures.
While the disclosure is described hereinafter in connection with various embodiments thereof, the disclosure is not intended to be limited to these embodiments. On the contrary, all alternatives, modifications and equivalents are intended to be included within the spirit and scope of the disclosure as defined by the appended claims.
For a general understanding of the features of the disclosure, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to identify like elements.
Referring to the
The belt photoreceptor 18 is mounted on a set of rollers 26. At least one of the rollers is driven to move the photoreceptor in the direction indicated by arrow 21 past the various other known xerographic processing stations, here a charging station 28, imaging station 24 (for a raster scan laser system 25), developing station 30, and a detack corotron 100 that is constructed in accordance with the present disclosure. The latent image on the photoreceptor belt 18 is developed with developing material at development station 30 to form a toner image corresponding to the latent image.
The toner image is electrostatically transferred to a final print media material, such as, a paper sheet 15. A sheet 15 is moved from a selected paper tray supply 33 for transfer of the toner image by a sheet transport 34. Paper trays 33 include trays adapted to feed the long edge of sheets first from a tray (LEF) or short edge first (SEF) in order to coincide with the LEF or SEF orientation of documents fed from tray 11 that is adapted to feed documents LEF or SEF depending on a user‘s desires. The toner image is transferred to the sheet and the sheet is stripped from the photoreceptor and conveyed to a fusing station 36 having a fusing device 16. The fusing device 16 permanently affixes the image to the sheet and then the substrate passes out of the nip at the fusing station 36. After separating from the fuser roll, the substrate is transported by a sheet output transport 37 to a multi-function finishing station 50.
With further reference to
Multi-functional finisher 50 includes a top tray 54 and a main tray 55. The top tray 54 may be used as a purge destination, as well as, a destination for simple jobs that do not require finishing and/or collated stacking. The main tray 55 has a pair of pass-through, 100 sheet, upside down staplers 56 and is used for most jobs that require stacking or stapling. The booklet maker 40 is used to produce booklets, which may or may not be saddle stitched, and tri-folded sheets. The folding and booklet making module 40 adds staples for saddle stitched booklets, and performs C-fold and Z-fold operations for folded sheets. The finished booklets and folded sheets are then collected in a stacker 70. Conventional, spaced apart, staplers provide individual staple placement at either the inboard or outboard position of the sheets. Additionally, the staplers are capable of dual stapling, where a staple is placed at both the inboard and outboard positions of the same sheets.
With reference to
A conductive corotron shield 101 includes a base member 105 and parallel sidewalls 106. Shield 101 is generally U-shaped and its opening is sized to accommodate the combined thickness of pin coronode 102 and paper guides 108 so the coronode 102 and the paper guides 108 are housed within the shield 101 in a close fitting arrangement.
Paper guides 108 have a length that parallels the coronode 102. Each guide 108 includes a plurality of generally planar members 112 that may be arranged in alignment as a row on each guide. The electrically conductive coronode 102 is interposed between the two guides 108.
A compression spring 120 is connected at one end to the outboard end of coronode 102 and to a tension holder 122. Protrusions of tension holder 122 mate with outboard end block 125 and are covered with outboard cover 127. Compression spring 120 provides tautness and stiffness to the pin array. While a compression spring is shown, the disclosure is not limited to compression springs since other springs could be use, for example, extension or leaf springs. The inboard end of coronode 102 is mounted within inboard end block 130 and enclosed with the cover 130. Pin coronode 102 is connected to a high-voltage extension member 140, or alternatively may be provided with an integral high-voltage extension member, for electrical connection of the pin coronode 102 to a high-voltage power source (not shown). In addition, clamping the paper guides 108 to the pin coronode 102 enables the coronode to float and be located by outboard and inboard end blocks 125 and 130, respectively.
A side view of the paper guides 108 and coronode 102 is shown in
As shown in
Referring to the views of
While the planar members are shown as having a sloped upper surface, they may be generally rectangular or other geometric shapes. In a similar manner, various alternatives, modifications, variations or improvements may be subsequently made by those skilled in the art to the embodiments and examples presented above. Such alternatives, modifications, variations, and improvements are also intended to be encompassed by the following claims.
Cross-reference is made to the co-pending patent application entitled “Corotron Pin Guard” having Ser. No. 11/265,478 that was filed on Nov. 2, 2005, which is assigned to the assignee of this application. This application is incorporated herein in its entirety.