The present invention relates to stair systems, and more particularly to a paper laminated stair tread and methods for making the same and retrofitting a stair using the same.
Stairs are constructed with a horizontal portion, called a tread, and a vertical portion, called a riser. Oftentimes, it is desirable to match the surface of stairs with the surface of flooring at the bottom or top of the stairs. However, none of the currently available commercial offerings are known to permit this with the ease, efficiency and beneficial results of the present invention.
The present invention includes an article of manufacture comprising a stair tread, with or without a bull-nose, capable of matching a laminate floor using, e.g., the same paper technology and high-density fiber board. The present invention can be installed directly onto an existing stair tread, and can be used in improved methods of upgrading and/or retrofitting stairs on a staircase.
In one embodiment of the present invention, the device comprises a high density core fiberboard element, which can be substantially rectangular in shape, having a front wall, a back wall, a top surface, a rear bottom surface, a nook edge surface and a front bottom surface. The nook edge surface separates the rear and front bottom surfaces and forms a substantially squared-off void with the rear bottom surface that is capable of receiving and mating with a stair tread. A paper layer is fixedly disposed on the top of the core fiberboard element by gluing or thermosetting, for example. Further, a metallic oxide coating, such as aluminum oxide, for example, is fixedly disposed on the paper layer such as by thermosetting. An adhesive layer is also disposed on the rear bottom surface of the core fiberboard element and optionally the nook edge surface to facilitate securing of the stair tread device of the present invention to the existing stair tread.
In a method for making a stair tread in accordance with one aspect of the present invention, paper with a metallic oxide layer is applied by gluing or thermosetting the paper onto a core fiberboard sheet. The resulting composite product is formed into the shape of a stair tread covering having a substantially squared-off void capable of receiving a stair tread. An adhesive layer is applied to the rear bottom of the core fiberboard layer. A protective layer is optionally added to the adhesive layer in order for it to avoid adhering undesirably to objects. An underlayment is optionally added to the rear bottom before application of the adhesive layer, which can then be applied to the underlayment.
In a method for installing a stair tread, according to an exemplary embodiment of the invention, the stair tread product described above is used to cover an existing stair tread. The protective layer is peeled from the adhesive layer and the stair tread of the invention is then glued directly onto the existing stair tread.
As shown in the embodiments of the invention in
In one embodiment of the present invention, the HDF element 20 is formed by hot pressing a medium-density fiberboard (MDF) onto adhesive paper to form a raw plank, and then gluing the adhesive paper side of the raw plank onto high density fiberboard. In one embodiment of this element of the present invention, the medium-density fiberboard is approximately 15 mm in height, and the high-density fiberboard is approximately 10 mm in height. In forming the HDF element 20, the MDF paper and the adhesive-backed paper are hot pressed, and after conditioning, the resulting planks can be cut to approximately 1220 mm by approximately 300 mm in length and depth, respectively. Then, the HDF board can also be cut to the same or approximately the same size and glued to the MDF side edge. The glued side edge can be profiled with machining to have a bull nose shape. At this point, the HDF element 20 (i.e., core layer plank) is formed.
The device 10 of the present invention further includes paper element 22 which is applied to a top surface 21 of HDF element 20, such as by thermofusing (also known as thermosetting) the paper element and HDF element together under high pressure and temperature. Alternatively, environmental PVAC glue can be placed on HDF element 20, and the paper element 22 can be glued and pressed using cold pressing. In one embodiment of the present invention, cold pressing can be applied for twenty-four hours or more to ensure a proper seal. The paper element 22 is typically a decorative paper that can display the appearance of various types of tiles and wood grains as selected by the installer. The paper element can be “impregnated” with a suitable polymer such as melamine as will be understood by one of ordinary skill in the art of laminate flooring, but other laminate materials can be used. In one embodiment of the present invention, the paper element 22 is a high pressure laminate (HPL) paper element that comprises multiple layers of papers that are pressed under high pressure and temperature to approximately 0.6 mm thickness. In one embodiment, a décor paper layer is pressed atop a Kraft paper layer. In a further embodiment, a wear paper layer is pressed atop the décor paper layer.
As further shown in
As further shown in
As shown in
As shown in
In one embodiment of the present invention, as shown in
The device of the present invention can be installed directly onto an existing stair structure. In a method for installing a stair tread, according to an exemplary embodiment of the invention, the stair tread product adhesive layer 14 is exposed and the stair tread of the invention is then adhered directly onto the existing stair structure, with the nook edge and the rear bottom surface of the device adhering to the front wall 12b and horizontal tread portion 12a of the stair structure 12, respectively.
It should be understood that the foregoing description and examples are only illustrative of the present invention; the optimum dimensional relationships for the parts of the invention, including variations in size, materials, shape, form, function and the manner of operation, assembly and use, are deemed readily apparent to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention. Thus, various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications, and variances that fall within the scope of the appended claims.