Paper-like-piece handling apparatus

Information

  • Patent Grant
  • 6598871
  • Patent Number
    6,598,871
  • Date Filed
    Thursday, July 12, 2001
    22 years ago
  • Date Issued
    Tuesday, July 29, 2003
    20 years ago
Abstract
Reciprocating unit for reciprocating a pressing plate includes a pair of link mechanisms disposed along opposite sides of the pressing plate. Each of the link mechanisms includes a pair of link members pivotally connected with each other in an intersecting fashion, and at least one of the link members is coupled at one end to the pressing plate for sliding movement therealong. The link mechanisms are interconnected at a predetermined position via a connecting member, and an actuator is operatively connected to the connecting member. The actuator is linearly displaced by a drive unit. The link mechanisms are caused to extend and contract, together as an integral unit, via the connecting member in response to linear reciprocating movement of the actuator.
Description




BACKGROUND OF THE INVENTION




The present invention relates generally to paper-like-piece handling apparatus for storing bills (pieces of paper money) or other paper-like pieces in a storage section using a paper-like-piece-pressing-plate reciprocating unit, and more particularly to a paper-like-piece handling apparatus of a type which includes a paper-like-piece-pressing-plate reciprocating unit composed of extendible/contractible pantograph-type link mechanisms.




There have been known bill handling apparatus for cumulatively storing bills in a bill storage section using a reciprocating unit, one example of which is disclosed in Japanese Patent No. 2609155. The reciprocating unit in the bill handling apparatus disclosed in the Japanese patent permits extraction and contraction of a pair of left and right pantograph-type link mechanisms each comprising a pair of link arms or link members pivotally connected with each other at respective central points in an intersecting fashion. The extraction and contraction of the pantograph-type link mechanisms cause a bill pressing plate to move back and forth (i.e., reciprocate) so as to store a bill into the bill storage section. Specifically, each of the left and right pantograph-type link mechanisms, each including the intersecting link members, has one end pivotally connected to a base plate and bill pressing plate and another end slidably coupled to the base plate and bill pressing plate. Sliding movement of the other end of the pantograph-type link mechanism can cause the pantograph-type link mechanism to extend and contract so that the bill pressing plate can reciprocate. More specifically, for such extraction and contraction of the pantograph-type link mechanism, a sliding actuator plate is connected to the other end of the link mechanism, and rotating movement of a rotary eccentric cam is caused to directly act on the sliding actuator plate in such a manner that the sliding actuator plate moves back and forth in a direction substantially parallel to a surface of the bill. Further, there has been known another type of bill handling apparatus which includes a pair of left and right pantograph-type link mechanisms each provided with a rotary eccentric cam, and rotating movement of these two rotary eccentric cams is caused to directly act on the corresponding link mechanisms so that linear drive forces are applied to the link mechanisms to cause the link mechanisms to extend and contract substantially perpendicularly to a surface of a bill (e.g., U.S. Pat. No. 5,632,367 or Japanese Patent Laid-open Publication No. HEI-8-241448). Further, U.S. Pat. No. 4,678,072 discloses that a pair of left and right pantograph-type link mechanisms are driven by direct contact with a pair of rotary eccentric cams. Moreover, U.S. Pat. No. 5,899,952 discloses a stacker machine that uses no pantograph-type link mechanism.




In cases where the pantograph-type link mechanisms are caused to extend and contract via an electric motor, the motor may be positioned in either one of the following two ways. First, the motor may be placed in a horizontal orientation such that the axis of the motor's rotation shaft extends perpendicularly to the length of the link mechanisms. Second, the motor may be placed in a vertical orientation such that the axis of the motor's rotation shaft extends parallel to the length of the link mechanisms. In the former case (horizontal orientation), the motor is positioned between the two link mechanisms or outwardly of the two link mechanisms so that the axis of the motor's rotation shaft lies parallel to the rotation shaft axes of the eccentric cams. However, if the motor is to be positioned between the two link mechanisms, it would be very difficult to position the motor as desired due to a small space between the link mechanisms. If, on the other hand, the motor is to be positioned outwardly of the two link mechanisms, the overall apparatus size would undesirably increase because the motor protrudes outwardly from the link mechanisms to a considerable degree. In the latter case (vertical orientation), the motor is disposed between the link mechanisms with the axis of the motor's rotation shaft lying at right angles to the rotation shaft axes of the eccentric cams, and thus the motor would not undesirably protrude outwardly from the link mechanisms; however, in order to transmit the motor's rotating movement to the eccentric cams, there is a need to change the direction of the motor's rotating movement by 90° via a bevel gear or the like. To that end, complicated mechanisms or arrangements would be required not only for distributing the motor's rotating movement to the rotary eccentric cams of the link mechanisms but also for maintaining synchronism in the extension and contraction between the link mechanisms, which would greatly complicate the structure of the reciprocating unit. Namely, because of the use of the bevel gears associated with the two link mechanisms, extra mechanisms would be required for allowing the single motor to deliver its rotating movement to the bevel gears as rotational drive forces of a same direction.




SUMMARY OF THE INVENTION




In view of the foregoing, it is an object of the present invention to provide a paper-like-piece handling apparatus which can greatly simplify the structure of a paper-like-piece-pressing-plate reciprocating unit employed therein.




In order to accomplish the above-mentioned object, the present invention provides a paper-like piece handling apparatus which comprises: a pressing plate that presses a paper-like piece; and a reciprocating unit that reciprocates the pressing plate, the reciprocating unit including a pair of link mechanisms disposed along opposite sides of the pressing plate, each of the link mechanisms including a pair of link members pivotally connected with each other in an intersecting fashion, at least one of the link members being coupled at one end to the pressing plate for sliding movement therealong. The reciprocating unit further includes: a connecting member that interconnects the pair of link mechanisms at a predetermined position; an actuator operatively connected to the connecting member; and a drive unit that linearly displaces the actuator. The pair of link mechanisms are caused to extend and contract, together as an integral unit, via the connecting member in response to linear reciprocating movement of the actuator so that the pressing plate reciprocates in response to extension and contraction of the pair of link mechanisms. With such arrangements, the bill handling apparatus of the present invention enables the extension and contraction of the link mechanisms by means of only one actuator and thus can significantly simplify the structure of the paper-like-piece-pressing-plate reciprocating unit. Namely, the present invention can cause the link mechanisms to extend and contract with an extremely simple structure, by eliminating the need for complicated mechanisms or arrangements for distributing the rotating movement of the motor to the two link mechanisms as rotational drive forces of a same direction. As a result, the present invention can greatly simplify the structure of the reciprocating unit.




While the embodiments to be described herein represent the preferred form of the present invention, it is to be understood that various modifications will occur to those skilled in the art without departing from the spirit of the invention. The scope of the present invention is therefore to be determined solely by the appended claims.











BRIEF DESCRIPTION OF THE DRAWINGS




For better understanding of the object and other features of the present invention, its embodiments will be described in greater detail hereinbelow with reference to the accompanying drawings, in which:





FIG. 1

is a schematic front view showing an internal structure of a bill handling apparatus in accordance with an embodiment of the present invention;





FIG. 2A

is a plan view, with parts cut away, of the bill handling apparatus, which schematically shows a general structure of a stacker unit of the bill handling apparatus;





FIG. 2B

is a front view, with parts cut away, of the stacker unit;





FIG. 2C

a left side view, with parts cut away, of the stacker unit;





FIGS. 3A and 3B

are views explanatory of operation in a standby state of the stacker unit;





FIGS. 3C and 3D

are views explanatory of a manner in which a pressing plate of the stacker unit is depressed; and





FIGS. 3E and 3F

are views showing the pressing plate of the stacker unit having been depressed to a maximum extent.











DETAILED DESCRIPTION OF EMBODIMENTS




Now, a description will be made about a bill handling apparatus in accordance with one embodiment of the present invention.

FIG. 1

is a schematic front view showing an internal structure of the bill handling apparatus. In

FIG. 1

, the body of the bill handling apparatus


1


includes a casing


2


substantially in the shape of a hollow cube (i.e., having six substantially equal sides). Bill inserting slot


3


is formed in an upper portion of a front wall (left wall in the figure) of the casing


2


. Bill P is longitudinally inserted into the interior of the handling apparatus through the bill inserting slot


3


while being guided along a bill insertion guide


4


leading to the inserting slot


3


. Within the casing


2


, there is provided a bill passageway


5


communicating with the bill inserting slot


3


for carrying the inserted bill P in the longitudinal direction of the bill P. The bill passageway


5


includes a linear transfer section


5




a


for linearly carrying the bill P, and an inverting transfer section


5




b


for turning over the bill P, transferred from the linear transfer section


5




a


, by 180 degrees (i.e., inside out) while the bill P is carried along a circular surface of the section


5




b


. In proximity to the linear transfer section


5




a


, there are provided a pair of magnetic heads H


1


and H


2


for validating or testing authenticity of the bill P. More specifically, the magnetic heads H


1


and H


2


are disposed to the left and right of a longitudinal center line (located in the middle in the widthwise direction of the bill passageway


5


) of the passageway


5


, so as to detect magnetic components contained in ink with which the bill P was printed. Further, a bill sensor S


1


is provided near the bill inserting slot


3


for detecting insertion, into the slot


3


, of the bill P.




The bill passageway


5


is composed of a pair of bill conveying belts


6


, an electric motor (not shown) for driving the bill conveying belts


6


, and two pulleys


7


and


8


of different diameters for transmitting the rotating movement of the motor to the bill conveying belts


6


. The smaller-diameter pulley


7


is disposed in relation to the linear transfer section


5




a


, while the greater-diameter pulley


8


is disposed in relation to the inverting transfer section


5




b


. The bill conveying belts


6


are each wound on and extend between the two pulleys


7


and


8


under tension along the linear transfer section


5




a


and inverting transfer section


5




b


. Thus, the bill P is subjected to a drive force by the bill conveying belts


6


. Note that reference characters R


1


, R


2


, R


3


, R


4


and R


5


represent follower rollers positioned along the bill conveying belts


6


at predetermined intervals.




Below the linear transfer section


5




a


of the bill passageway


5


, there is provided a stacker unit


10


for cumulatively storing a multiplicity of the bills P, transferred one by one from the inverting transfer section


5




b


, in a bill storage section


20


in a stacked fashion. As shown in FIG.


1


and

FIGS. 2A

,


2


B and


2


C, the stacker unit


10


includes a base plate


11


secured to the casing


2


, a pressing plate


12


for pressing the bill P in a direction substantially perpendicular to the surface of the bill P, and a pair of pantograph-type extendible/contractible link mechanisms


13


for reciprocating the pressing plate


12


in the direction substantially perpendicular to the surface of the bill P. The two link mechanisms


13


are identical in construction but operatively interconnected in a manner as will be later described in detail. The stacker unit


10


also includes an actuator lever


14


for causing the pair of pantograph-type extendible/contractible link mechanisms


13


to extend and contract in response to rotation of an actuator motor M covered with a gear-case and mounted on the obverse side or upperside of the base plate


11


, and a rotary eccentric cam


15


for causing the rotating movement of the actuator motor M to act directly on the actuator lever


14


so that the actuator lever


14


moves linearly in the direction substantially perpendicular to the surface of the bill P.




The pressing plate


12


is connected to the reverse side or underside of the base plate


11


via the link mechanisms


13


opposed to each other in a widthwise direction of the bill P, as seen in FIG.


2


A. Each of the pantograph-type link mechanisms


13


includes a pair of outer and inner link members


13




a


and


13




b


that are pivotally connected with each other, via a connecting shaft


16


, at their respective central positions where the links


13




a


and


13




b


intersect with each other. In each of the pantograph-type link mechanisms


13


, the outer link member


13




a


has its opposite end portions bent outwardly away from the corresponding inner link member


13




b


and then extending parallel to end portions of the inner link member


13




b


. The outer link member


13




a


is pivotally supported at one end


13




a




1


by a bearing piece


11




a


provided on the reverse or underside of the base plate


11


, and is slidably supported or fitted at the other end


13




a




2


in an horizontal elongated hole


12




a




1


formed in a support member


12




a


that is provided on the upperside of the pressing plate


12


. The inner link member


13




b


, on the other hand, is pivotally supported at one end


13




b




1


by a bearing piece


12




b


provided on the upperside of the pressing plate


12


, and is slidably fitted at the other end


13




b




2


in an horizontal elongated hole


11




b




1


formed in a support member


11




b


that is provided on the underside of the base plate


11


. Each of the horizontal elongated holes


12




a




1


and


11




b




1


extends along the longitudinal direction of the bill P, namely, the pressing plate


12


. Each of the pantograph-type link mechanisms


13


extends and contracts as the outer and inner link members


13




a


and


13




b


pivot about the connecting shaft


16


toward and away from each other, between contracted and extended positions, with the other ends


13




a




2


and


13




b




2


of the links


13




a


and


13




b


sliding along the respective horizontal elongated holes


12




a




1


and


11




b




1


in the longitudinal direction of the pressing plate


12


. During that time, the connecting shaft


16


slightly moves along with the sliding movement of the other ends


13




a




2


and


13




b




2


of the outer and inner link members


13




a


and


13




b


, as will be later described.




As shown in

FIGS. 2B and 2C

, the actuator lever


14


has a flat plate section


14




a


operatively coupled with the eccentric cam


15


, and a substantially oval coupling section


14




b


operatively coupled with the connecting shaft


16


and located on the underside of the base plate


11


. The flat plate section


14




a


has a lower end portion extending through a hole formed in a longitudinally-central portion of the base plate


11


in such a manner that it is movable in the direction substantially perpendicular to the surface of the bill P. Horizontal elongated hole


14




b




1


is formed through the coupling section


14




b


in a lateral (widthwise) direction of the pressing plate


12


, and this through-hole


14




b




1


extends in the longitudinal direction of the pressing plate


12


. The connecting shaft


16


is loosely fitted in the through-hole


14




b




1


so that the shaft


16


is movable in the longitudinal direction of the pressing plate


12


. In this way, the connecting shaft


16


is allowed to move within and along the through-hole


14




b




1


in the longitudinal direction of the pressing plate


12


as the other ends


13




a




2


and


13




b




2


of the outer and inner link members


13




a


and


13




b


slide along the respective horizontal elongated holes


12




a




1


and


12




b




1


. This arrangement permits smooth extension/contraction of the pair of the pantograph-type link mechanisms


13


.




In an upper portion of the flat plate section


14




a


extending upward from the upperside of the base plate


11


, there is formed a horizontal elongated hole


14




a




1


extending in the widthwise direction of the pressing plate


12


, and the eccentric cam


15


is coupled with the flat plate section


14




a


by means of an eccentric pin


15




a


extending from the cam


15


and loosely fitted in the elongated hole


14




a




1


. More specifically, the eccentric pin


15




a


is provided on and protrudes from the eccentric cam


15


at a predetermined distance from the rotation shaft M


1


of the actuator motor M functioning as a rotational center of the eccentric cam


15


. The eccentric pin


15




a


moves along the elongated hole


14




a




1


as the eccentric cam


15


is driven to rotate via the actuator motor M. Thus, via the eccentric pin


15




a


, the rotating movement of the eccentric cam


15


causes the actuator lever


14


to move in the direction substantially perpendicular to the surface of the bill P. At the distal end of the eccentric pin


15




a


, there may be provided a slip-out preventing means


17


, such as a screw or projection, for preventing the eccentric pin


15




a


from accidentally slipping out of the elongated hole


14




a




1


formed in the flat plate section


14




a


. A pair of guide members


11




c


are provided on or near the upperside of the base plate


11


for guiding the flat plate section


14




a


of the actuator lever


14


in such a manner that the flat plate section


14




a


can be reliably prevented from tilting in the longitudinal direction of the bill P. Further, another pair of guide members lid are provided on or near the underside of the base plate


11


for guiding the coupling section


14




b


of the actuator lever


14


in such a manner that the coupling section


14




b


can be reliably prevented from swinging in the longitudinal direction of the bill P when the pantograph-type link mechanisms


13


are placed in the contracted position.




As further shown in

FIG. 1

, the bill storage section


20


is disposed below the stacker unit


10


, which receives each bill P pressed downward by the pressing plate


12


of the stacker unit


10


and thereby cumulatively stores therein a multiplicity of the bills P in a stacked state. More specifically, the bill storage section


20


has a bill-storing inlet opening (not shown) formed by a pair of horizontal elongated bill-receiving channel members


21




a


and


21




b


that are opposed to each other in the widthwise direction of the bill P with a predetermined space therebetween slightly smaller than the width of the bill P. In addition, a bill compressing plate


22


having a size corresponding to the size or area of the bill P is provided in parallel relation to the channel members


21




a


and


21




b


and pressing plate


12


. Whereas the channel members


21




a


and


21




b


are secured to the casing


2


, the bill compressing plate


22


is normally urged via a spring


23


toward the pressing plate


12


and can be translated toward the pressing plate


12


in the direction substantially perpendicular to the surface of the bill P pressed by the pressing plate


12


.




In

FIGS. 1

,


3


A and


3


B, the stacker unit


10


is shown as being in a standby state where the pressing plate


12


is located remotest or farthest from the bill storage section


20


. In the standby state, a gap between the pressing plate


12


and the channel members


21




a


and


21




b


constitutes a bill passageway, as best seen in FIG.


1


. Once insertion of the bill P into the bill inserting slot


3


is detected by the above-mentioned bill sensor S


1


, the bill-transferring motor is caused to rotate in a forward direction so as to carry the inserted bill P in a forward direction along the bill passageway


5


, during which time the authenticity of the inserted bill P is tested on the basis of the outputs from the magnetic heads H


1


and H


2


. In case the inserted bill P has been determined as a “false bill”, the bill-transferring motor is caused to rotate in a reverse direction in order to immediately reject or return the bill P. If the inserted bill P has been determined as a “genuine bill”, on the other hand, the forward rotation of the bill-transferring motor is terminated upon lapse of a predetermined time, so that the bill P is stopped at a position corresponding to the pressing plate


12


. Then, the actuator motor M is caused to rotate in a forward direction so that a bill accumulating operation is performed for cumulatively storing each inserted bill P. Bill-carrying switch S


2


(

FIGS. 2A and 2C

) is provided on the pressing plate


12


in order to perform control for causing the actuator motor M to rotate during the bill accumulating operation. The eccentric cam


15


is caused to make one turn or rotation by the rotation of the actuator motor M so that the pressing plate


12


makes one reciprocating movement toward and away from the bill P.




As the eccentric cam


15


makes one quarter (¼) turn in a direction of arrow A by the rotation of the actuator motor M while the stacker unit


10


is in the standby state, the eccentric pin


15




a


moves along the elongated hole


14




a




1


from the longitudinally-central portion to the right end (

FIG. 3A

) of the hole


14




a




1


while depressing the actuator lever


14


.

FIG. 3C

shows a state of the stacker unit


10


when the eccentric cam


15


has made the ¼ turn, and

FIG. 3D

shows a manner in which the pressing plate


12


is depressed by the ¼ turn of the eccentric cam


15


. Namely, in this state, the actuator lever


14


presses the connecting shaft


16


, connecting between the link mechanisms


13


, downwardly from the positions shown in

FIGS. 3A and 3B

, in response to which the other ends


13




a




2


and


13




b




2


of the outer and inner link members


13




a


and


13




b


in each of the link mechanisms


13


slide along the respective horizontal elongated holes


12




a




1


and


12




b




1


from the right end toward the left end (

FIG. 3D

) of the holes


12




a




1


and


12




b




1


. Accordingly, the outer and inner link members


13




a


and


13




b


in each of the link mechanisms


13


are caused to pivot with respect to each other, about the connecting shaft


16


, into an opened position so that the pantograph-type link mechanisms


13


are brought to the extended position. During that time, the connecting shaft


16


also moves along the through-hole


14




b




1


in the coupling section


14




b


of the actuator lever


14


from the right end toward the left end of the through-hole


14




b




1


. By the pantograph-type link mechanisms


13


being thus brought to the extended position, the pressing plate


12


moves closer to the bill compressing plate


22


of

FIG. 1

to thereby press the bill P against the compressing plate


22


.




As the eccentric cam


15


further makes a half (½) turn, from the position of

FIG. 3C

, in the arrow A direction by a further forward rotation of the actuator motor M, the eccentric pin


15




a


moves along the laterally elongated hole


14




a




1


from the right end to the longitudinally-central portion of the hole


14




a




1


while depressing the actuator lever


14


.

FIG. 3E

shows a state of the stacker unit


10


when the eccentric cam


15


has made the half (½) turn, and

FIG. 3F

shows the pressing plate


12


having been depressed to a maximum extent by the half turn of the eccentric cam


15


. Namely, in this state, the actuator lever


14


presses the connecting shaft


16


, connecting between the link mechanisms


13


, further downwardly from the positions shown in

FIG. 3D

, in response to which the other ends


13




a




2


and


13




b




2


of the outer and inner link members


13




a


and


13




b


in each of the link mechanisms


13


further slide along the respective horizontal elongated holes


12




a




1


and


11




b




1


toward the left end of the holes


12




a




1


and


11




b




1


. Accordingly, the outer and inner link members


13




a


and


13




b


in each of the link mechanisms


13


are caused to further pivot with respect to each other, about the connecting shaft


16


, into a further opened position so that the pantograph-type link mechanisms


13


are brought to a further extended position. During that time, the connecting shaft


16


also moves along the through-hole


14




b




1


from the position of

FIG. 3D

further toward the left end of the through-hole


14




b




1


. By the pantograph-type link mechanisms


13


being thus brought to the further extended position, the pressing plate


12


moves further closer to the bill compressing plate


22


of FIG.


1


and then passes through the bill-storing inlet opening (not shown) formed by the opposed channel members


21




a


and


21




b


while still pressing the bill P, so that the bill P passes through the bill-storing inlet opening while being bent by the opposed channel members


21




a


and


21




b


. Thus, the pressing plate


12


depresses the bill compressing plate


22


in a direction of arrow B (

FIG. 1

) against the bias of the spring


23


while pressing the bill P against the compressing plate


22


. Thus, a gap is formed between the channel members


21




a


and


21




b


and the bill compressing plate


22


, and the bill P pressed by the pressing plate


12


is introduced into the gap.




Then, as the eccentric cam


15


further makes the remaining half (½) turn in the arrow A direction by a further forward rotation of the actuator motor M, the eccentric pin


15




a


moves along the elongated hole


14




a




1


from the longitudinally-central portion to the left end of the hole


14




a




1


while upwardly pressing the actuator lever


14


, after which the eccentric pin


15




a


returns from the left end to the longitudinally-central portion of the elongated hole


14




a




1


. During that time, the connecting shaft


16


, connecting between the link mechanisms


13


, is pressed upward, in response to which the other ends


13




a




2


and


13




b




2


of the outer and inner link members


13




a


and


13




b


in each of the link mechanisms


13


slide along the respective horizontal elongated holes


12




a




1


and


11




b




1


from the left end toward the right end of the holes


12




a




1


and


11




b




1


. Accordingly, the outer and inner link members


13




a


and


13




b


in each of the link mechanisms


13


are caused to pivot with respect to each other, about the connecting shaft


16


, into a closed position so that the pantograph-type link mechanisms


13


are brought to a contracted position. During that time, the connecting shaft


16


also moves along the through-hole


14




b




1


from the left end toward the right end of the through-hole


14




b




1


. By the pantograph-type link mechanisms


13


being thus brought to the contracted position, the pressing plate


12


moves back to the position shown in

FIGS. 3A and 3B

, so that the bill compressing plate


22


is pressed toward the opposed channel members


21




a


and


21




b


via the bias of the spring


23


. This way, the opposite sides edge portions of the bill P abuts against the channel members


21




a


and


21




b


and thus the upward movement of the bill compressing plate


22


is stopped, so that a plurality of the bills P are held between the channel members


21




a


and


21




b


and the compressing plate


22


in compressed condition. In this manner, a multiplicity of the bills P can be stored in the bill storage section


20


in a stacked state.




Whereas the bill handling apparatus


1


of the invention has been described as employing the stacker unit


10


where the rotating movement of the actuator motor M is converted via the eccentric cam


15


into linear reciprocating movement of the actuator lever


14


, the combination of the actuator motor M and eccentric cam


15


may be replaced by a linear motor; that is, the actuator lever


14


may be caused via the linear motor to make the linear reciprocating movement. Further, in each of the pantograph-type link mechanisms


13


, the pair of the outer and inner link members may be slidably coupled at both ends to the base plate


11


and pressing plate


12


. Further, the present invention is applicable to handling of any other desired paper-like pieces than bills (pieces of paper money), such as gift vouchers and other types of vouchers, certificates of stock, bills of exchange and checks.




In summary, the bill handling apparatus of the present invention enables the extension and contraction of the link mechanisms by means of only one actuator and thus can significantly simplify the structure of the paper-like-piece-pressing-plate reciprocating unit.



Claims
  • 1. A paper-like piece handling apparatus comprising:a pressing plate that presses a paper-like piece; and a reciprocating unit that reciprocates said pressing plate, said reciprocating unit including a pair of link mechanisms disposed along opposite sides of said pressing plate, each of said link mechanisms including a pair of link members pivotally connected with each other in an intersecting fashion, at least one of said link members being coupled at one end to said pressing plate for sliding movement therealong, wherein said reciprocating unit further includes: a connecting member that interconnects said pair of link mechanisms at a predetermined position; an actuator operatively connected to said connecting member; and a drive unit that linearly displaces said actuator, whereby said pair of link mechanisms are caused to extend and contact, together as an integral unit, via said connecting member in response to linear reciprocating movement of said actuator so that said pressing plate reciprocates in response to extension and contraction of said pair of link mechanisms, wherein said actuator is connected at one end to said drive unit and is loosely coupled at another end to said connecting member, said drive unit displaces said actuator linearly in a direction substantially perpendicular to a surface of the paper-like piece.
  • 2. A paper-like piece handling apparatus as claimed in claim 1 wherein said link mechanisms are interconnected via said connecting member at a point where said pair of link members in each of said link mechanisms intersect with each other.
  • 3. A paper-like piece handling apparatus as claimed in claim 1 wherein said drive unit includes a motor and a cam mechanism that converts rotating movement of said motor into linear movement of said actuator.
  • 4. A paper-like piece handling apparatus as claimed in claim 1 which further comprises a transfer mechanism that carries the paper-like piece to a predetermined position for being pressed by said pressing plate, and a storage section that stores therein the paper-like piece pressed by said pressing plate.
Priority Claims (1)
Number Date Country Kind
2000-215676 Jul 2000 JP
US Referenced Citations (10)
Number Name Date Kind
4678072 Kobayashi et al. Jul 1987 A
4784274 Mori et al. Nov 1988 A
5209335 Shuren et al. May 1993 A
5344135 Isobe et al. Sep 1994 A
5421443 Hatamachi et al. Jun 1995 A
5632367 Bergeron et al. May 1997 A
5676366 Polidoro Oct 1997 A
5836435 Fujita et al. Nov 1998 A
5876033 Lonati Mar 1999 A
5899452 Walsh May 1999 A
Foreign Referenced Citations (2)
Number Date Country
08-241448 Sep 1996 JP
26-09155 Feb 1997 JP