The present application relates to paper manufacturing, and in particular to equipment and methods for handling trim.
Paper making machinery produces a web of paper. It is known to trim side edges of the web. It is known in the art to cut the trim using a blade, such as a rotary blade, or using a water jet. An overview of trim handling systems is described in the article, “Trim Handling Systems” presented at the TAPPI Papermaking Conference, Atlanta, Ga., 1999.
As described, trim conveying systems may be divided into five categories as follows:
1) a system for discharging the trim directly into a repulper below the winder,
2) an injector system,
3) a chopper fan system,
4) a combination shredder and transport fan system, and
5) a vacuum system.
Even in case (1) where the repulper is immediately below the winder area, the trim material is removed from the web using a duct or chute and a source of negative pressure to draw the trim into the duct or chute. The trim material is typically guided into the pulper of the paper making machine and immediately returned into producing paper.
Some paper making machines have web speeds well above 60 km/h, and in fact as high as 100 km/h to 140 km/h. At such speeds, a number of problems arise in edge trimming, for example, the stability of the web due to air turbulence, as is described in commonly-assigned PCT publication WO 2011/121390.
One such problem is the starting of trimming. When an untrimmed web is already in motion on the machine, the introduction or insertion of the cutting tool could disturb the web in a negative way. In some cases, bringing the tool in from the outside could cause the outer side edge to fold up. If the tool is brought down onto the web from above or below, not only must care be taken not to cause too much resistance on the web and crumple the web, but the trim must be carefully separated from the trim downstream of the cutting tool to allow the trim being cut from the web to go into duct or chute for recovery. If this separation is not done properly, the stability of the web can be jeopardized.
The separating of the trim can be done on slow webs by hand, however, this is not the case for high speed webs. It is known in the art to use a water jet system to separate the trim when the trimming tool engages the web. This typically involves using a number of small water jets placed across the trim width that are pulsed to cause a break in the trim (and not in the web). In the case of a water jet trim tool, the jet is positioned over the web, and the jet is turned on to begin the trim cutting. Very shortly thereafter, the separation of the trim from itself ensues.
The guiding of the trim into a handling chute, shaft or duct is done in paper making machines by connecting the duct to a source of suction. The flow rate of air drawn for such operation is considerable.
Applicants have used in a trim handling duct an air amplifier jet, at the outlet of the duct in an upper part of the repulper, to create a negative pressure in the duct to draw trim along the duct. The same system used additionally a pair of conical air jets to push trim into the inlet of the trim handling duct.
It has been discovered that a wide air jet covering the width of the trim, namely a jet from an air knife or air wedge, can propel trim into a trim handling duct over distances of about 2 m to 3 m without the use of a vacuum source in the duct. The trim is efficiently carried and/or propelled by the air jet and pushed out the outlet of the duct into the pulper.
It has been discovered that trim can be propelled farther along a duct, or heavier trim can be propelled along a duct for the same distance, using additional air knives within the trim handling duct. This propulsion of trim within the duct can be done without use of a source of negative pressure in the duct.
In the case that the air jet is used both for separating the trim and for driving the trim into the duct or chute, it has been found that the air jet that is powerful enough to sever the trim is sufficiently strong to create a driving airflow that will guide the trim into a duct or along a chute over a distance sufficient for effective removal of the trim from the immediate area of web. The airflow created by the trim separating air jet can carry the trim at sufficient speed between one to five meters.
The invention will be better understood by way of the following detailed description of embodiments of the invention with reference to the appended drawings, in which:
During operation of the apparatus, the material web 10 is severed by means of a high-pressure water jet 22. The resultant edge strip 11 is removed via the shaft 25 provided on the cutting table 23. The edge strip 11 in this case is already sliding into the shaft 25 because of the forward motion of the material web 10. In addition, the edge strip 11 is sucked away out of the plane of the material web and into the shaft 25 by a suction device attached to the shaft 25. The inclined surface 24 provided on the cutting table 23 effects additional stabilization of the material web 10 over the cutting table. In the case of a web loading operation, the structural unit 30, consisting of the cutting device 20 and the cutting table 23, and of the elements attached thereto, is moved laterally out of the recess 45 by means of the carrier beam 31. This structural unit 30 is then moved back into the transport path of the material web 10, in order to support the newly incoming and extending web.
Air jets that produce a wide and thin stream of air are known in the art. For convenience, in this specification, “linear air nozzle” and “linear air jet” are used to mean an air nozzle and an air jet air flow or stream respectively, such as an air knife or air wedge nozzle that produces a wide and thin stream at sufficient velocity to propel the paper trim.
An air knife is a tool used typically for cleaning surfaces of objects. The high velocity stream can be formed by arranging a number of small nozzles in a row or by having a nozzle orifice that is a slit. Air wedge nozzles have a row of small nozzles. The jets from the small nozzles blend together into the stream. High velocity air jets also induce ambient air around the nozzle to flow with the nozzle jet, an effect known as air amplification. The flow rate induced by an air amplifier nozzle can be many times the flow rate fed to the high velocity nozzle. An air wedge nozzle can be shaped to help air amplification flow. In the case of a slit nozzle, the slit can be uniform or provide greater airflow at the side ends of the stream for better stream stability.
While laminar flow is typically the goal in providing such a stream, the stream of air resulting from a wide nozzle will form a turbulent airflow with greater distance from the nozzle. Some air knife nozzles use the Coand{hacek over (a)} effect to help form the thin and wide stream, and are able to achieve efficient, high velocity streams. Whether such a thin stream can be sufficient for propelling trim into the duct opening can depend on trim speed and weight.
It would appear that the air flow near the nozzle is very effective in redirecting the trim into the duct. Further away from the nozzle, the air flow created by such nozzles has some turbulence, and it would appear that this turbulence helps transport trim material.
In the embodiment of
An AiRTX 80000 series air knife nozzle 16 was also arranged on both sides of the duct 25 used at 50 psi (about 325 kPa) and a flow of about 425 liters per minute to drive the trim within the duct. The wedge has a large number of small nozzle orifices and is shaped to create a strong inverted wedge-shaped air curtain that travels with good speed and distance. The air knife uses higher pressure and less air flow, however, its strong air curtain travels a shorter distance.
While the nozzles recited above worked well on tissue trim, it is expected that heavier paper trim can be handled efficiently with air nozzles.
The combined air flow of about 1900 liters per minute was found to be less than what is required to reliably handle the trim discharge using suction flow or even using a plurality of air nozzles with a shorter nozzle dimension in the transverse direction with respect to the web transport direction.
For example, an arrangement of two super air nozzles from Exair at 80 psi (550 kPa) and 14 CFM (400 liters per minute) each used to divert the trim into the duct, followed at the duct outlet by an AiRTX model 15000 air amplifier at 80 psi (550 kPa) and 60 CFM (1700 liters per minute) has been used by Applicant and shown to perform satisfactorily for trim handling from the trim station to a repulper immediately below the trim station. However, the three nozzles consume a total of 88CFM (2500 liters per minute), namely about 30% more compressed air flow. Furthermore, the air amplifier used induces suction in the duct, creating greater air flow through the duct into the repulper.
In
The use of the air knife jet, as illustrated in
The duct can be substantially of rectangular cross-section as illustrated in
In the embodiment illustrated in
As shown in
In the perspective view of
While in the embodiment of
While a linear jet has been shown to be particularly efficient in propelling trim into the duct, in some embodiments, the air jet propelling trim into the duct can be conical or of other configuration, while the trim is propelled to a discharge end of the duct into a repulper near the trim station (namely less than about 5 m of duct), without needing a source of suction or negative pressure.
Number | Name | Date | Kind |
---|---|---|---|
4231272 | Crouse | Nov 1980 | A |
4904344 | Peiffer | Feb 1990 | A |
5512136 | Altug et al. | Apr 1996 | A |
5759350 | Pyron et al. | Jun 1998 | A |
5785814 | Tang et al. | Jul 1998 | A |
6327948 | Tuori | Dec 2001 | B1 |
6524443 | Doelle et al. | Feb 2003 | B2 |
6740200 | Seymour et al. | May 2004 | B2 |
6918996 | Hasanen et al. | Jul 2005 | B2 |
7166194 | Straub et al. | Jan 2007 | B2 |
20030183353 | Helgesson et al. | Oct 2003 | A1 |
20060169114 | Wilson | Aug 2006 | A1 |
20120241426 | Caspar | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
0870583 | Oct 1998 | EP |
840930 | Jan 1938 | FR |
391708 | May 1933 | GB |
WO 2009022053 | Feb 2009 | WO |
Entry |
---|
PCT/CA2013/050141 international search report. |
PCT/CA2013/050141 Written Opinion. |
PCT/CA2013/050141 international preliminary report with related claims. |
Number | Date | Country | |
---|---|---|---|
20130220564 A1 | Aug 2013 | US |