The present invention refers to a paper roll cutting device and to a related cutting method.
It is known that in the production of paper in rolls, such as, for example, rolls of toilet paper or paper for drying and the like, the paper is generally wound on cardboard cores and forms rolls of large linear dimensions, called sticks. The sticks are subsequently cut according to planes orthogonal to their axis, to form smaller and commercial-sized rolls. This cutting operation is generally carried out using a substantially disc-shaped rotating blade, which is brought from a first upper disengagement position to a second lower cutting position, setting it in rotation according to a circular trajectory by means of a rotating arm.
Although devices of the type described are capable of performing the function for which they were designed, they have some important drawbacks.
In particular, large disc-shaped blades are required to simultaneously cut the rolls arranged on two or three parallel channels placed on the same horizontal plane.
The aim of the present invention is to provide a paper roll cutting device and a related cutting method that overcome the aforementioned drawbacks.
Another aim of the present invention is to provide a paper roll cutting device and a related cutting method that are adapted to interact with the current structure of parallel channels that are arranged on the same horizontal plane in which the diameter of the blade is reduced.
A further aim is to provide a paper roll cutting device and a related cutting method such as to make the rotating blade execute an almost straight trajectory during the cutting phase.
These aims according to the present invention are achieved by providing a paper roll cutting device and a related cutting method as set out in the independent claims.
Further characteristics are comprised in the dependent claims.
The features and advantages of a paper roll cutting device and a related cutting method according to the present invention will become clearer from the following description, which is to be understood as exemplifying and not limiting, with reference to the appended schematic drawings, wherein:
With reference to the figures, a paper roll cutting device indicated as a whole with 10 is shown.
The cutting device 10 comprises a rotating motorized arm 20, provided with its own rotation axis 21 fixed in the space, and at least one cutting blade 30 connected to the rotating motorized arm 20 to cut at least a paper stick 100 obtaining said paper rolls. The cutting blade 30 is a circular disc and is set in rotation around its own axis 31 by a motor, not shown, by means of a belt transmission 32.
In the cutting device 10 according to the invention, the rotation axis 31 of the cutting blade 30 is cyclically movable during the rotation of the motorized arm 20. The distance between the rotation axis 21 of the rotating arm 20 and the rotation axis 31 of the cutting blade 30 is therefore progressively variable cyclically during the rotation of the motorized arm 20, reaching a minimum distance at the lower point of the rotation trajectory of the cutting blade 30, i.e. near the cutting area of the paper sticks 100. The cutting blade 30 describes an asymmetrical elliptical trajectory 34, substantially flat in the lower section.
According to a preferred embodiment of the invention, the rotating motorized arm 20 comprises a first rotating plate 22 and a second roto-translating plate 23 connected to each other.
The first rotating plate 22 is connected integrally to a first transmission shaft 121 which has a rotation axis coinciding with the fixed rotation axis 21 of the arm 20 and is controlled with a continuous rotation. The transmission shaft 121 is for example supported by means of bearings on one side of the machine 11, as shown by way of example in
A pair of linear guides 24 is placed between the first 22 and the second 23 plate to guide the relative translation of the second plate 23 with respect to the first plate 22, as visible in
A mechanical connection mechanism comprising a connecting rod 26a and a crank 26b is coupled to its opposite ends respectively to the second roto-translating plate 23 and to the first rotating plate 22.
The rotation axis 31 of the cutting blade 30 is integral to the second roto-translating plate 23.
One or more return springs 25 are arranged between the first 22 and the second 23 plates, parallel to the linear guides 24. The springs 25 work in traction to lighten the centrifugal force of the second roto-translating plate 23 and not to overload the connecting rod 26a and the crank 26b and everything connected upstream of them in view of the rotations that can reach 180 rotations/minute.
The mechanical connection mechanism comprising the connecting rod 26a and the crank 26b is equipped with its own motorization with respect to the rotating motorized arm 20.
The crank 26b is keyed to a second transmission shaft 121′ controlled with an intermittent rotation.
The crank 26b is housed in a suitable circular seat 28 of the first rotating plate 22 so as to allow a relative rotational movement with respect to the first rotating plate 22.
The connecting rod 26a is hinged to the second roto-translating plate 23 by means of a pin 27.
According to a preferred embodiment of the invention, the first transmission shaft 121 of the first plate 22 is made internally hollow and concentrically houses the second transmission shaft 121′ of the crank 26b.
According to a preferred embodiment of the invention, the two transmission shafts 121 and 121′ have a common motorization through in particular an intermittor 40.
The intermittor 40, as known, is a mechanical unit with parallel axes which transforms a constant rotation of an input shaft 41 into an intermittent rotation of the output shaft 42, by means of two cams with a conjugate profile that drag two or more idle rollers integral to the dividing disc, contained inside a case 43. The case 43 is rotatably supported on the side 11 of the machine through a fixed shaft 44 by means of bearings and is set in continuous rotation through belt transmission means 45, connected to a single motor 46.
The intermittent output shaft 42 is rigidly connected to the intermittent transmission shaft 121′ of the rotating motorized arm 20, while the hollow transmission shaft 121 of the rotating motorized arm 20 is rigidly connected to the case 43 of the intermittor 40. It follows that the intermittor 40 sets the transmission shaft 121 of the first plate 22 in continuous rotation and the transmission shaft 121′ of the crank 26b in intermittent rotation.
The rotation of the entire intermittor 40 around its axis sets the entire cutting arm 20 in rotation, causing the second plate 23 to make a roto-translating movement and consequently the cutting blade 30, integral thereto, to travel the non-symmetrical elliptical trajectory 34 shown in
In particular,
The non-symmetrical elliptical trajectory 34 travelled by the axis 31 of the cutting blade 30 is also shown in
Furthermore, in
The use of the intermittor 40 is particularly advantageous allowing to reach high frequencies, with great precision and low costs.
According to a further embodiment, the two transmission shafts 121 and 121′ could have two motorizations distinct between them, suitably synchronized.
What described with reference to a single cutting blade 30 can be extended in a similar way to the provision of two cutting blades 30 arranged at 180° on the motorized rotating arm 20. According to this embodiment, the intermittor 40 will work with double frequency, while the continuous rotation of the rotating arm 20 can be reduced, for example to values of the order of 120/130 strokes per minute. This solution is particularly balanced during rotation, given the symmetrical distribution of the rotating masses and could make the use of return springs unnecessary.
The paper roll cutting device and the relative cutting method object of the present invention have the advantage of making the blade execute an almost straight trajectory during the cutting step.
The paper roll cutting device as conceived herein is susceptible to numerous modifications and variations, all falling within the invention; furthermore, all details are replaceable by technically equivalent elements. In practice, the materials used, as well as the dimensions thereof, can be of any type according to the technical requirements.
Number | Date | Country | Kind |
---|---|---|---|
102020000002629 | Feb 2020 | IT | national |