This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2021-014733, filed on Feb. 2, 2021, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate to a paper sheet storage device, a paper sheet processing method, and a thermal printer.
In related art, for example, a paper sheet storage device used as a printer stores a roll paper sheet (a paper sheet obtained by winding a long paper sheet in a roll shape) and pulls out the paper sheet from the roll paper sheet to print.
For ease of use, a drop-in type roll paper sheet that is not pivotally supported may be used as such a roll paper sheet. In this case, the roll paper sheet stored inside the paper sheet storage device may be curled in various directions (hereinafter, referred to as “the roll paper sheet is curled”) due to a reaction of pulling out the wound long paper sheet. The roll paper sheet is more likely to curl when the roll paper sheet becomes lighter as a diameter of the roll paper sheet becomes smaller.
In the paper sheet storage device, a near end of the roll paper sheet is detected by a near end sensor. However, the accurate detection of the near end of the roll paper sheet may not be easy since the roll paper sheet is curled.
In general, according to one embodiment, a paper sheet storage device that is capable of accurately detecting a near end of a stored roll paper sheet is provided.
A paper sheet storage device according to an embodiment includes a storage unit configured to store a roll paper sheet obtained by winding a long paper sheet, a near end detection unit configured to detect a near end since a diameter of the roll paper sheet stored in the storage unit becomes smaller than a threshold diameter, and a pressing unit configured to press the roll paper sheet stored in the storage unit in a direction of the near end detection unit. According to another embodiment, a paper sheet processing method involves detecting a near end of a roll paper sheet comprising a wound long paper sheet stored in a storage component as a diameter of the roll paper sheet decreases; and pressing the roll paper sheet stored in the storage component in a direction of the detecting.
An embodiment of a paper sheet storage device is described below with reference to the drawings. In the embodiment described below, a printer is described as an example of the paper sheet storage device. The embodiment described below does not limit a configuration, a specification, and the like of the paper sheet storage device.
As illustrated in
The roll paper sheet P is a paper sheet having a substantially cylinder shape obtained by winding a long thermal paper sheet, and the paper sheet is pulled out from an outer peripheral portion at a winding end part. A diameter of the roll paper sheet P gradually becomes smaller as the paper sheet is pulled out.
The storage unit 21 stores the roll paper sheet P in a state in which the lid 3 is opened. The roll paper sheet P stored in the storage unit 21 is not fixed, for example, pivotally supported in the storage unit 21 (drop-in type), and is capable of freely moving in the space in the storage unit 21.
The storage unit 21 includes a wall portion 25 and a wall portion 26. The wall portion 25 includes a surface 251. The wall portion 26 includes a surface 261. The wall portion 25 and the wall portion 26 face each other such that the surface 251 and the surface 261 form an acute angle with each other. The wall portion 25 and the wall portion 26 support the roll paper sheet P stored in the storage unit 21 by the surface 251 and the surface 261 abutting against an outer peripheral surface G of the roll paper sheet P.
A pressing unit 32 is provided on the housing 2. The pressing unit 32 includes a shaft 33 pivotally supported on the housing 2 and is rotatable with respect to the housing 2 about the shaft 33. The pressing unit 32 includes a flapper 34 that extends from the shaft 33, and a roller 35 that is provided at a tip portion of the flapper 34 and is formed of a metal having a predetermined weight that implements a function as a weight. The flapper 34 has a curve along the outer peripheral surface G of the roll paper sheet P that has a large diameter and that is just stored in the storage unit 21, and is disposed along the outer peripheral surface G of the roll paper sheet P. The roller 35 is rotatable with respect to the flapper 34.
Since the roller 35 may have a predetermined weight, the pressing unit 32 rotates toward the roll paper sheet P side (toward a lower side in
The print head 23 is provided inside the housing 2. The print head 23 is provided at a substantially intermediate position between the storage unit 21 and the dispensing port 4 and is provided in the middle of a conveyance path of the paper sheet pulled out from the roll paper sheet P. The print head 23 is a line thermal head in which a large number of heat generating elements are disposed on a line. A platen 31 is provided on the lid 3.
The platen 31 has a rubber-shaped cylinder shape, and is rotatably attached to the lid 3. If the lid 3 is in a closed state with respect to the housing 2, the platen 31 is located at a position facing the print head 23 and presses the print head 23. The paper sheet pulled out from the roll paper sheet P is sandwiched by the print head 23 and the platen 31, and the platen 31 is rotated by a drive unit (not shown), so that the paper sheet is pulled out from the roll paper sheet P, and the sandwiched paper sheet is conveyed toward the dispensing port 4. The print head 23 applies heat to the paper sheet to be conveyed by selectively generating heat from the heat generating elements aligned on one line, and prints information. The printed paper sheet is discharged to the outside from the dispensing port 4. As the paper sheet is pulled out from the roll paper sheet P, printed, and discharged to the outside from the dispensing port 4, the diameter of the roll paper sheet P gradually becomes smaller.
The platen 31 is separated from the print head 23 by opening the lid 3, thereby opening the conveyance path of the paper sheet. Therefore, the lid 3 is capable of being opened, and the paper sheet is capable of being pulled out from the roll paper sheet P stored in the storage unit 21 and is capable of being easily set between the print head 23 and the platen 31.
A near end detection unit 24 is provided on the storage unit 21. The near end detection unit 24 is formed of, for example, a transmission type optical sensor that executes different outputs depending on whether the light emitted from the light emitting unit is received. The near end detection unit 24 is capable of detecting the roll paper sheet P located at a deepest portion 211 of the storage unit 21. The deepest portion 211 is the deepest position in a direction of gravity in the storage unit 21. The near end detection unit 24 detects, by detecting an outer periphery S of the roll paper sheet P located at the deepest portion 211, the near end indicating that the remaining amount of the paper sheet wound around the roll paper sheet P is low.
An extension line of the surface 251 of the wall portion 25 and an extension line of the surface 261 of the wall portion 26 both extend in a direction of the near end detection unit 24. That is, the near end detection unit 24 is located substantially in an extension direction of the surface 251, and the near end detection portion 24 is located substantially in an extension direction of the surface 261. Preferably, the surface 251 and the surface 261 are provided at an acute angle smaller than 90°. The near end detection unit 24 is located near an intersection of the extension line of the surface 251 and the extension line of the surface 261. Therefore, if the diameter of the roll paper sheet P becomes smaller, the roll paper sheet P moves along the surface 251 and the surface 261 in a direction of approaching the near end detection unit 24 as shown in
The above-described pressing unit 32 presses the roll paper sheet P in the direction of the near end detection unit 24. Specifically, as shown in
As shown in
The platen 31 is separated from the print head 23 and moves upward as the lid 3 is opened. In this state, the pressing unit 32 does not press the roll paper sheet P. When the roll paper sheet P is replaced and replenished, the new roll paper sheet P is supplied from the opening portion 22. The supplied roll paper sheet P is positioned such that the outer peripheral surface G abuts against the surface 251 of the wall portion 25 and the surface 261 of the wall portion 26. Then, the paper sheet is pulled out from the roll paper sheet P and is set between the print head 23 and the platen 31. Thereafter, when the lid 3 is closed, the paper sheet is sandwiched between the print head 23 and the platen 31. The flapper 34 of the pressing unit 32 presses the roll paper sheet P in the direction of the near end detection unit 24.
From here, an attachment position of the near end detection unit 24 and the deepest portion 211 are described. As illustrated in
The printer 1 may be obliquely provided depending on a use environment.
The printer 1 may be vertically provided depending on the use environment.
While an embodiment has been described above, this embodiment has been presented by way of example only, and is not intended to limit the scope of the embodiment. The novel embodiment may be implemented in various other forms. Various omissions, substitutions and modifications may be made without departing from the spirit of the embodiment. The claims and the equivalents of the claims are intended to cover this embodiment or the modifications as would fall within the scope and spirit of the embodiment.
For example, in the above-described embodiment, the state in which the printer 1 is inclined by 0° (flatly placed), the state in which the printer 1 is inclined by 45°, and the vertically placed state in which the printer 1 is inclined by 90° are described as examples, but the printer 1 may be provided at any angle from 0° to 90°.
In the embodiment, the printer 1 is described as an example of the paper sheet storage device. However, the embodiment is not limited thereto, and the paper sheet storage device may be a device other than the printer 1. The paper sheet storage device may be, for example, a device built in the printer 1, or may be, for example, a device attached to the printer 1. The paper sheet storage device may be a device attached to a device other than the printer 1.
In the embodiment, it is described that the surface 251 of the wall portion 25 and the surface 261 of the wall portion 26 form the acute angle with each other. However, the embodiment is not limited thereto, and the surface 251 of the wall portion 25 and the surface 261 of the wall portion 26 may face each other at an angle smaller than 180°.
In the embodiment, it is described that the transmission type optical sensor is used as the near end detection unit 24. However, the embodiment is not limited thereto, and the near end detection unit 24 may be, for example, a reflection type optical sensor or a sensor that detects the presence or absence of the outer peripheral portion by physically coming into contact with the outer peripheral portion of the approaching roll paper sheet P. The near end detection unit 24 may be a sensor that detects a core tube of the approaching roll paper sheet P.
Number | Date | Country | Kind |
---|---|---|---|
2021-014733 | Feb 2021 | JP | national |