These and/or other aspects and advantages of the present general inventive concept will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present general inventive concept by referring to the figures.
Referring to
The feeding roller unit 10 rotates in clockwise and/or counterclockwise directions to advance (or feed) a paper sheet P toward a print head 430 in a feeding direction F1 and/or retreat (or feed) the paper sheet P from the print head 430 in a retreat direction F2 opposite to the feeding direction. Hereinafter, the feeding direction and the retreat direction are referred to as a feeding direction or sub-scanning direction of the paper sheet P. The feeding roller unit 10 is supported by a frame 1 to be shifted toward the axis direction so as to shift the paper sheet P toward a direction having an angle with the feeding direction, for example, a direction orthogonal to the feeding direction along which the paper sheet P advances, i.e., toward a main scanning direction. That is, the paper sheet P is shifted from a first paper path P1 to a second paper path P2.
The feeding roller unit 10 includes a rotary shaft 11, at least one roller member 12 which is installed on the rotary shaft 11, and a gear member 13 which is installed at an end of the rotary shaft 11 to receive a rotation power from a feeding unit 121 to drive the at least one roller member 12. A controller 15 may control the feeding unit 121 to feed the paper sheet P in opposite direction during a printing operation.
The feeding roller shifting unit 500 includes a stationary cam member 100, a rotary cam member 200, and a driving unit 300 to drive the rotary cam member 200. It is possible that the controller 15 may control the feeding unit 21 and the driving unit 300.
In addition, it is also possible that the feeding unit 21 can be used as the driving unit 300 using a clutch unit or one or more gears to selectively transmit the rotation power of the feeding unit 21 to the rotary cam member 200 since the rotation power can be transmitted to the gear member 13 in a feeding operation to feed the paper sheet P and to the rotary cam member 200 in a shifting operation to shift the paper sheet P.
The paper sheet P can be fed and shifted according to a friction between the paper sheet P and the roller member 12. When each roller member 13 is a pair of rollers disposed opposite sides of the paper sheet P which is disposed on a platen (not illustrated), the pair of rollers can be shifted by the feeding roller unit 10. In this case, one of the pair of the rollers is connected to the gear member 13, and the other one of the pair of the rollers does not receive the rotation power to feed the paper sheet P using a friction with the one of the pair of the rollers, but is shifted together with the one of the pair of the rollers according to the shifting of the feeding roller unit.
The stationary cam member 100 is fixed to the frame 1 and includes a surface on which a first cam profile 110 is formed to be gradually heightened from a side toward the other side. At least one or more combination holes 1a are formed in the frame 1, and one or more combination projections 101 protrude from the stationary cam member 100. Thus, the combination projections 101 are inserted into corresponding ones of the at least one or more combination holes 1a. As a result, the stationary cam member 100 is fixedly combined with the frame 1 so as not to rotate with respect to the frame 1.
According to the present embodiment, the first cam profile 110 may be formed in a step shape as illustrated in
Each pair of the five pairs of steps has the same height, and the five pairs of steps are classified into first inclined steps 110a having a lowest height through fifth inclined steps 110e having a highest height. The first inclined steps 110a having the same height are disposed at an interval of 1800, and sliding surfaces S are formed between the first inclined steps 110a and the second inclined steps 1106b adjacent to the first inclined steps 110a. The sliding surfaces S are inclined with respect to the base 111 to connect the adjacent steps. The third inclined steps 110c through the fifth inclined steps 110e are constituted in a structure as described above. The first cam profile 110 has a rotation symmetry structure based on the first inclined steps 110a.
The rotary cam member 200 includes a second cam profile 210 corresponding to the first cam profile 110 of the stationary cam member 100 on a side thereof opposite to a second base 211 and is combined with the stationary cam member 100 so as to be separated from the stationary cam member 100. The rotary shaft 11 of the feeding roller unit 10 is combined with a center of the rotary cam member 200. The second cam profile 210 is formed in a shape corresponding to a shape of the first cam profile 110 and thus has a rotation symmetry structure as illustrated in
Shaft holes 1b, 102, and 202 are formed in the frame 1, the stationary cam member 100, and the rotary cam member 200, respectively. The rotary shaft 11 penetrates the shaft holes 1b, 102, and 202. First and second bushings 30 and 40 are disposed in the shaft hole 1a of the frame 1 and the shaft hole 202 of the rotary cam member 200, respectively, to inhibit a friction between the rotary shaft 11 and the frame 1. A stationary ring 50 is installed at an end 11a of the rotary shaft 11 which protrudes through the shaft hole 202 of the rotary cam member 200, so that the rotary shaft 11 is combined with the rotary cam member 200.
Accordingly, when the rotary cam member 200 receives a power from the driving unit 300 to rotate, the second cam profile 210 slides along the shape of the first cam profile 110 so that the rotary cam member 200 moves with respect to the stationary cam member 100 by a distance. The distance is variable according to contacts between different steps of the stationary cam member 100 and the rotary cam member 200. That is, the rotary cam member 200 moves to shift the roller member 12 of the feeding roller unit 10 so that the paper sheet S is shifted from a first shifted path to a second shifted path in a direction parallel to the axial direction of the roller member 12. Also, the rotary cam member 200 pulls the rotary shaft 11 toward a direction indicated by an arrow illustrated in
The driving unit 300 rotates the rotary cam member 200. The driving unit 300 includes a motor (not shown), a worm 310 which is installed at the motor, and a power transmitting part 220 which includes a worm wheel formed at an edge of the rotary cam member 200. The driving unit 300 may be a belt-pulley system and rotate the rotary cam member 200 through a gear train (not shown) which supplies a power to the feeding roller 10.
Referring to
In the present embodiment, the elastic member 20 is installed between the gear member 13 and the frame 1 as illustrated in
A feeding cassette 410, a pickup unit 420, the feeding roller unit 10, the print head 430, a delivery unit 440, and the feeding roller shifting unit 500 are installed on the frame 1. The feeding cassette 410 contains a plurality of paper sheets P, and the pickup unit 420 picks up the plurality of paper sheets P from the feeding cassette 410 and then feeds the plurality of paper sheets P toward the feeding roller unit 10 along a paper path. The feeding roller unit 10 shifts the plurality of paper sheets P toward the print head 430, and the delivery unit 400 delivers and discharges the plurality of paper sheets P on which images have been formed by the print head 430. The feeding unit 21 of
The print head 430 includes a plurality of array heads 431a through 431f arrayed at predetermined distances as illustrated in
The feeding roller 10 may be shifted by the feeding roller shifting unit 500 toward a direction orthogonal to a direction along which the plurality of paper sheets P advance along the paper path. This is to correct a poor factor (poor performance) of the defective or blocked nozzles using adjacent normal nozzles when a portion of nozzles of the print head 430 do not normally operate. The feeding roller shifting unit 500 shifts the feeding roller 10 in a main scanning direction (perpendicular to the paper path) as described above to shift the paper path from the first shifted path to the second shifted path by several millimeters. The first shifted path may be an original paper path, and the second shifted path may be a path shifted from the first shifted path by a predetermined distance. The first shifted path (first paper path) P1 and the second shifted path (second paper path) P2 are parallel to each other and spaced-apart from each other by the predetermined distance. The predetermined distance may be variable according to contacts between different steps of the stationary cam member 100 and the rotary cam member 200 or the height of the steps of the stationary cam member 100 and the rotary cam member 200.
The feeding roller shifting unit 500 of
An operation of an array ink-jet printer having a feeding roller shifting unit according to the present invention will now be described with reference to
The feeding roller 10 is in a normal position to feed the paper sheet P along the paper path (for example, the first shifted path) as illustrated in
The array ink-jet printer 400 includes the plurality of array heads 431a through 431f which are fixedly arrayed to form an image on each of the plurality of paper sheets P passing the print head 430 line by line. However, nozzles of some array heads are blocked and/or defective by reasons that, for example, the nozzles are not used for a long period of time, printed images are not output on portions facing the blocked nozzles. White bands are formed on portions onto which the blocked nozzles (defective nozzles) are to output images. In other words, the factor errors occur.
If such factor errors occur, images to be output by the blocked nozzles may be printed on a paper sheet using normal nozzles to correct the factor errors. For this purpose, the plurality of paper sheets P are shifted toward the normal nozzles along the direction orthogonal to the direction along which the plurality of paper sheets P advance, i.e., along the main scanning direction, so that the normal nozzles are disposed on the position of the paper sheets P advance corresponding to the blocked nozzles to form an image on the position of the paper sheets P. A controller outputs information on the printed images to be output by the blocked nozzles to the normal nozzles in positions to which the plurality of paper sheets P are shifted, so as to output the printed images which are not output by the blocked nozzles.
The above-described operation may be performed through the following process.
The controller rotates the feeding roller unit 10 in a clockwise direction to advance the plurality of paper sheets P toward the print head 430 to form a first image.
However, if a portion of nozzles are blocked or defective and thus normal printing fails, it is determined that the factor errors may occur. In this case, the controller reversely rotates the feeding roller unit 10 to retreat the plurality of paper sheets P on which the first image having the white band, that is, a portion on which ink is not ejected through the blocked nozzles, has been formed.
The controller operates the feeding roller shifting unit 500 to shift a paper path on which the plurality of paper sheets P are retreated toward the direction along which the plurality of paper sheets P advance, i.e., toward the main scanning direction (the direction indicated by the arrow shown in
If the controller re-rotates the feeding roller 10 in the clockwise direction to advance the plurality of paper sheets P, which have been shifted, toward the print head 430, the plurality of paper sheets P pass by the print head 430 when being shifted toward the main scanning direction, to form a second image corresponding to a missed image in the first image, that is, in positions in which poor factors occur. Here, the first cam profile 110 includes the first through fifth inclined steps 110a through 110e having the sliding surfaces S. Thus, the plurality of paper sheets P shift toward the main scanning direction by differences among heights of the first through fifth inclined steps 110a through 110e. As a result, the controller transmits information as to images output to be output by the blocked nozzles to the normal nozzles in positions corresponding to distances by which the plurality of paper sheets P shift, so as to output the images which are supposed to be output by the blocked nozzles through the normal nozzles.
Accordingly, a position of the rotary shaft 11 of the feeding roller 10 may vary depending on positions of the blocked nozzles of the array head 430 so that adjacent normal nozzles of the array head 430 output images which are not output by the blocked nozzles of the array head 430.
Also, the feeding roller shifting unit 500 according to the present embodiment may be used to output a high resolution image when nozzles of the array head 430 are not blocked.
The array ink-jet printer 400 determines a resolution of a printed image depending on a number of nozzles. In other words, if image dots 432 having an interval corresponding to a distance (pitch) between the adjacent nozzles is L are formed as illustrated in
However, if a path through which a paper sheet advances is shifted using the feeding roller shifting unit 500 of the present invention to re-perform printing, additional image dots 432′ may be output in spaces between the image dots 432. For example, if the path through which the plurality of paper sheet is shifted by ½ L as illustrated in
As described above, according to the present general inventive concept, a paper sheet can be repeatedly shifted in an array ink-jet printer to be shifted toward a main scanning direction during printing. Thus, poor factors caused by poor nozzles can be corrected.
Also, the paper sheet can be shifted toward the main scanning direction according to a selection of a user. Thus, a printed image having an improved resolution can be output.
Although a few embodiments of the present general inventive concept have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-56103 | Jun 2006 | KR | national |