The entire disclosure of Japanese patent Application No. 2018-218547, filed on Nov. 21, 2018, is incorporated herein by reference in its entirety.
The present invention relates to a paper stacking device and an image forming system.
An image forming apparatus or a paper processing apparatus includes a paper stacking device that stacks paper on which prescribed processing has been performed. The paper stacking device includes an ejected paper tray (a stacker) on which paper is stacked, and a paper ejecting roller (a paper ejector) that ejects paper toward the ejected paper tray. The paper ejected from the paper ejecting roller is sequentially staked on the ejected paper tray. Meanwhile, in this type of paper stacking device, paper ejected from a paper ejecting roller is stuck onto paper stacked on an ejected paper tray, and in particular, uppermost paper, in some cases. In these cases, a front end of the ejected paper buckles, paper that has already been stacked is pushed out and drops from the ejected paper tray, or misalignment in a paper ejection direction occurs.
For example, JP 2014-40326 A, JP 2014-105081 A, and JP 2014-47047 A disclose a method for disposing a fan on an outer side (a side) in a paper width direction of paper and blowing air to side ends of the paper that are located on both sides in the paper width direction so as to suppress the sticking of paper. In addition, for example, JP 2011-84359 A discloses a configuration in which a holder is included that extends along a paper ejection direction and the holder is rotatable with a shaft member that extends in a paper width direction as a center. In JP 2011-84359 A, the holder can rotationally move upward to a first position in which the holder holds paper ejected from a paper ejecting roller, and can rotationally move downward from the first position to a second position in which the holder does not hold the paper.
However, the posture or behavior of paper ejected from a paper ejecting roller changes according to the basis weight of the paper, or the like. Therefore, techniques disclosed in JP 2014-40326 A, JP 2014-105081 A, and JP 2014-47047 A have a problem in which it is difficult to appropriately adjust air volume. For example, an excessively weak flow of air fails to cause paper to float. In contrast, an excessively strong flow of air raises paper, and the misalignment of paper occurs.
In addition, in a technique disclosed in JP 2011-84359 A, the holder is rotationally moved in upward and downward directions with a rotary shaft along the paper width direction as a center, and therefore the following inconvenience occurs according to the length of the holder. For example, in a case where the holder is long, it takes longer time to retreat from the first position to the second position, and there is a possibility of a reduction in productivity. In contrast, in a case where the holder is short, a front-end side of paper having a large size in the paper ejection direction hangs down from the holder, and there is a possibility of the occurrence of sticking onto uppermost paper.
The present invention has been made in view of the circumstances described above, and it is an object of the present invention to provide a paper stacking device and an image forming system that are capable of stacking paper with satisfactory productivity while suppressing the sticking of ejected paper.
To achieve the abovementioned object, according to an aspect of the present invention, a paper stacking device reflecting one aspect of the present invention comprises: a stacker on which paper is stacked; a paper ejector that ejects the paper toward the stacker, an aligning plate that is provided on a side of the paper stacked on the stacker, and aligns a side end of the paper, a paper floating member that is provided in the aligning plate, and supports, from below, the side end of the paper ejected from the paper ejector, and a blower that is provided on the side of the paper across the aligning plate, and blows air, wherein the aligning plate includes a blowing opening through which air from the blower is blown to the side end of the paper, the paper floating member is switched between: a paper floating position that advances from a side of the side end of the paper to an ejection route of the paper, and causes the paper ejected from the paper ejector to float from uppermost paper stacked on the stacker, and a retreat position that retreats from the ejection route, when the paper floating member is located in the paper floating position, the blowing opening is opened, and when the paper floating member is located in the retreat position, the blowing opening is shielded.
The advantages and features provided by one or more embodiments of the invention will become more fully understood from the detailed description given hereinbelow and the appended drawings which are given by way of illustration only, and thus are not intended as a definition of the limits of the present invention:
Hereinafter, one or more embodiments of the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the disclosed embodiments.
The image forming apparatus 1 is an electrophotographic image forming system such as a copying machine, and the image forming apparatus 1 forms an image on paper P on the basis of image data. The image forming apparatus 1 includes an original reader 10, a photoreceptor 11, an electrifier 12, an image exposure unit 13, a developing unit 14, a transfer unit 15A, a separator 15B, a cleaning device 16, a fixing device 18, and an image formation controller 19.
The original reader 10 is disposed in an upper portion of a housing of the image forming apparatus 1, and includes an automatic original delivering unit that automatically moves an original in reading an image. This original reader 10 reads an image formed on the original, and outputs a prescribed image signal. A/D conversion is performed on the output image signal, so that image data is generated.
An image reading controller (not illustrated) included in the original reader 10 performs processing, such as shading correction, dither processing, or compression, on the image data, and outputs data obtained as a result of this processing as final image data to the image formation controller 19. The image formation controller 19 may obtain image data from the original reader 10, or may obtain image data from a personal computer that is connected to the image forming system, or another image forming system.
A surface of the photoreceptor 11 is uniformly electrified by the electrifier 12. The image exposure unit 13 scans and exposes the surface of the photoreceptor 11 to a laser beam on the basis of output information that has been output from the image formation controller 19 on the basis of the image data. By doing this, a latent image is formed on the surface of the photoreceptor 11. The developing unit 14 develops the latent image with toner, and forms an image (a toner image) on the surface of the photoreceptor 11.
Paper P stored in a paper tray 17A is fed to the transfer unit 15A. The transfer unit 15A transfers, onto the paper P, the image on the surface of the photoreceptor 11. The separator 15B separates the paper P onto which the image has been transferred from the photoreceptor 11. The cleaning device 16 removes toner that remains on the surface of the photoreceptor 11 after the image has been transferred onto the paper P. An intermediate conveyor 17B conveys the separated paper P to the fixing device 18.
The fixing device 18 performs fixing processing for fixing the image onto the paper P by heating and pressing. A first paper ejecting roller 17C ejects (feeds), to the postprocessing apparatus 2, the paper P on which fixing processing has been performed.
On the other hand, in a case where an image is formed on both sides of the paper P a conveyance direction of the paper P on which fixing processing has been performed by the fixing device 18 is switched from a direction toward the first paper ejecting roller 17C to a downward direction (a direction toward a reverse conveyor 17E) by a conveyance route switching plate 17D. The reverse conveyor 17E switches back the paper P so as to reverse a front surface and a reverse surface of the paper P, and conveys the paper P to the transfer unit 15A.
The image formation controller 19 controls the image forming apparatus 1. As the image formation controller 19, a microcomputer that principally includes a CPU, a ROM, a RAM, and an I/O interface can be used. The CPU executes various programs (a processor). The ROM stores the various programs to be executed by the CPU in the form of a program code that can be read by the CPU. The ROM also stores data that is used to execute the programs. The RAM is a memory serving as a working storage area. When the programs and the data that have been stored in the ROM are read by the CPU, the programs and the data are developed on the RAM. Then, the CPU performs various types of processing on the basis of the programs and the data that have been developed on the RAM.
The postprocessing apparatus 2 is disposed on a downstream side of the image forming apparatus 1 in a paper conveyance direction so as to be adjacent to the image forming apparatus 1, and the postprocessing apparatus 2 is a paper processing apparatus that performs postprocessing on paper P ejected from the image forming apparatus 1. In the present embodiment, the postprocessing apparatus 2 performs staple processing (binding processing), and stated another way, processing for superimposing plural sheets of paper P and binding the plural sheets of paper P by using a staple (a binding member). The postprocessing apparatus 2 principally includes an introducing unit 20, an intermediate stacker 40, a staple unit 45, a paper stacking device 50, and a paper processing controller 70.
The introducing unit 20 introduces paper P ejected from the image forming apparatus 1 into the postprocessing apparatus 2. The position of the introducing unit 20 has been set to correspond to the position of the first paper ejecting roller 17C of the image forming apparatus 1.
In order to introduce, into the postprocessing apparatus 2, paper P other than paper P ejected from the image forming apparatus 1, the postprocessing apparatus 2 is provided with a paper feeding unit 30. The paper feeding unit 30 includes a paper feeding tray 31 and a paper delivering unit 32. When paper P placed on the paper feeding tray 31 is delivered by the paper delivering unit 32, the paper P is conveyed through a prescribed conveyance route, and joins a conveyance route on a downstream side of the introducing unit 20.
The outline of a conveyance route of paper P in the postprocessing apparatus 2 is described. The conveyance route on the downstream side of the introducing unit 20 branches into a first conveyance route R1, a second conveyance route R2, and a third conveyance route R3. Paper P introduced from the introducing unit 20 or the paper feeding unit 30 is delivered to any of the conveyance routes R1 to R3 according to the switching of a switching gate (not illustrated). In a case where staple processing is not performed and paper P is ejected to a tray outside the apparatus, the switching gate is set to the first conveyance route R1 or the third conveyance route R3. In contrast, in a case where staple processing is performed, the switching gate is set to the second conveyance route R2.
The first conveyance route R1 is a route through which no processing is performed on introduced paper P and the introduced paper P is conveyed to the paper stacking device 50 with no change. On the first conveyance route R1, a conveyance roller that conveys paper P, and the like are disposed.
The second conveyance route R2 is a route through which introduced paper P is conveyed to the paper stacking device 50 via the intermediate stacker 40. On the second conveyance route R2, a conveyance roller that conveys paper P, a stacker paper ejecting roller 26, a conveyance belt 27, and the like are disposed.
The stacker paper ejecting roller 26 is disposed in a position facing a paper placement surface of the intermediate stacker 40, and the stacker paper ejecting roller 26 ejects, to the intermediate stacker 40, paper P that has been conveyed through the second conveyance route R2. The conveyance belt 27 conveys, to the paper stacking device 50, a paper bundle placed on the intermediate stacker 40, and stated another way, plural sheets of paper P that have been bound with a staple.
The intermediate stacker 40 sequentially stacks paper P ejected from the stacker paper ejecting roller 26 such that staple processing will be performed by the staple unit 45. The intermediate stacker 40 is disposed in such a way that a front end of paper P placed on the intermediate stacker 40 faces more upward than a rear end of the paper P. When the paper P ejected from the stacker paper ejecting roller 26 drops onto the intermediate stacker 40, the paper P slides down on the intermediate stacker 40, and stops by the rear end of the paper P abutting onto a rear-end guide plate (not illustrated).
The staple unit 45 includes a stapler that drives a staple, and a clincher that clinches a tip of the staple along paper P. This staple unit 45 performs staple processing on plural sheets of paper P stacked on the intermediate stacker 40 by stapling the plural sheets of paper P in a predetermined position and a predetermined orientation. For example, the staple unit 45 performs side stitching for stapling a rear end of paper P.
The third conveyance route R3 is a route through which introduced paper P is conveyed to a sub tray 60. On the third conveyance route R3, a conveyance roller that conveys paper P is disposed. The sub tray 60 is disposed in an upper portion outside the apparatus. A small number of sheets of paper can be stacked on the sub tray 60, and therefore the sub tray 60 is used in the ejection of a small number of sheets of special paper P such as thick paper.
The second paper ejecting roller 51 is located at the ends of the first conveyance route R1 and the second conveyance route R2, and ejects, toward the ejected paper tray 52, paper P conveyed through the respective conveyance routes R1 and R2. Herein, a front end and a rear end of paper P in the paper stacking device 50 are defined by using, as a reference, a paper ejection direction at the time of ejection from the second paper ejecting roller 51.
The ejected paper tray 52 is a tray on which paper P ejected from the second paper ejecting roller 51 is stacked. The ejected paper tray 52 can be elevated or lowered along a paper stacking direction (upward and downward directions) W1 (see
The ejected paper tray 52 has an inclined shape in such a way that a side of a front end of paper P stacked on the ejected paper tray 52 faces more upward than a side of a rear end of the paper P. The bumper plate 54 having a vertical wall shape is provided on the side of the rear end of the paper P in the ejected paper tray 52. This bumper plate 54 has a function of aligning paper P stacked on the ejected paper tray 52 by a rear end of the paper P bumping the bumper plate 54.
The side-end aligning plates 55 are members that align side ends of paper P ejected on the ejected paper tray 52, and stated another way, ends of the paper P that are located on both sides in a paper width direction (a direction orthogonal to the paper ejection direction). The side-end aligning plates 55 are respectively disposed on sides of paper P ejected from the second paper ejecting roller 51, and stated another way, on outer sides in the paper width direction, with the paper P as a center. Therefore, an ejection route R4 (see
In addition, the individual side-end aligning plate 55 is provided with a blowing opening 55b through which air from the blower fan 56 is blown to a side end of paper P. The blowing opening 55b is an opening having a slit shape, and has a rectangular shape that is laterally long along the paper ejection direction.
Each of the pair of side-end aligning plates 55 is connected to a first power mechanism (not illustrated) such as an electric motor or a gear, and receives power from the first power mechanism so as to be able to swing along the paper width direction. Tire positions of the pair of side-end aligning plates 55 are set according to the width (size) of paper P ejected from the second paper ejecting roller 51, and the pair of side-end aligning plates 55 is disposed near side ends of the paper P ejected from the second paper ejecting roller 51. When paper P ejected from the second paper ejecting roller 51 is stacked on the ejected paper tray 52, the pair of side-end aligning plates 55 move in the paper width direction and sandwich the paper P from both sides so as to align side ends of the paper P (a paper alignment operation).
In addition, each of the pair of side-end aligning plates 55 is connected to a second power mechanism (not illustrated) such as an electric motor or a gear, and receives power from the second power mechanism so as to be able to rotationally move with the rotary shaft 55a as a center. An individual side-end aligning plate 55 rotationally moves with the rotary shaft 55a as a center so as to move in upward and downward directions. Specifically, as illustrated in
An operation of the pair of the side-end aligning plates 55 and stated another way, the paper alignment operation and the aligning plate rotational movement operation, are controlled by the paper processing controller 70.
The blower fan 56 is provided on a side of paper P across the side-end aligning plate 55. The blower fan 56 blows air via the blowing opening 55b provided in the side-end aligning plate 55 so as to blow air to the side end of paper P (a blower). Air blown from the blower fan 56 flows between uppermost paper P stacked on the ejected paper tray 52 and paper P ejected from the second paper ejecting roller 51, and this can suppress sticking sheets of paper P onto each other.
A configuration of the paper floating member 57 is described with reference to
The paper floating member 57 is a member that supports, from below, a side end of paper P ejected from the second paper ejecting roller 51. The paper floating member 57 includes a plate shape member that extends along the paper ejection direction, and has a longitudinal shape extending more forward than the side-end aligning plate 55. The paper floating member 57 is provided in each of the pair of side-end aligning plates 55 along the blowing opening 55b of the side-end aligning plate 55. Both side ends of paper P ejected from the second paper ejecting roller 51 are supported by a pair of paper floating members 57.
The paper floating member 57 is coupled to a shaft member 58 that extends in the paper ejection direction and can rotationally move with this shaft member 58 as a center. The paper floating member 57 rotationally moves with the shaft member 58 as a center so as to be able to move between a retreat position and a paper floating position.
The retreat position is a position that retreats from the ejection route R4 of paper P and does not interfere with paper P ejected from the second paper ejecting roller 51. An example of the retreat position is a state where the paper floating member 57 is housed along the side-end aligning plate 55 so as to be almost flush with the side-end aligning plate 55. In addition, this retreat position is equivalent to a home position of the paper floating member 57.
When the paper floating member 57 is located in the retreat position, the paper floating member 57 is housed along the side-end aligning plate 55, and the blowing opening 55b is shielded by the paper floating member 57. Therefore, air from the blower fan 56 is blocked by the paper floating member 57. Accordingly, even in a state where the blower fan 56 continues air blowing, the blowing of air to the side end of paper P can be stopped.
In contrast, the paper floating position is a position that advances to the ejection route R4 of paper P and causes paper P ejected from the second paper ejecting roller 51 to float from uppermost paper P stacked on the ejected paper tray 52. An example of the paper floating position is a state where the paper floating member 57 has risen from the retreat position so as to be approximately perpendicular to the side-end aligning plate 55.
When the paper floating member 57 is located in the paper floating position, the paper floating member 57 has risen from the side-end aligning plate 55, and the blowing opening 55b is open. Therefore, air from the blower fan 56 passes through the blowing opening 55b, and reaches paper P. This enables air to be blown to the side end of paper P.
In the present embodiment, the paper floating member 57 is switched between the paper floating position and the retreat position in conjunction with the movement in upward and downward directions of the side-end aligning plate 55. Specifically, when the side-end aligning plate 55 moves downward from the upper position Pa1, the paper floating member 57 attached to the side-end aligning plate 55 also moves downward. When the side-end aligning plate 55 reaches the lower position Pa2, a front end of the paper floating member 57 is pressed against uppermost paper P stacked on the ejected paper tray 52. By doing this, the paper floating member 57 receives a reaction from the paper P, and therefore the paper floating member 57 rises from the retreat position, and moves to the paper floating position.
Note that a folded part 57a is formed at the front end of the paper floating member 57. In the retreat position, the paper floating member 57 is almost flush with the side-end aligning plate 55, but the presence of the folded part 57a enables the front end of the paper floating member 57 to abut onto uppermost paper P stacked on the ejected paper tray 52.
In addition, in the paper floating member 57, a flap 571 is provided in an area that extends more forward than the side-end aligning plate 55. In a case where the paper floating member 57 is located in the paper floating position this flap 57b forms a wall (a vertical wall) along the side-end aligning plate 55 on a front side of the side-end aligning plate 55. The flap 57b forms the wall, so that air blown from the blower fan 56 can be suppressed from flowing out from the front side of the side-end aligning plate 55. This enables air blown from the blower fan 56 to be kept between uppermost paper P stacked on the ejected paper tray 52 and paper P ejected from the second paper ejecting roller 51.
In contrast, when the side-end aligning plate 55 moves upward from the lower position Pa2, the paper floating member 57 attached to the side-end aligning plate 55 also moves upward. When the paper floating member 57 moves upward, a front end of the paper floating member 57 is separated from uppermost paper P. By doing this, the reaction from the paper P is eliminated, and therefore the paper floating member 57 moves from the paper floating position to the retreat position. Then, the side-end aligning plate 55 moves to the upper position Pa1.
Note that biasing force is applied to the paper floating member 57 by a biasing unit (not illustrated) such as a spring. When the reaction from paper P is eliminated, the paper floating member 57 forcibly moves from the paper floating position to the retreat position due to this biasing force. The paper floating member 57 may spontaneously move from the paper floating position to the retreat position due to its own weight without being provided with such a biasing unit.
In addition, the folded part 57a is formed at the front end of the paper floating member 57. Therefore, even when the paper floating member 57 is located in the retreat position, the paper floating member 57 has a state where the folded part 57a protrudes inside. Therefore, when the side-end aligning plate 55 is moved from the lower position Pa2 to the upper position Pa1, the side-end aligning plate 55 is moved to an outer side in the paper width direction so as to be separated from a side end of paper P. This can suppress interference between the folded part 57a and paper P. When the side-end aligning plate 55 is moved from the upper position Pa1 to the lower position Pa2, it is requested that the side-end aligning plate 55 be moved to an inner side in the paper width direction.
The paper processing controller 70 performs control relating to the postprocessing apparatus 2. As the paper processing controller 70, a microcomputer that principally includes a CPU, a ROM, a RAM, and an I/O interface can be used. The CPU executes various programs (a processor). The ROM stores the various programs to be executed by the CPU in the form of a program code that can be read by the CPU. The ROM also stores data that is used to execute the programs. The RAM is a memory serving as a working storage area. When the programs and the data that have been stored in the ROM are read by the CPU, the programs and the data are developed on the RAM. Then, the CPU performs various types of processing on the basis of the programs and the data that have been developed on the RAM.
In a relationship with the present embodiment, the paper processing controller 70 controls an operation of the paper floating members 57 and specifically, a paper floating operation. The paper floating operation is a series of operations to displace the paper floating members 57 from the retreat position to the paper floating position and then, to return the paper floating members 57 from the paper floating position to the retreat position. The paper floating operation is performed according to a timing at which paper P is ejected from the second paper ejecting roller 51. In the present embodiment, the paper floating operation is performed by the pair of side-end aligning plates 55 performing the aligning plate rotational movement operation. In addition, the paper processing controller 70 controls an operation of the blower fans 56.
On the conveyance route of paper P, a paper ejection sensor 21 is disposed that detects a timing at which paper P is ejected by the second paper ejecting roller 51 (see
First, in step S10, the paper processing controller 70 refers to the paper ejection sensor 21, and determines whether the paper ejection sensor 21 is in an ON state. When a front end of paper P reaches the second paper ejecting roller 51, an output of the paper ejection sensor 21 is switched to ON. Accordingly, a timing at which the ejection of paper P from the second paper ejecting roller 51 is started can be determined on the basis of the state of the paper ejection sensor 21. In a case where the paper ejection sensor 21 is in the ON state, and stated another way, in a case where the ejection of paper P from the second paper ejecting roller 51 is started, the determination of step S10 is affirmative, and the processing moves on to step S11. In contrast, in a case where the paper ejection sensor 21 is in an OFF state, and stated another way, in a case where paper P is not ejected from the second paper ejecting roller 51, the determination of step S10 is negative, and the processing returns to step S10.
In step S11, the paper processing controller 70 starts an operation of the blower fans 56. By doing this, air starts being blown from the blower fans 56 to the blowing openings 55b.
In step S12, the paper processing controller 70 moves the side-end aligning plates 55 downward from the upper position Pa1 to the lower position Pa2. The paper processing controller 70 also moves the side-end aligning plates 55 inward in such a way that the side-end aligning plates 55 are closer to side ends of paper P.
When the side-end aligning plates 55 move downward and inward, the paper floating members 57 attached to the side-end aligning plates 55 also move downward and inward. When the side-end aligning plates 55 reach the lower position Pa2, the folded parts 57a of the paper floating members 57 are pressed against uppermost paper P stacked on the ejected paper tray 52. A reaction from the paper P acts on the paper floating members 57, and therefore the paper floating members 57 rise from the retreat position, and move to the paper floating position. When the paper floating members 57 moves to the paper floating position, both side ends of paper P ejected from the second paper ejecting roller 51 are respectively supported by the pair of paper floating members 57. Therefore, the paper P is ejected in a state where the paper P is floating from uppermost paper P stacked on the ejected paper tray 52.
When the paper floating members 57 are located in the paper floating position, the paper floating members 57 have risen from the side-end aligning plates 55. The blowing openings 55b are open, and therefore air from the blower fans 56 passes through the blowing openings 55b, and reaches paper P. This causes air to be blown to the side ends of paper P. In addition, on front sides of the side-end aligning plates 55, the flaps 57b form the walls (the vertical walls) along the side-end aligning plates 55. The flaps 57b form the walls, so that air blown from the blower fans 56 can be suppressed from flowing out from the front sides of the side-end aligning plates 55. This enables air blown from the blower fans 56 to be kept between uppermost paper P stacked on the ejected paper tray 52 and paper P ejected from the second paper ejecting roller 51.
In step S13, the paper processing controller 70 refers to the paper ejection sensor 21, and determines whether the paper ejection sensor 21 is in the OFF state. When a rear end of paper P passes through the second paper ejecting roller 51, an output of the paper ejection sensor 21 is switched to OFF. Accordingly, a timing at which the ejection of paper P from the second paper ejecting roller 51 has been terminated can be determined on the basis of the state of the paper ejection sensor 21. In a case where the paper ejection sensor 21 is in the OFF state, and stated another way, in a case where the ejection of paper P from the second paper ejecting roller 51 has been terminated, the determination of step S13 is affirmative, and the processing moves on to step S14. In contrast, in a case where the paper ejection sensor 21 is in the ON state, and stated another way, in a case where paper P continues being ejected from the second paper ejecting roller 51, the determination of step S13 is negative, and the processing returns to step S13.
In step S14, the paper processing controller 70 moves the side-end aligning plates 55 upward from the lower position Pa2 to the upper position Pa1. The paper processing controller 70 also moves the side-end aligning plates 55 outward in such a way that the side-end aligning plates 55 are separated from side ends of paper P.
When the side-end aligning plates 55 move upward and outward, the paper floating members 57 attached to the side-end aligning plates 55 also move upward and outward. By doing this, the front ends of the paper floating members 57 are separated from the uppermost paper P. By doing this, the reaction from the paper P is eliminated, and therefore the paper floating members 57 move from the paper floating position to the retreat position. When the paper floating members 57 move to the retreat position, the paper floating members 57 retreat from the ejection route R4 of paper P ejected from the second paper ejecting roller 51. Therefore, the paper P drops due to its own weight, and is stacked as uppermost paper P on the ejected paper tray 52.
When the paper floating members 57 are located in the retreat position, the paper floating members 57 are housed along the side-end aligning plates 55. Therefore, the blowing openings 55b are shielded by the paper floating members 57, and air from the blower fans 56 is blocked by the paper floating members 57. Thus, even in a state where the blower fans 56 continue air blowing, the blowing of air to the side ends of paper P is stopped.
In step S15, the paper processing controller 70 causes the side-end aligning plates 55 to operate, and performs a paper alignment operation.
In step S16, the paper processing controller 70 determines whether paper P ejected from the second paper ejecting roller 51 is absent, and stated another way, whether the jog has been terminated. In a case where the job has not been terminated and there is paper P ejected from the second paper ejecting roller 51, the determination of step S16 is negative, and the processing moves on to step S17. In contrast, in a case where the job has not been terminated and there is no paper P ejected from the second paper ejecting roller 51, the determination of step S16 is affirmative, and the processing moves on to step S18.
In step S17, the paper processing controller 70 refers to the paper ejection sensor 21, and determines whether the paper ejection sensor 21 is in the ON state. In a case where the paper ejection sensor 21 is in the ON state, and stated another way, in a case where the ejection of paper P from the second paper ejecting roller 51 is started, the determination of step S17 is affirmative, and the processing moves on to step S12. In contrast, in a case where the paper ejection sensor 21 is in the OFF state, and stated another way, in a case where paper P is not ejected from the second paper ejecting roller 51, the determination of step S17 is negative, and the processing returns to step S17.
In step S18, the paper processing controller 70 stops the operation of the blower fans 56.
As described above, in the present embodiment, the paper stacking device 50 includes: the ejected paper tray 52 on which paper P is stacked; the second paper ejecting roller 51 that ejects paper P toward the ejected paper tray 52; the side-end aligning plates 55 that are provided on sides of paper P stacked on the ejected paper tray 52 and align side ends of the paper P; the paper floating members 57 that are provided in the side-end aligning plates 55 and support, from below, side ends of paper P ejected from the second paper ejecting roller 51 and the blower fans 56 that are provided on sides of paper P across the side-end aligning plates 55 and blow air. In this case, each of the side-end aligning plates 55 includes the blowing opening 55b through which air from the blower fan 56 is blown to a side end of paper P. The paper floating member 57 is switched between the paper floating position and the retreat position. When the paper floating member 57 is located in the paper floating position, the blowing opening 55b is open. When the paper floating member 57 is located in the retreat position, the blowing opening 55b is shielded.
By employing this configuration, the paper floating members 57 are set to be located in the paper floating position, and therefore the side ends of paper P are supported from below by the paper floating members 57. This enables the paper P to be ejected while the paper P is floating. This can suppress the occurrence of sticking onto uppermost paper P. In addition, the side ends of paper P are supported from sides of the paper P, and therefore the paper floating members 57 do not need to be set to have a large size in the paper width direction. This does not cause a reduction in productivity. In addition, the paper floating members 57 can secure a sufficient length in the paper ejection direction, and this can appropriately suppress sticking onto uppermost paper P.
In addition, the blowing openings 55b can be opened or shielded according to the positions of the paper floating members 57. Accordingly, the blowing openings 55b are opened in accordance with a timing at which paper P is supported by the paper floating members 57, so that air can be blown to the side ends of paper P. As a result, air can be caused to circulate between paper P ejected from the second paper ejecting roller 51 and uppermost paper P on the ejected paper tray 52, and this can effectively suppress sticking sheets of paper P onto each other.
Furthermore, in the present embodiment, the paper floating members 57 are switched from the retreat position to the paper floating position in accordance with paper P ejected from the second paper ejecting roller 51, and then the paper floating members 57 are switched from the paper floating position to the retreat position.
By employing this configuration, the paper floating members 57 can be caused to operate in accordance with a timing of the ejection of paper P. By doing this, at an appropriate timing, air can be blown while paper P is floating, or paper P can be dropped onto the ejected paper tray 52 in a state where air blowing is stopped. As a result, the sticking of paper P can be suppressed, and a reduction in productivity can also be suppressed.
In addition, in the present embodiment, the paper floating member 57 has a longitudinal shape extending more forward than the side-end aligning plate 55. When the paper floating member 57 is located in the paper floating position, the paper floating member 57 forms a wall along the side-end aligning plate 55 on a front side of the side-end aligning plate 55.
By employing this configuration, the paper floating members 57 form the walls, so that air blown from the blower fans 56 can be suppressed from flowing out from the front sides of the side-end aligning plates 55. This enables air blown from the blower fans 56 to be kept between uppermost paper P stacked on the ejected paper tray 52 and paper P ejected from the second paper ejecting roller 51. As a result, the sticking of paper P can be suppressed effectively.
An image forming system according to a second embodiment is described below. This image forming system according to the second embodiment is different from the image forming system according to the first embodiment in that the air volume of the blower fan 56 is controlled. A difference from the first embodiment is principally described below.
In a case where paper P has a large basis weight, the paper P tends to be easily deflected due to its own weight. Therefore, sticking onto uppermost paper P easily occurs. Accordingly, by selecting a large air volume, paper P supported by the paper floating members 57 can be caused to significantly float with respect to uppermost paper P. On the other hand, in a case where paper P has a large basis weight, the paper P has a high dropping speed. Therefore, even if the paper P significantly floats, a reduction in productivity is small. Accordingly, in a case where paper P has a large basis weight, a large air volume is used.
In contrast, in a case where paper P has a small basis weight, the paper P has a slow dropping speed. Accordingly, by selecting a small air volume, paper P supported by the paper floating members 57 can be suppressed from floating. In a case where paper P has a small basis weight, the deflection of the paper P is small. Therefore, even if a small air volume is selected, an influence of sticking onto uppermost paper P is small. Accordingly, in a case where paper P has a small basis weight, a small air volume is used.
In a case where paper P has a medium basis weight, a medium air volume is used in consideration of both the sticking of paper P and productivity.
A similar manner of thinking is applied to the size of paper P and image information printed on paper P. Stated another way, in a case where paper P has a large size, a large air volume is used. In a case where paper P has a medium size, a medium air volume is used. In a case where paper P has a small size, a small air volume is used. In addition, in a case where paper P has a large amount of image information, a large air volume is used. In a case where paper P has a medium amount of image information, a medium air volume is used. In a case where paper P has a small amount of image information, a small air volume is used.
In the present embodiment, a method for switching the air volume of the blower fan 56 has been described. However, the paper processing controller 70 may determine whether to perform the paper floating operation and an operation to open or close the blowing openings 55b on the basis of information relating to paper P to be ejected from the second paper ejecting roller 51.
Furthermore, in the respective embodiments described above, a method for switching the paper floating position and the retreat position by rotationally moving the paper floating members 57 has been described. However, the operation mode of the paper floating member 57 is not limited to this, if the paper floating member 57 operates in conjunction with the movement in upward and downward directions of the side-end aligning plate 55. For example, the paper floating members 57 may retreat in a horizontal direction so that the paper floating position and the retreat position are switched.
In addition, in the respective embodiments described above, the paper floating member 57 operates in conjunction with the movement in upward and downward directions of the side-end aligning plate 55. However, the paper floating member 57 may receive power from a power mechanism so as to independently move rotationally.
An image forming system and a paper stacking device according to an embodiment of the present invention have been described above. However, the present invention is not limited to the embodiments described above, and a variety of variations can be made without departing from the scope of the invention.
For example, in the present embodiments, the image forming system includes an image forming apparatus that has an image forming function and a paper processing apparatus that performs processing on paper. However, the paper stacking device may be applied to an isolated paper processing apparatus that is independent of the image forming system. In addition, the paper stacking device may be applied to the image forming apparatus.
In addition, in the present embodiments, the paper processing apparatus includes a dedicated controller, and the controller controls the paper stacking device. However, the paper stacking device may include a dedicated controller. Further, in a case where the paper processing apparatus is combined with the image forming apparatus, a controller that controls the image forming apparatus may control the paper stacking device.
Although embodiments of the present invention have been described and illustrated in detail, the disclosed embodiments are made for purposes of illustration and example only and not limitation. The scope of the present invention should be interpreted by terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-218547 | Nov 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4938657 | Benson | Jul 1990 | A |
5451044 | Nakayama | Sep 1995 | A |
6330999 | Coombs | Dec 2001 | B2 |
6450934 | Coombs | Sep 2002 | B1 |
7758033 | Terao | Jul 2010 | B2 |
7896333 | Taki | Mar 2011 | B2 |
8162307 | Taki | Apr 2012 | B2 |
9085436 | Suzuki | Jul 2015 | B2 |
20080230984 | Kobayashi | Sep 2008 | A1 |
20120026263 | Chiwata | Feb 2012 | A1 |
20130228965 | Hoshino | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
06329327 | Nov 1994 | JP |
09002717 | Jan 1997 | JP |
2011084359 | Apr 2011 | JP |
2013010577 | Jan 2013 | JP |
2014040326 | Mar 2014 | JP |
2014047047 | Mar 2014 | JP |
2014105081 | Jun 2014 | JP |
Entry |
---|
Official Action issued in corresponding U.S. Appl. No. 16/682,563, dated Apr. 16, 2021 (11 pages). |
Official Action issued in corresponding U.S. Appl. No. 16/682,563, dated Jun. 7, 2021 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20200156896 A1 | May 2020 | US |