This application is based upon and claims the benefit of priority from the prior Japanese Patent Applications No. 2004-333274, filed on Nov. 17, 2004, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a paper transporting felt and a press apparatus of a paper machine having the paper transporting felt.
2. Description of the Related Art
Generally, a paper machine includes a wire part, a press part, and a drier part. The wire part, the press part, and the drier part are arranged in that order in a wet paper transporting direction. A wet paper is transported sequentially through wet paper transporting members provided in the wire part, the press part, and the drier part, water is squeezed out of the wet paper in the meantime, and the wet paper is finally dried on a drier canvas (as a paper transporting member) in the drier part. A press apparatus disposed in the press part includes a plurality of press mechanisms arranged in series in the wet paper transporting direction.
Each press mechanism includes a pair of paper transporting felts having an endless belt shape and a pair of rolls (that is, roll press) or a roll and shoe (that is, shoe press) as a press vertically opposed to each other to interpose a part of the pair of paper transporting felts therebetween. By allowing the pair of rolls or the roll and shoe to press the wet paper, which is transported by the paper transporting felts traveling in the same direction with the same speed, along with the paper transporting felt, water is squeezed out of the wet paper and is absorbed by the paper transporting felt. The paper machine is classified into a roll press type paper machine in which a press apparatus interposing and pressing a part of the paper transporting felts, which interpose the wet paper, between a roll and a roll is provided in the press part and a shoe press type paper machine in which a press apparatus interposing and pressing a part of the paper transporting felts, which interpose the wet paper, between a roll and a shoe is provided in the press part. Specifically, since the shoe press type paper machine can have a greater press zone of a pressing portion (that is, a nip) of the press than that of the roll press type paper machine which is used more widely, the pressing time can be more elongated. Accordingly, the shoe press type paper machine can have ma ore excellent dewatering characteristic.
In the paper machine, the wet paper transported by the paper transporting felts of the press apparatus is sequentially transported through the paper transporting felts of a plurality of press mechanisms arranged in series while squeezing out water therefrom and then the surfaces of the wet paper are smoothed. Accordingly, the paper transporting felts should have a function of transporting the wet paper, a function of squeezing water out of the wet paper, a paper separating function of smoothly separating the wet paper from the paper transporting felt for sending the wet paper to a next process (in other words, facilitating the peeling of the wet paper from the paper transporting felts), and a wet paper surface smoothing function of smoothing the surfaces of the wet paper. Specifically, since much water may be squeezed out of the wet paper by the press mechanism disposed on the upstream side in the wet paper transporting direction of the press part, the paper transporting felts of the press mechanism disposed on the downstream side in the wet paper transporting direction require the wet paper surface smoothing function rather than the function of squeezing water out of the wet paper as a more important function.
In a portion covering the center of the pressing portion of the press mechanism to the exit thereof, since a pressure applied to the wet paper and the paper transporting felts is abruptly released, the volumes of the paper transporting felt and the wet paper in the portion are abruptly expanded. As a result, a minus pressure is generated in the paper transporting felts and the wet paper and a capillary phenomenon acts thereon due to micro fibers constituting the wet paper, thereby resulting in a re-wetting phenomenon that the water absorbed by the paper transporting felts is transferred again to the wet paper. In this way, the portion covering the center of the pressing portion to the exit thereof serves as an important factor for deteriorating the dewatering performance of the press apparatus of the paper machine.
As a paper transporting felt for preventing the re-wetting phenomenon of the paper transporting felt and a blowing phenomenon at the time of press, there is known a paper transporting felt which is impregnated with emulsion resin and of which a wet paper side portion has been intensively studied (see U.S. Pat. No. 4,500,588.). In the paper transporting felt, more specifically, a barrier layer is formed by impregnating a batt layer formed on the surface of a base layer with the emulsion resin and performing a calendar machining to the wet paper side surface of the batt layer into a dense and smooth surface of a chamois leather type, or a rough fiber layer formed on the surface of the base layer is impregnated with the emulsion resin to form a barrier layer (non-woven fabric layer) on the rough fiber layer, and a fine fiber layer is formed on the barrier layer (non-woven fabric layer). Accordingly, since the barrier layer prevents the emulsion resin from reaching the wet paper side surface of the paper transporting felt, it is possible to prevent the re-wetting and the blowing of the paper transporting felt and thus to enhance a papermaking speed. In addition, when the paper transporting felt is pressed along with the wet paper in the pressing portion of the press mechanism, it is possible to reduce a factor of hindering the surface smoothing of the wet paper that air contained in the paper transporting felt is pushed out from the wet paper side surface to roughen the surface of the wet paper.
There is also known a paper transporting felt of which the surface is provided with a liquid impermeable layer (see German Utility Model Application Publication No. DE 29706427 U1.). The paper transporting felt has a fiber layer including thermoplastic fibers or melted fibers, and the thermoplastic fibers or the melted fibers are melted by heating the surface of the fiber layer to form the liquid impermeable layer.
U.S. Pat. No. 4,500,588 and German Utility Model Application Publication No. DE 29706427 U1 are referred to as related art.
The paper transporting felts fitted to a plurality of press mechanisms arranged in series have different main functions. The function of squeezing water out of the wet paper is mainly required for the paper transporting felt fitted to the press mechanism disposed on the upstream side in the wet paper transporting direction among the plurality of press mechanisms and the function of smoothing the surface of the wet paper is mainly required for the paper transporting felt fitted to the press mechanism disposed on the downstream side in the wet paper transporting direction. That is, the surface smoothness of the wet paper may mainly depend upon the paper transporting felt fitted to the press mechanism disposed on the downstream side in the wet paper transporting direction among the plurality of press mechanisms. Accordingly, the paper transporting felt fitted to the press mechanism disposed on the downstream side in the wet paper transporting direction among the plurality of press mechanisms should have a smooth wet paper side surface. However, since the wet paper input to the press mechanism disposed on the downstream side in the wet paper transporting direction among the plurality of press mechanisms slightly contains water, it is preferable that the paper transporting felt fitted to the press mechanism disposed on the downstream side should have a dewatering characteristic more or less.
The water contained in the wet paper is absorbed and squeezed out by the paper transporting felt which is compressed and decompressed in the pressing portion of the press mechanism. That is, the paper transporting felts require proper ventilation ability, compression ability, and decompression ability for efficiently squeezing out water.
In a press apparatus of the paper machine, specifically, in a press apparatus of a shoe press type paper machine or a single nip-type paper machine, since a pressing portion (that is, nip) of a press applies a very large pressure to the paper transporting felt to squeeze out water, the batt layer of the paper transporting felt coming into direct contact with the pressing portion of the press can be easily damaged and thus a lifetime of the paper transporting felt (that is, a usable period of time of the paper transporting felt) is short. Accordingly, maintenance for regularly interchanging the paper transporting felt with a new one is required.
In order to enhance the surface smoothness of a wet paper, it is difficult to merely replace the fiber constituting the surface of the batt layer of the paper transporting felt coming into direct contact with the wet paper with a micro fiber. Specifically, when the micro fiber is cut in a process prior to a needling process (a cutting operation is performed prior to the needling process and a fiber webbing sheet after the cutting operation is raised through needling) as one of processes of manufacturing the paper transporting felt, fiber lumps (that is, lumps of fibers) can be easily generated. Accordingly, the fiber lumps are raised from the belt through the needling right after the cutting operation and thus relatively large unevenness is formed on the surface of the paper transporting felt, thereby deteriorating the surface smoothness of the wet paper.
The paper transporting felt of which the wet paper side surface is processed, which is disclosed in U.S. Pat. No. 4,500,588, is a paper transporting felt having an excellent surface smoothness and a water impermeability (that is, ability of allowing water not to pass from the wet paper side surface to the press side surface), but has a poor ability of squeezing water out of a wet paper. Therefore, since a high ability of squeezing water out of the wet paper cannot be expected for the paper transporting felt, it is preferable so as to utilize the paper transporting felt that the dewatering of the wet paper is completely performed by a press mechanism disposed on the upstream side in the wet paper transporting direction. In other words, the paper transporting felt of which the wet paper side surface is subjected to the calendar process, which is disclosed in U.S. Pat. No. 4,500,588, can be preferably fitted to a press apparatus disposed on the downstream side in the wet paper transporting direction among a plurality of press mechanisms arranged in series. However, since much thermal energy is required for a heating and drying process in the drier part as a next process, it is important that the water in the wet paper is removed in the press part as much as possible. Therefore, it is more preferable that the paper transporting felt fitted to the press mechanism disposed on the downstream side in the wet paper transporting direction among a plurality of press mechanisms has a function of squeezing water out of the wet paper more or less. The paper transporting felt, which is disclosed in U.S. Pat. No. 4,500,588, in which the non-woven fabric layer is interposed between the rough fiber layer facing the base layer and the micro fiber layer facing the wet paper and having the fiber lumps is not suitable for the press apparatus of the paper machine in which the high ability of squeezing water out of the wet paper is required for the paper transporting felt.
In the paper transporting felt disclosed in German Utility Model Application Publication No. DE 29706427 U1, a liquid impermeable layer is formed by heating the surface of a fiber layer including thermoplastic fibers or melted fibers to melt the thermoplastic fibers or the melted fibers. The paper transporting felt has a feature that the thickness of the liquid impermeable layer can be controlled to some extent by adjusting the amount of heat applied from the surface of the fiber layer. However, since it is necessary to perform the heating within a range not deteriorating the fiber characteristic of the heating surface, that is, the surface of the liquid impermeable layer, by the heating, the depth of the paper transporting felt (that is, the thickness of the liquid impermeable layer) is limited in consideration of the thermal deterioration or thermal decomposition of the thermoplastic fibers or the melted fibers. Accordingly, the thickness of the liquid impermeable layer is automatically limited not to be too thick. In addition, since the wet paper side surface includes a fiber layer, very great pressure or friction is applied to the fiber by the pressing portion and thus the falling-out or cutting-out of fiber (that is, loss of fiber) from the surface of the fiber layer remarkably occurs. The loss of fiber from the surface of the fiber layer coming into direct contact with the wet paper in the paper transporting felt deteriorates the quality of paper products such as print mediums. On the other hand, since the surface of the fiber layer is roughened due to the loss of fiber, the surface smoothness of the wet paper is remarkably lowered.
An object of the present invention is to provide a paper transporting felt which has a smaller damage resulting from the pressing by a press of a press mechanism and which has an excellent durability, a proper dewatering characteristic, and an excellent performance of smoothing the surface of a wet paper, and a press apparatus of a paper machine having the paper transporting felt.
The invention provides a paper transporting felt which is at least one paper transporting felt of a pair of paper transporting felts for a shoe press, which are disposed in a press apparatus provided in a press part of a paper machine, form a press mechanism together with the shoe press having a roll and a shoe in the press apparatus, which are transported while sandwiching a wet paper and pressurized by the roll and the shoe. The paper transporting felt has a base layer which includes a polymer elastic material a first batt layer which is formed on a wet paper side surface of the base layer; a second batt layer which includes the polymer elastic material, and is formed on a press side surface of the base layer; and a wet paper contacting fibrous layer which is formed on a wet paper side surface of the first batt layer so as to come into direct contact with the wet paper, and which has modified cross-section fibers.
In the paper transporting felt, the modified cross-section fibers are flat fibers.
In the paper transporting felt, the first batt layer has a first portion which is disposed on the wet paper side surface of the base layer, and includes the polymer elastic material and fibers; and a second portion which is disposed between the first portion and the wet paper contacting fibrous layer, and includes the fibers.
The invention also provides a press apparatus of a paper machine having the above paper transporting felt.
The invention also provides a press apparatus of a paper machine having a plurality of press mechanisms each having the above paper transporting felt, in which the plurality of press mechanisms are disposed in series along a transporting direction of the wet paper transported by the paper transporting felts.
In the press apparatus of the paper machine, the above paper transporting felt is provided in a press mechanism disposed on a downstream side in the transporting direction among the plurality of press mechanisms.
The above press apparatus of the paper machine may be a press apparatus of a shoe press type paper machine, in which the press of the press apparatus is a shoe press having a roll and a shoe pressing the paper transporting felt.
The above press apparatus of the paper machine may be a press apparatus of a roll press type paper machine, in which the press of the press apparatus is a roll press having a pair of rolls pressing the paper transporting felt.
In the paper transporting felt, the base layer and the second batt layer include the polymer elastic material, and the wet paper contacting fibrous layer has the modified cross-section fibers. Accordingly, since the base layer and the second batt layer include the polymer elastic material such as synthetic resin, the base layer and the second batt layer have a high mechanical strength against the pressing by the press of the press mechanism. Therefore, even when the paper transporting felt is strongly pressed by the pressing portion of the press, the paper transporting felt is less damaged and thus the paper transporting felt has an excellent durability. As a result, since the lifetime of the paper transporting felt is elongated, the frequency of interchanging the paper transporting felt can be reduced. In addition, since the wet paper contacting fibrous layer not including the polymer elastic material has a proper compression and decompression ability, it is possible to absorb the water from the wet paper. Similarly, when the first batt layer has the proper compression and decompression ability by allowing the first batt layer not to include the polymer elastic material at all or by allowing the portion of the first batt layer not including the polymer elastic material to become greater, it is also possible to absorb the water from the wet paper. In addition, since the wet paper contacting fibrous layer coming into direct contact with the wet paper and having the modified cross-section fibers, it is possible to enhance the surface smoothness of the wet paper.
Specifically, when the modified cross-section fibers are flat fibers, it is preferable for enhancing the surface smoothness of the wet paper.
In the paper transporting felt, since the first batt layer may have the first portion which is disposed on the wet paper side surface of the base layer and includes the polymer elastic material and the fibers, and a second portion which is disposed between the first portion and the wet paper contacting fibrous layer and includes the fibers, the second portion of the first batt layer does not include the polymer elastic material and has a proper compression and decompression ability. Accordingly, it is possible to absorb the water from the wet paper. In addition, the paper transporting felt having a greater ratio of the first portion in the first batt layer to the second portion is suitably used on the upstream side in the wet paper transporting direction in the press apparatus and the paper transporting felt having a greater ratio of the second portion in the first batt layer to the first portion is suitably used on the downstream side in the wet paper transporting direction in the press apparatus. The first portion and the second portion of the first batt layer may be portions forming a sectional structure of the paper transporting felt, may be clearly distinguished from each other as in the case where they are formed as layers arranged in the thickness direction of the papermaking transporting belt, or may not be visibly distinguished from each other as the corresponding layer. That is, even when the first portion and the second portion of the first batt layer cannot be visibly distinguished from each other, it is sufficient only if the first portion of the first batt layer including the polymer elastic material is disposed on the wet paper side surface of the base layer and the second portion not including the polymer elastic material is disposed between the first portion and the wet paper contacting fibrous layer. The polymer elastic material may be included in the first portion of the first batt layer such that the content of the polymer elastic material gradually becomes smaller toward the second portion of the first batt layer from the wet paper side surface of the base layer.
The polymer elastic material can be the synthetic resin such as aqueous urethane resin, aqueous acryl resin, aqueous epoxy resin, and aqueous synthetic rubber (that is, aqueous emulsion resin). Such a polymer elastic material is impregnated in the base layer, the second batt layer, and the first portion of the first batt layer as needed by applying the polymer elastic material to the papermaking transporting belt by the use of a roller or a coater blade or spraying the polymer elastic material by the use of a spray, and is then heated and cured.
Since the press apparatus of the paper machine includes a papermaking transporting belt, the excellent operational advantages can be obtained as described above.
In addition, when the press apparatus of the paper machine comprising the plurality of press mechanisms having the above paper transporting felt, the plurality of press mechanisms are disposed in series along the transporting direction of the wet paper transported by the paper transporting felts, the water can be efficiently squeezed out of the wet paper and the surface of the wet paper can be suitably smoothed, thereby enabling the papermaking work at a high speed.
In addition, when the paper transporting felt is provided in the press mechanism disposed on the downstream side in the transporting direction among the plurality of press mechanisms, it can be considered that the water permeability is slightly smaller than that of the paper transporting felt having the smaller content of the polymer elastic material, but since the more excellent function of smoothing the surface of the wet paper, it is possible to enhance the surface smoothness of the wet paper and to enable the papermaking work at a high speed.
In the press apparatus of the shoe press type paper machine, since a press zone of the pressing portion (that is, a nip formed between the roll and the shoe) is widened by employing the press apparatus of the shoe press type paper machine and thus the pressing time can be elongated, it is possible to improve the dewatering characteristic and to smooth the surface of the wet paper.
In the press apparatus of the roll press type paper machine, it is possible to obtain the same excellent operational advantages described above, even by employing the press apparatus of a roll press type paper machine.
Consequently, it is possible to provide a paper transporting felt which has a smaller damage resulting from the pressing by a press of a press mechanism and which has an excellent durability, a proper dewatering characteristic, and an excellent ability of smoothing the surface of a wet paper, and a press apparatus of a paper machine having the paper transporting felt.
Hitherto, the present invention has been described in brief. The present invention can become clearer by describing the best mode for carrying out the present invention with reference to the accompanying drawings.
Embodiments of the present invention will be described in detail with reference to the accompanying drawings.
As shown in
The base layer 11 serves to give a strength to the paper transporting felt 100 and can be properly made of a woven cloth composed of a synthetic fiber such as nylon 6 (that is, N6) and nylon 66 (that is, N66) having excellent wear resistance, fatigue resistance, extensibility, and flame resistance or a natural fiber such as wool, a cloth made of a string material overlapped but not woven, or a cloth made into a film shape. In the present embodiment, the woven cloth is used for the base layer 11.
The batt layer 13 (first batt layer 13A and second batt layer 13B) is a non-split fiber layer formed out of staple fibers 17 having a size of 6 decitex or more (generally about 17 decitex). The material constituting the batt layer 13 may properly include the same material as the base layer 11. The second batt layer 13B may be omitted depending upon characteristics required for the paper transporting felt 100.
The base layer 11 and the second batt layer 13B include a polymer elastic material 23 in fibers thereof or in a space between the staple fibers 17. Examples of the polymer elastic material 23 can include synthetic resin such as aqueous urethane resin, aqueous acryl resin, aqueous epoxy resin, and aqueous synthetic rubber (that is, aqueous emulsion resin). Such a polymer elastic material 23 is impregnated in the second batt layer 13B and the base layer 11 by applying the polymer elastic material 23 to the surface of the second batt layer 13B (the bottom surface in
The wet paper contacting fibrous layer 15 is made of flat fibers 15A. The flat fiber 15A is an example of a modified cross-section fiber. As shown in
Measuring basic weights of respective elements of a typical example of the paper transporting felt 100 having the above-mentioned structure, the base weight of the wet paper contacting fibrous layer 15 is 200 g/m2, the basic weight of the first batt layer 13A is 400 g/m2, the basic weight of the base layer 11 is 650 g/m2, and the basic weight of the second batt layer 13B is 100 g/m2. The polymer elastic material 23 is impregnated in the base layer 11 and the second batt layer 13B by 5 wt %, respectively, and is not impregnated in the wet paper contacting fibrous layer 15 and the first batt layer 13A.
Measuring basic weights of respective elements of a light-weighted example of the paper transporting felt 100, the base weight of the wet paper contacting fibrous layer 15 is 100 g/m2, the basic weight of the first batt layer 13A is 200 g/m2, the basic weight of the base layer 11 is 200 g/m2, and the second batt layer 13B is omitted. The polymer elastic material 23 is impregnated in the base layer 11 by 1 wt % and is not impregnated in the wet paper contacting fibrous layer 15 and the first batt layer 13A.
Measuring basic weights of respective elements of a heavy-weighted example of the paper transporting felt 100, the base weight of the wet paper contacting fibrous layer 15 is 300 g/m2, the basic weight of the first batt layer 13A is 800 g/m2, the basic weight of the base layer 11 is 1500 g/m2, and the basic weight of the second batt layer 13B is 300 g/m2. The polymer elastic material 23 is impregnated in the base layer 11 and the second batt layer 13B by 10 wt %, respectively, and is not impregnated in the wet paper contacting fibrous layer 15 and the first batt layer 13A.
A method of manufacturing the paper transporting felt 100 will be described in brief. First, a cloth in which the batt layer 13 is integrally formed on the woven base layer 11 through a needling operation is prepared. A webbing sheet of the flat fiber 15A is placed on the surface of the first batt layer 13A, the needling is then performed to penetrate the webbing sheet of the flat fiber 15A, the batt layer 13, and the base layer 11 so as to form the wet paper contacting fibrous layer 15, and then they are all entangled with each other to form a body.
Next, the polymer elastic material 23 is impregnated in the second batt layer 13B and the base layer 11 by applying the polymer elastic material 23 to the surface of the second batt layer 13B (the bottom surface in
As a result, the base layer 11 and the second batt layer 13B having an excellent durability and a small compression and decompression ability and the first batt layer 13A and the wet paper contacting fibrous layer 15 having a compression and decompression ability greater than that of the base layer 11 and the second batt layer 13B are formed.
The wet paper contacting fibrous layer 15 is not limited to the flat fiber 15A, but may be made of split fibers 15B instead of the flat fibers 15A whose enlarged cross-sectional view is shown in
The split fiber 15B is made of, for example, nylon 6 (that is, N6) and the stalk portion 21 is made of, for example, poly butylene terephthalate (that is, PBT). A specific example of the split fiber 15B can include PA31 (which is product name made by Toray Industries. Inc.). The size of the split fiber 15B is set to 3.3 decitex or less so as to easily form the wet paper contacting fibrous layer, specifically, not to split the split fiber 15B in the cutting process prior to the needling process of the method of the papermaking transporting belt 100 but to effectively split the split fiber in a split process (for example, needling step, napping process by a napper, hot-water washing through refining, pressing by a pres of a press mechanism, and the like).
In order to obtain the paper transporting felt 100 having the optimal characteristic for the kind of paper to be made, the kinds of fibers constituting the base layer 11, the batt layer 13, and the wet paper contacting fibrous layer 15 and the kind of the polymer elastic material 23 or the amount of the polymer elastic material impregnated can be properly selected in consideration of the characteristics of the respective elements or the characteristic of the combination thereof.
Next, a paper transporting felt 200 according to a second embodiment of the present invention will be described with reference to
As shown in
Measuring basic weights of respective elements of a typical example of the paper transporting felt 200 having the above-mentioned structure, the base weight of the wet paper contacting fibrous layer 15 is 200 g/m2, the basic weight of the second portion 13Ab of the first batt layer 13A is 200 g/m2, the basic weight of the first portion 13Aa of the first batt layer 13A is 200 g/m2, the basic weight of the base layer 11 is 650 g/m2, and the basic weight of the second batt layer 13B is 100 g/m2. The polymer elastic material 23 is impregnated in the base layer 11, the first portion 13Aa of the first batt layer 13A, and the second batt layer 13B by 5 wt %, respectively, and is not impregnated in the wet paper contacting fibrous layer 15 and the second portion 13Ab of the first batt layer 13A.
Measuring basic weights of respective elements of a light-weighted example of the paper transporting felt 200, the base weight of the wet paper contacting fibrous layer 15 is 100 g/m2, the basic weight of the second portion 13Ab of the first batt layer 13A is 100 g/m2, the basic weight of the first portion 13Aa of the first batt layer 13A is 100 g/m2, the basic weight of the base layer 11 is 200 g/m2, and the second batt layer 13B is omitted. The polymer elastic material 23 is impregnated in the base layer 11 and the first portion 13Aa of the first batt layer 13A by 1 wt %, respectively, and is not impregnated in the wet paper contacting fibrous layer 15 and the second portion 13Ab of the first batt layer 13A.
Measuring basic weights of respective elements of a heavy-weighted example of the paper transporting felt 200, the base weight of the wet paper contacting fibrous layer 15 is 300 g/m2, the basic weight of the second portion 13Ab of the first batt layer 13A is 400 g/m2, the basic weight of the first portion 13Aa of the first batt layer 13A is 400 g/m2, the basic weight of the base layer 11 is 1500 g/m2, and the basic weight of the second batt layer 13B is 300 g/m2. The polymer elastic material 23 is impregnated in the base layer 11, the first portion 13Aa of the first batt layer 13A, and the second batt layer 13B by 10 wt %, respectively, and is not impregnated in the wet paper contacting fibrous layer 15 and the second portion 13Ab of the first batt layer 13A.
A method of manufacturing the paper transporting felt 200 will be described in brief. First, a cloth in which the batt layer 13 is integrally formed on both surfaces of the woven base layer 11 through the needling operation in the order of the first portion 13Aa of the first batt layer 13A, the second portion 13Ab of the first batt layer 13A, and the second batt layer 13B is prepared. A webbing sheet of the flat fiber 15A is placed on the surface of the second portion 13Ab of the first batt layer 13A, the needling is then performed to penetrate the webbing sheet of the flat fiber 15A, the batt layer 13, and the base layer 11 so as to form the wet paper contacting fibrous layer 15, and then they are all entangled with each other to form a body.
Next, the polymer elastic material 23 is impregnated in the second batt layer 13B, the base layer 11, and the first portion 13Aa of the first batt layer 13A by applying the polymer elastic material 23 to the surface of the second batt layer 13B (the bottom surface in
As a result, the base layer 11, the first portion 13Aa of the first batt layer 13A, and the second batt layer 13B having an excellent durability and a small compression and decompression ability and the second portion 13Ab of the first batt layer 13A and the wet paper contacting fibrous layer 15 having a compression and decompression ability greater than that of the base layer 11, the first portion 13Aa of the first batt layer 13A, and the second batt layer 13B are formed.
Next, a press apparatus 300 of a paper machine (shoe press type paper machine) fitted with the paper transporting felt 100 or 200 having an endless belt shape (ring shape) will be described with reference to
As shown in
The first press mechanism 51 includes a pair of paper transporting felts 100 and a first shoe 55 and a first roll 57 (in other words, first shoe press) which are opposed to each other to form a first nip (in other words, first pressing portion) therebetween. The second press mechanism 53 includes a pair of paper transporting felts 200 and a second shoe 59 and a second roll 61 (in other words, second shoe press) which are opposed to each other to form a second nip (in other words, second pressing portion) therebetween.
As shown in
As shown in
The wet paper contacting fibrous layer 15 of the paper transporting felt 100 or 200 is formed out of a flat fiber (modified cross-section fiber) and the wet paper side surface thereof is dense and flat. Accordingly, the wet paper W having the flat surface is made, is delivered to a drier part (not shown), and is then dried therein. Since the second batt layer 13B and the base layer 11 (the first portion 13Aa of the first batt layer 13A is added thereto in case of the paper transporting felt 200) of the paper transporting felt 100 or 200 coming into contact with the pressing portions between the first shoe 55 and the first roll 57 or between the second shoe 59 and the second roll 61 include the polymer elastic material 23 and thus the mechanical strengths thereof are enhanced, they are not damaged from the strong pressing in the pressing portions. Therefore, the paper transporting felts have an excellent durability.
As described above, the press apparatus 300 of a shoe press type paper machine having two-stage press mechanisms 51 and 53 has been described as an example of the press apparatus of a paper machine according to the present invention, but the present invention can be applied to a press apparatus having one press mechanism or a press apparatus having a plurality of press mechanisms arranged in series, of course.
Here, for the purpose of more easily understanding the present invention, a configuration of the paper transporting felt according to an embodiment of the present invention and a configuration of the press apparatus of the paper machine having the paper transporting felt will be described in brief.
The paper transporting felt 100 or 200 is a paper transporting felt being at least one of a pair of paper transporting felts which are disposed in a press apparatus 300 provided in a press part of a paper machine to form a press mechanism 51 or 53 along with a press (roll 57 or 61 and shoe 55 or 59) of the press apparatus, which interpose and transport a wet paper W, and which are pressed by the press, the paper transporting felt 100 or 200 having: a base layer 11 including a polymer elastic material 23; a first batt layer 13A formed on a wet paper side surface of the base layer 11; a second batt layer 13B which includes the polymer elastic material 23 and is formed on a press side surface of the base layer 11; and a wet paper contacting fibrous layer 15 which is formed on a wet paper side surface of the first batt layer 13A so as to come into direct contact with the wet paper W and which has modified cross-section fibers.
The modified cross-section fiber is, for example, a flat fiber 15A or a split fiber 15B.
In the paper transporting felt 200, the first batt layer 13A has a first portion 13Aa which is disposed on the wet paper side surface of the base layer 11 and which includes the polymer elastic material 23 and a fiber and a second portion 13Ab which is disposed between the first portion 13Aa and the wet paper contacting fibrous layer 15 and which includes the fiber. Here, the operational advantages of the modified cross-section fiber will be described. The flat fiber 15A and the split fiber 15B are particularly suitable for the modified cross-section fiber in the present invention. By employing any one of the flat fiber 15A and the split fiber 15B for the wet paper contacting fibrous layer 15, the surface of the wet paper W can be smoothed. The modified cross-section fiber such as the flat fiber 15A and the split fiber 15B are entangled with the other portions such as the first batt layer 13A constituting the paper transporting felt 200 through the needling process to form a body. However, since the modified cross-section fiber is entangled with the first portion 13Aa including the polymer elastic material 23 in the first batt layer 13A and some parts surrounding the modified cross-section fiber are coated with the polymer elastic material 23, the parts coated with the polymer elastic material 23 are not torn with respect to the flat fiber 15A and are not made to be micro fibers (that is, not split) with respect to the split fiber 15B, while the modified cross-section fiber is used as a part of the paper transporting felt 200. When the modified cross-section fiber is torn or further split, the water permeability of the second portion 13Ab of the first batt layer 13A is damaged, but the water permeability of the first portion 13Aa of the first batt layer 13A including the polymer elastic material 23 is not damaged. Parts of the flat fiber 15A and the split fiber 15B are torn or split but the entire portions are not completely torn or split at the time of the needling process for manufacturing the paper transporting felt 100 or 200.
The press apparatus 300 includes a plurality of press mechanisms having the paper transporting felt 100 or 200 and the plurality of press mechanisms 51 and 53 are arranged in series in the wet paper transporting direction A in which the wet paper is transported by the paper transporting felt 100 or 200.
As described above, according to the paper transporting felt 100 or 200, the base layer 11 and the second batt layer 13B include the polymer elastic material 23 and the wet paper contacting fibrous layer 15 is made of the modified cross-section fibers 15A or 15B. Accordingly, since the base layer 11 and the second batt layer 13B include the polymer elastic material 23 such as synthetic resin, the base layer and the second batt layer have a high mechanical strength against the pressing by the presses of the press mechanisms 51 and 53. Therefore, even when the paper transporting felt 100 or 200 is strongly pressed by the pressing portions of the presses, the paper transporting felt is less damaged and thus the paper transporting felt has an excellent durability. As a result, since the lifetime of the paper transporting felt 100 or 200 is elongated, the frequency of interchanging the paper transporting felt 100 or 200 can be reduced. In addition, since the wet paper contacting fibrous layer 15 not including the polymer elastic material 23 has a proper compression and decompression ability, it is possible to absorb the water from the wet paper W. Similarly, when the first batt layer 13A has the proper compression and decompression ability by allowing the first batt layer 13A not to include the polymer elastic material 23 at all or by allowing the portion of the first batt layer 13A not including the polymer elastic material 23 to become greater, it is also possible to absorb the water from the wet paper W. In addition, since the wet paper contacting fibrous layer 15 which comes into direct contact with the wet paper W is made of the modified cross-section fiber, it is possible to enhance the surface smoothness of the wet paper W.
In addition, according to the paper transporting felt 200, since the first batt layer 13A has the first portion 13Aa which is disposed on the wet paper side surface of the base layer 11 and which includes the polymer elastic material 23 and a fiber and the second portion 13Ab which is disposed between the first portion 13Aa and the wet paper contacting fibrous layer 15 and which includes the fiber, the second portion 13Ab of the first batt layer 13A does not include the polymer elastic material 23 and has a proper compression and decompression ability. Accordingly, it is possible to absorb the water from the wet paper W. In addition, the paper transporting felt having a greater ratio of the first portion 13Aa in the first batt layer 13A to the second portion 13Ab is suitably used on the upstream side in the wet paper transporting direction in the press apparatus 300 and the paper transporting felt having a greater ratio of the second portion 13Ab in the first batt layer 13A to the first portion 13Aa is suitably used on the downstream side in the wet paper transporting direction in the press apparatus 300. The first portion 13Aa and the second portion 13Ab of the first batt layer 13A may be portions forming a sectional structure of the paper transporting felt 200, may be clearly distinguished from each other as in the case where they are formed as layers arranged in the thickness direction of the papermaking transporting belt 200 as shown in
According to the press apparatus 300 of a paper machine, when a plurality of press mechanisms 51 and 53 having the paper transporting felt 100 or 200 are arranged in series in the wet paper transporting direction in which the wet paper W is transported by the papermaking transporter belts 100 or 200, the water can be efficiently squeezed out of the wet paper W and the surface of the wet paper can be suitably smoothed, thereby enabling the papermaking work at a high speed. When any one paper transporting felt 100 or 200 described above is provided in the press mechanism 53 disposed on the downstream side in the wet paper transporting direction in which the wet paper W is transported by the paper transporting felt 100 or 200 among the plurality of press mechanisms 51 and 53, it can be considered that the water permeability is slightly smaller than that of the paper transporting felt having the smaller content of the polymer elastic material 23, but since the more excellent function of smoothing the surface of the wet paper, it is possible to enhance the surface smoothness of the wet paper W and to enable the papermaking work at a high speed. In addition, since the paper transporting felt 100 or 200 has a dewatering function, the paper transporting felt can absorb the water out of the wet paper W and can deliver the wet paper to the drier part in which a next process is performed, thereby reducing the thermal energy consumption in the drying process using hot wind, even when the paper transporting felt is fitted to the press mechanism 53 disposed on the downstream side.
The present invention is not limited to the embodiments and modified examples described above, but may be properly modified and changed in form. Otherwise, materials, shape, measurements, numerical values, types, numbers, arrangement positions, and the like of the respective elements in the embodiments and modified examples described above may be arbitrary and not limited, only if they can implement the present invention.
For example, when the paper transporting felt according to the present invention is fitted to a press apparatus of a shoe press type paper machine with an open draw type having a portion where the wet paper W is independently transported during transporting, the same advantages can be effectively obtained. In addition, when the paper transporting felt according to the present invention is fitted to a press apparatus of a roll press type paper machine with a closed draw type or an open draw type, the excellent operational advantages of the present invention described above can be obtained.
Number | Date | Country | Kind |
---|---|---|---|
P.2004-333274 | Nov 2004 | JP | national |