The present disclosure relates generally to video processing, and more particularly, to a system and method for parallax tolerant video stitching with spatial-temporal localized warping and seam finding.
The increasingly powerful computation, large storage, and expanding transmission bandwidths have enabled a wide variety of applications in the market, which provides modern users all kinds of visual experiences. For instance, with the advent of high-definition displaying devices such as very large screens and Ultra-HD TVs, there has been a strong interest in generating high-quality videos with an ultra-large Field-of-View (FoV) that can give users immersive media experiences. A variety of devices and methods have been developed to construct large FoV images. Very expensive, high-end camera systems are used by professional agencies for this purpose, such as the AWARE-2 camera used in the defense industry, which is a monocentric, multi-scale camera that includes a spherically symmetric objective lens surrounded by an array of secondary microcameras. For groups with a smaller budget (e.g., independent photographers or even amateur consumers), a camera system that can obtain reasonable quality but with much less expense is desired.
According to one embodiment, there is provided a method of parallax tolerant video stitching. The method includes determining a plurality of video sequences to be stitched together; performing a spatial-temporal localized warping computation process on the video sequences to determine a plurality of target warping maps; warping a plurality of frames among the video sequences into a plurality of target virtual frames using the target warping maps; performing a spatial-temporal content-based seam finding process on the target virtual frames to determine a plurality of target seam maps; and stitching the video sequences together using the target seam maps.
According to another embodiment, there is provided an apparatus for parallax tolerant video stitching. The apparatus includes at least one memory and at least one processor coupled to the at least one memory. The at least one processor is configured to determine a plurality of video sequences to be stitched together, perform a spatial-temporal localized warping computation process on the video sequences to determine a plurality of target warping maps, warp a plurality of frames among the video sequences into a plurality of target virtual frames using the target warping maps, perform a spatial-temporal content-based seam finding process on the target virtual frames to determine a plurality of target seam maps, and stitch the video sequences together using the target seam maps.
According to yet another embodiment, there is provided a non-transitory computer readable medium embodying a computer program. The computer program includes computer readable program code for determining a plurality of video sequences to be stitched together; performing a spatial-temporal localized warping computation process on the video sequences to determine a plurality of target warping maps; warping a plurality of frames among the video sequences into a plurality of target virtual frames using the target warping maps; performing a spatial-temporal content-based seam finding process on the target virtual frames to determine a plurality of target seam maps; and stitching the video sequences together using the target seam maps.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, wherein like numbers designate like objects, and in which:
The following documents are hereby incorporated into the present disclosure as if fully set forth herein: (i) Brady et al., “Multiscale gigapixel photography,” Nature 486:386-389, 2012 (hereinafter “REF1”); (ii) F. Zhang and F. Liu, “Parallax-tolerant image stitching,” IEEE CVPR, 2014 (hereinafter “REF2”); and (iii) Szeliski, “Image alignment and stitching: A tutorial,” Foundations and Trends in Computer Graphics and Computer Vision, 2006 (hereinafter “REF3”).
Using affordable cameras, such as normal DSLR (digital single-lens reflex) or mobile cameras, many methods have been developed for generating large Field-of-View (FoV) 2D photo panoramas. These methods does not require recovering the geometric and photometric scene models, but they require that the captured scene be planar or distant, or that the camera viewpoints be closely located, in which cases each image can be stitched to a reference image by using a single global homography. When such requirements are not met perfectly, i.e., when a single global homography is not enough to stitch an image to the reference image (which is generally the case in real applications), the resulting stitched panorama usually presents different levels of parallax artifacts such as ghosting and distortion, as illustrated in
To alleviate the problem of parallax artifacts, one or more localized content-preserving warping algorithms have been developed. By using a homography mesh instead of a single global homography, each image can be stitched to the reference image with localized homographies to significantly reduce the parallax artifacts, as illustrated in
To resolve these issues, embodiments of this disclosure provide a video stitching system and method that include a spatial-temporal localized warping framework and a spatial-temporal content-based seam finding framework. The spatial-temporal localized warping framework addresses the artifacts caused by moving objects in video stitching. The framework includes a spatial-temporal cost function to determine the optimal localized warping maps to align videos to a reference video by preserving the spatial-temporal local alignment, preserving the spatial-temporal global alignment, and maintaining the spatial-temporal smoothness.
The spatial-temporal content-based seam finding framework addresses issues caused by both the inconsistent stitching seams and the undesired seams cutting through salient foreground objects. The framework includes a spatial-temporal content-based graph-cut seam finding mechanism. A spatial-temporal graph is constructed; the graph contains both spatial and temporal edges, and takes into account the objectness of the pixels. The optimal flow seam that is found based on the graph can stitch the videos together more consistently as well as avoid cutting through salient foreground objects.
To better explain the video stitching workflow 300, it is assumed that there are n video sequences 301a-301n that are to be stitched together. A reference video sequence is defined, which can be any one of the n video sequences 301a-301n. A primary objective of video stitching is to generate a larger video sequence by stitching the corresponding frames of the n video sequences 301a-301n to the reference video sequence. Let Ĩt denote the frame in the reference video sequence at time t, and let Ii,t denote the frame in the i-th video sequence at time t. Using video stitching, a virtual frame I′t is generated by stitching Ii,t=1, . . . , n to Ĩt at different times t=1, . . . , m.
The video stitching workflow 300 includes two function blocks that enable parallax-tolerant video stitching: the spatial-temporal localized warping computation block 310 and the spatial-temporal content-based seam finding block 320. The spatial-temporal localized warping computation block 310 uses the video sequences 301a-301n to determine a set of target warping maps Mi,t 302. Each frame Ii,t is warped into a target virtual frame Ĩi,t 303 using a corresponding target warping map Mi,t 302. The spatial-temporal content-based seam finding block 320 uses the target virtual frames 303 to determine a set of target seam maps 304. The function blocks 310, 320 will now be described in greater detail.
As shown in
The first step of the spatial-temporal localized warping framework 400 is to take the set of video sequences Ii,t,i=1, . . . , n,t=1, . . . , m (video sequences 301a-301n), and extract a set of visual keypoints (Pi,t,k,di,t,k),k=1, . . . , Ki (keypoints 401a-401n) from each video sequence, where di,t,k is a visual descriptor. Each visual keypoint (Pi,t,k,di,t,k)i records the spatial-temporal location of the keypoint in the corresponding video sequence.
Together, the parameter Pi,t,k=(xi,t,k, yi,t,k) and the visual descriptor di,t,k describe the local visual characteristics around the visual keypoint in the corresponding video sequence. Various keypoint extraction techniques can be used to extract the visual keypoints, such as the 2D or 3D Harris corner detectors. Various descriptors can be used for di,t,k, such as the SIFT (Scale Invariant Feature Transform), SURF (Speeded Up Robust Features), or FAST (Features from Accelerated Segment Test) descriptors.
Using the set of visual keypoints (Pi,t,k,di,t,k),k=1, . . . , Ki (keypoints 401a-401n), the spatial-temporal localized warping framework 400 determines a set of spatial global homographies {tilde over (S)}i,i=1, . . . , n (spatial global homographies 402), and a set of temporal global homographies Ti,t, i=1, . . . , n,t=1, . . . , m (temporal global homographies 403). Each spatial global homography {tilde over (S)}i is a 3 by 3 transformation matrix that transforms each frame Ii,t to align with the reference frame Ĩt. Similarly, each temporal global homography Ti,t is a 3 by 3 transformation matrix that transforms each frame Ii,t to align with a temporal reference frame Îi,t for the i-th video sequence.
In a preferred embodiment, the temporal reference frame Îi,t can be determined using two steps. First, an averaged temporal global homography Ai can be calculated as Ai=avg ΣtAi(t,t+1), where Ai(t,t+1) is a 3 by 3 transformation matrix to transform frame Ii,t+1 to align with frame Ii,t. Then, in the second step, the temporal reference frame Îi,t can be calculated as Îi,t=Ai(t-1)Ii,1. By transforming each frame Ii,t using the temporal global homography Tit to align with the temporal reference frame Îi,t, the benefit of stabilizing the original video frames Ii,t can be automatically realized by using a static global camera path defined by Ai. This is beneficial to the final stitching result when a small amount of camera shakiness exists during the video capture. Such shakiness can occur when the camera system is not completely physically stabilized, for example, when the camera system is used outdoor in strong wind.
In a preferred embodiment, temporal matching pairs (Pi,t,l,Pi,t+1,l),l=1, . . . , Li,t can be determined based on the similarity between keypoints (Pi,t,k,di,t,k) and (Pi,t+1, k,di,t+1,k), and Ai(t, t+1) can be determined based on the temporal matching pairs (Pi,t,l,Pi,t+1,l),l=1, . . . , Li,t using Ransac and outlier rejection. Using the averaged temporal global homography Ai, the first item in the temporal matching pairs Pi,t,l,l=1, . . . , Li,t can be transformed to new locations P′i,t,l,l=1, . . . , Li,t, and the temporal global homography Ti,t is determined based on the matching pairs (P′i,t,l,Pi,t+1,l),l=1, . . . , Li,t using Ransac and outlier rejection. At the same time, spatial matching pairs (Pi,t,l,{tilde over (P)}t,l),l=1, . . . , Li can be found based on the similarity between keypoints (Pi,t,k,di,t,k) and ({tilde over (P)}t,k,{tilde over (d)}t,k), and the spatial global homography {tilde over (S)}i can be determined using all the spatial matching pairs at different times (Pi,t,l,Pj,t,l),l=1, . . . , Li,j,t=1, . . . , m using Ransac and outlier rejection, where ({tilde over (P)}t,k,{tilde over (d)}t,k),k=1, . . . , {tilde over (K)} are the keypoints extracted over the reference video sequence, which can be any one of the n input video sequences 301a-301n.
A pre-warping process 404 uses the spatial global homographies {tilde over (S)}i,i=1, . . . , n (spatial global homographies 402) and the temporal global homographies Tit,i=1, . . . , n,t=1, . . . , m (temporal global homographies 403). In the pre-warping process 404, each input video frame Ii,t is transformed to a pre-warped video frame Īi,j according to the equation:
Īi,t={tilde over (S)}iTi,tIi,t,
the temporal matching pairs (Pi,t,l,Pi,t+1,l),l=1, . . . , Li,t are transformed to a set of pre-warped temporal matching pairs (
and the spatial matching pairs (Pi,t,l,{tilde over (P)}t,l),l=1, . . . , Li,t=1, . . . , m are transformed to a set of pre-warped spatial matching pairs (
A xn×yn uniform grid is defined that divides each image into xn×yn uniform cells. Let Vi,t,k,k=1, . . . , (xn+1)(yn+1) and
The parameter EdS measures spatial local alignment, where (
The parameter Edt measures temporal local alignment, where (
The parameter Egs measures spatial global alignment. When there is no pre-warped spatial matching pairs in the spatial neighborhood of the pre-warped vertex
The parameter Egt measures temporal global alignment. Let rεΩt denote a temporal neighborhood of time frame t. When there is no pre-warped temporal matching pairs in the spatial neighborhood of the pre-warped vertex
The parameter Ess measures spatial smoothness. Let Δ denote a set of triplets, where each triplet in Δ contains three vertices
If the triangle undergoes a similarity transformation, its coordinates in the local coordinate system will remain the same. Therefore, minimizing Ess encourages the mesh cells to undergo a similarity transformation spatially, which helps to reduce the local distortion during optimization. The value
The parameter Est measures temporal smoothness. Again, let Δ denote a set of triplets, where each triplet in Δ contains three vertices
If the triangle undergoes a similarity transformation, its coordinates in the local coordinate system will remain the same. Therefore, minimizing Est encourages the mesh cells to undergo a similarity transformation temporally, which helps to reduce the local distortion during optimization. The value
The weights φ≧0, α≧0, β≧0, φ≧0, θ≧0 are assigned to each term in the cost function in Equation (1) to balance the importance of different terms in optimization. When φ=0, φ=0, θ=0, the cost function in Equation (1) reduces to the content-preserving warping method for static image stitching developed in REF2.
After obtaining the target vertices {circumflex over (V)}i,t,k,k=1, . . . , (xn+1)(yn+1),i=1, . . . , n,t=1, . . . , m, the set of target warping maps Mi,t,i=1, . . . , n,t=1, . . . , m can be determined based on the original vertices Vi,t,k,k=1, . . . , (xn+1)(yn+1),i=1, . . . , n,t=1, . . . , m and the target vertices {circumflex over (V)}i,t,k,k=1, . . . , (xn+1)(yn+1),i=1, . . . , n,t=1, . . . , m. There are several ways to determine the target warping maps. In a preferred embodiment, for each mesh cell Cj, its four vertices {circumflex over (V)}i,t,j(1),{circumflex over (V)}i,t,j(2),{circumflex over (V)}i,t,j(3),{circumflex over (V)}i,t,j(4) and Vi,t,j(1),Vi,t,j(2),Vi,t,j(3),Vi,t,j(4) define a perspective transformation Hi,t,j to transform the pixels of image Ii,t in the mesh cell Cj to align with the corresponding mesh cell {tilde over (C)}j in the reference image Ĩt. The target warping map Mi,t is simply formed as the set of Hi,t,j,j=1, . . . , xnyn, and the whole image Ii,t can be warped by Mi,t cell by cell into the target virtual frame Ĩi,t (target virtual frame 303).
As shown in
The first step of the spatial-temporal content-based seam finding framework 500 is the spatial-temporal objectness computation process 501. Given a pair of target virtual frame sequences Ĩi,t,t=1, . . . , m and Ĩj,t,t=1, . . . , m, in the spatial-temporal objectness computation process 501, an objectness value oi,j,t,kε[0,1] is assigned to each overlapping pixel pi,j,t,k between Ĩi,t and Ĩj,t. The objectness value oi,j,t,k measures the level of object saliency of the pixel pi,j,t,k. The more salient the pixel pi,j,t,k is, the larger the value oi,j,t,k has, and it is less desirable that the target seam cuts through the pixel pi,j,t,k. There are a number of different methods of determining the objectness value oi,j,t,k. For example, if the pixel is on a human face, the target seam is not encouraged to cut through the human face to avoid artifacts. As another example, if the pixel is on a fast moving object and is close to strong structural edges, the target seam is not encouraged to cut through the pixel to avoid artifacts. In a preferred embodiment, the computation process 501 takes into account the above factors in computing the objectness value, where oi,j,t,k=a*fi,j,t,k+b*ei,j,t,k. The value fi,j,t,k is the distance from the pixel pi,j,t,k to an automatically detected human face, and ei,j,t,k is the distance from the pixel pi,j,t,k to a close-by strong moving edge. The values a, b are the weights to balance these two terms.
After that, a spatial-temporal graph can be constructed using the spatial-temporal graph construction process 502.
Esi,j,t(k,l)=oi,j,t,kD(Ĩi,t(k),Ĩj,t(k))+oi,j,t,lD(Ĩi,t(l),Ĩj,t(l)),
where D(Ĩi,t(k),Ĩj,t(k)) is the distance measurement between pixel value Ĩi,t(k) and pixel value Ĩj,t(k), and Ĩi,t(k) is the pixel value of the k-th pixel in frame Ĩi,t. Various distance measurements can be used to determine D(Ĩi,t(k),Ĩj,t(k)). For example, in one embodiment:
Esi,j,t(k,l)=oi,j,t,k∥Ĩi,t(k)−Ĩj,t(k)∥+oi,j,t,l∥Ĩi,t(l)−Ĩj,t(l)∥.
The temporal edge 603 between pixel pi,j,t,k and pi,j,t+1,k is defined as Eti,j,k(t,t+1) according to the following:
Eti,j,k(t,t+1)=(oi,j,t,k+oi,j,t+1,k)(D(Ĩi,t(k),Ĩi,t+1(k))+D(Ĩj,t(k),Ĩj,t+1(k)))/2,
where D(Ĩi,t(k),Ĩi,t+1(k)) is the distance measurement between pixel value Ĩi,t(k) and pixel value Ĩi,t+1(k). Various distance measurements can be used to determine D(Ĩi,t(k),Ĩi,t+1(k)). For example in one embodiment:
Eti,j,k(t,t+1)=(oi,j,t,k+oi,j,t+1,k)(∥Ii,t(k)−Ii,t+1(k)∥+∥Ij,t(k)−Ij,t+1(k)∥)/2.
Without loss of generality, assume that image Ĩi,t is source and Ĩj,t is sink, the overlapping pixel that is on the boundary of the overlapped regions between Ĩi,t and Ĩj,t is given an edge to its closest image (either source or sink), with infinity edge weight.
Then, returning to
To determine the final target seam map Zt, the above process is conducted iteratively by adding frames to the stitched result one by one. That is, frame Ĩ1,t and Ĩ2,t are first stitched together, and then frame Ĩ3,t is added in to stitch with the stitched result of frame Ĩ1,t and Ĩ2,t, and so on.
Once the set of target seam maps Zt,t=1, . . . , m (target seam maps 304) are obtained, various color correction, gain compensation, and blending techniques can be used to visually enhance the stitched result.
At step 701, a plurality of video sequences are determined to be stitched together. In some embodiments, this may include a computing device determining the video sequences 301a-301n in
At step 705, a plurality of frames among the video sequences are warped into a plurality of target virtual frames using the target warping maps determined in step 703. At step 707, a spatial-temporal content-based seam finding process is performed on the target virtual frames to determine a plurality of target seam maps. In some embodiments, this may include the spatial-temporal content-based seam finding framework 500 performing the functions of the spatial-temporal content-based seam finding block 320 in
Although
The processing block 805 and the system memory 807 are connected, either directly or indirectly, through a bus 813 or alternate communication structure, to one or more peripheral devices. For example, the processing block 805 or the system memory 807 may be directly or indirectly connected to one or more additional memory storage devices 815. The memory storage devices 815 may include, for example, a “hard” magnetic disk drive, a solid state disk drive, an optical disk drive, and a removable disk drive. The processing block 805 and the system memory 807 also may be directly or indirectly connected to one or more input devices 817 and one or more output devices 819. The input devices 817 may include, for example, a keyboard, a pointing device (such as a mouse, touchpad, stylus, trackball, or joystick), a touch screen, a scanner, a camera, and a microphone. The output devices 819 may include, for example, a display device, a printer and speakers. Such a display device may be configured to display video images. With various examples of the computing device 800, one or more of the peripheral devices 815-819 may be internally housed with the computing block 803. Alternately, one or more of the peripheral devices 815-819 may be external to the housing for the computing block 803 and connected to the bus 813 through, for example, a Universal Serial Bus (USB) connection or a digital visual interface (DVI) connection.
With some implementations, the computing block 803 may also be directly or indirectly connected to one or more network interfaces cards (NIC) 821, for communicating with other devices making up a network. The network interface cards 821 translate data and control signals from the computing block 803 into network messages according to one or more communication protocols, such as the transmission control protocol (TCP) and the Internet protocol (IP). Also, the network interface cards 821 may employ any suitable connection agent (or combination of agents) for connecting to a network, including, for example, a wireless transceiver, a modem, or an Ethernet connection.
It should be appreciated that the computing device 800 is illustrated as an example only, and it not intended to be limiting. Various embodiments of this disclosure may be implemented using one or more computing devices that include the components of the computing device 800 illustrated in
The embodiments described herein provide a solution for parallax tolerant video stitching. By jointly minimizing the spatial-temporal cost function in the spatial-temporal localized warping framework, the computed localized warping maps are able to align frames from multiple videos by optimally preserving the spatial and temporal data alignment and the spatial temporal smoothness. As a result, the resulting warped frames are spatially well aligned with localized warping, and are temporally consistent.
By finding the optimal spatial-temporal seams that take into account the objectness of the pixels in the spatial-temporal content-based seam finding framework, the resulting seams can be used to stitch frames from multiple videos together with good temporal consistency while avoiding cutting through salient foreground objects to avoid artifacts.
In some embodiments, some or all of the functions or processes of the one or more of the devices are implemented or supported by a computer program that is formed from computer readable program code and that is embodied in a computer readable medium. The phrase “computer readable program code” includes any type of computer code, including source code, object code, and executable code. The phrase “computer readable medium” includes any type of medium capable of being accessed by a computer, such as read only memory (ROM), random access memory (RAM), a hard disk drive, a compact disc (CD), a digital video disc (DVD), or any other type of memory.
It may be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrases “associated with” and “associated therewith,” as well as derivatives thereof, mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.
While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
8270767 | Park | Sep 2012 | B2 |
8947502 | Mashiah | Feb 2015 | B2 |
20040001705 | Soupliotis | Jan 2004 | A1 |
20060262184 | Peleg | Nov 2006 | A1 |
20070030396 | Zhou | Feb 2007 | A1 |
20070031062 | Pal | Feb 2007 | A1 |
20100092037 | Peleg | Apr 2010 | A1 |