In high-capacity, long-haul fiber data transmission, digital signal processing (DSP) after signal detection can greatly improve transmission performance by providing compensation against fiber impairments such as chromatic dispersion (CD) and polarization mode dispersion (PMD). Together with polarization diversity coherent detection, DSP also grants polarization division multiplexing (PDM) to double the transmitted data rate. To implement DSP for post detection processing, analog-to-digital converters (ADCs) at high sampling rate are needed in the coherent receiver design. In reality, the signal bandwidth that can be supported by electronic ADC is much lower than the E-O modulator bandwidth at the transmitter. Currently, the state of the art is about 20 GHz for electronic ADC bandwidth, while 40 GHz bandwidth E-O modulators are already commercially available. To fully utilize the potential of post-detection DSP at high data rates, a new ADC technology is required to fill the bandwidth gap.
Parallel processing of incoming high BW signals is often used to achieve high ADC sampling rates. Electronic time-interleaved ADCs have synchronized track-and-hold circuitry, which has to cover the entire input signal BW (state of the art ˜20 GHz), on each parallel sampling path. Parallel processing in frequency domain, which can reduce the BW requirement of each sampling path, has been proposed to reach higher sampling rates. We proposed recently a photonic filter bank (PFB) structure using orthogonal filter design to allow digital perfect reconstruction in theory. In order to sample the high frequency tributary of the incoming signal, filter bank methods need RF electronic frequency down converters. The need for rf down conversion not only increases system complexity and cost (a typical phase/polarization diversity receiver requires a total of four converters), but it may also degrade system performance because of the difficulty of analog wideband processing in electronic domain. In terms of filter design, it is desirable to have sharp filter roll-offs because of the limited ADC BW in each parallel sampling paths. In PFB structure, sharp roll-offs are challenging to implement using orthogonal filter design because many optical taps are required.
Accordingly, there is need for a method to generate over 100 Gbit/s OFDM signals with the limited bandwidth for A/D and D/A converter tolerance.
In accordance with the invention, a method includes modulating lightwaves to provide first and second OFDM signal sidebands at a first polarization direction and first and second OFDM signal sidebands at a second polarization direction, and combining sidebands that are oppositely positioned and joined from the first and second OFDM signal sidebands at each polarization direction to provide a polarization multiplexing OFDM signal.
In another aspect of the invention, an apparatus includes a modulator for varying lightwaves to provide first and second OFDM signal sidebands at a first polarization direction and first and second OFDM signal sidebands at a second polarization direction; and a polarization beam combiner for combining sidebands that are oppositely positioned and joined from the first and second OFDM signal sidebands at each polarization direction to provide a polarization multiplexing OFDM signal.
These and other advantages of the invention will be apparent to those of ordinary skill in the art by reference to the following detailed description and the accompanying figures.
The invention is directed to an inventive PFB architecture that uses an optical interleaver as a two-way filter bank. The optical interleaver exhibits a symmetrical spectral response about the optical carrier frequency, which will automatically translate the two filtered optical signal to low-frequency and high-frequency tributaries after O-E conversion. Optical interleavers can be easily designed to have very sharp roll-offs so that the filtered tributaries will fit into the sampling BW of electronic ADC. Another aspect of the PFB architecture is a direct optical down conversion scheme, which uses two synchronized optical local oscillators (LO) during coherent detection located with respect to the high-frequency tributary in such a way that RF down converters are no longer required. With this new invention, we can nearly double the supported signal BW for digital coherent detection.
The diagrams of
The lightwave 301, 501 can be a narrow linewidth laser less than 2 MHz and the intensity modulator generates optical carrier suppression signals. The electrical mixer 303, 304, 504 up-converts the baseband signal to an RF band. The RF signal 304, 505, 506 is provided to the electrical mixer so that the base-band can be up-converted. The optical filter 305, 508 is realized by an optical interleaver so that only a high or low frequency signal can be passed for each port if the interleaver has two ports. Preferably, the interleaver has two input ports and one output port with sharp edge characteristics. The optical coupler 306, 403, 507 are preferably 50% to 50% ratio optical couplers that divide the signal into two equal parts. The optical beam combiner or splitter 307, 404, 509 combines or splits the orthogonal signal. The electrical combiner 503 combines two different frequency RF signals.
Referring to the diagram of
The diagram of
The OFDM signal is generated from the D/A converter. Due to the D/A converter bandwidth limitation, the OFDM signal may not be high enough to carry a signal for over 100 Gbit/s signal (the total capacity with all sub-channels). So we need to change
The present invention has been shown and described in what are considered to be the most practical and preferred embodiments. It is anticipated, however, that departures may be made therefrom and that obvious modifications will be implemented by those skilled in the art. It will be appreciated that those skilled in the art will be able to devise numerous arrangements and variations which, not explicitly shown or described herein, embody the principles of the invention and are within their spirit and scope.
This application claims the benefit of U.S. Provisional Application No. 61/169,361, entitled “Parallel Digital Coherent Detection Using Symmetrical Optical Interleaver And Direct Optical Down Conversion”, filed on Apr. 15, 2010, the contents of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61169361 | Apr 2009 | US |