Generally, there are two main types of fluorescent ballasts manufactured for low pressure, hot cathode discharge lamps. The first type is a hot start electronic ballast, also known as a program start electronic ballast. Typically, a program start electronic ballast provides a relatively low voltage across the lamp with a separate cathode heating current during lamp startup. Pre-heating the cathode before lamp ignition, lowers the amount of voltage needed to strike the lamp, that is, the glow discharge current is minimized. By minimizing the glow discharge current, the cathode life is extended since the amount of the cathode that is spattering off during lamp startup is minimized, extending the overall life of the lamp.
This type of lighting system finds particularly useful application in a setting where the lights are frequently turned on and off, such as in a conference room, a lavatory, or other setting that sees frequent but non-continuous usage. In these settings, light is needed when the room is in use, but typically the lights are turned off to save energy when no one is using the room. In short, the program start electronic ballast is beneficial for applications in which the lamps undergo a high number of on/off cycles.
Despite its advantages, the program start electronic ballast does have drawbacks. First, because it has to pre-heat the cathode before it strikes the lamp, there is a noticeable delay from the time when the light switch is activated to the time when the lamp emits visible light. Typically this delay is on the order of 1.5 seconds. This delay is therefore a drawback in settings where a user expects an almost instantaneous lighting of an area.
Another drawback of the program start ballast is that once the lamp is lit, current is still provided to heat the cathodes when it is no longer needed. This current may consume up to 3 to 5 watts of power per lamp, which can be up to 10% of some systems' operating power. This current is wasted, as it neither provides extra light, nor extends the life of the lamp. This waste of power after the lamp is lit makes the system less efficient overall.
Additionally, program start lamp ballasts commonly utilize a series lamp configuration. In a series configuration, if one lamp fails, it will shut down the circuit for the whole ballast, causing all lamps in the ballast to be turned off. Thus, the lamps in the ballast produce no light where they could be producing light from other lamps if the lamps were in a parallel configuration. Since all lamps will not be producing light, more frequent servicing of the lighting installation will be required, increasing the cost of labor to maintain the system.
One additional concern is that most program start ballasts are required to have IC driven control. This type of control adds to the cost of the ballast.
The second common type of ballast, the instant start ballast, addresses some issues of the program start ballast, however, it introduces some new issues of its own. Typically, an instant start ballast does not pre-heat the cathodes, rather it applies the operating voltage directly to the lamp. In this design, at the moment the switch is turned on, a high voltage is provided across the lamp. For a typical system the voltage can be about 600 V, and the peak voltage can be up to about 1000 V. With this high voltage across the lamp, sufficient glow current exists to bring the lamp up to a point where the lamp will ignite quickly. The lamp, therefore, has a much shorter ignition time (typically about 0.1 seconds) as compared to the program start systems, and light is seen substantially concurrently with the activation of the light switch. Also, there is no extra current drain to the cathodes during operation, since the operating voltage is applied directly to the lamp cathodes. Instant start ballasts also use parallel lamp configurations with inherently built-in redundancy in the event of the lamp failure.
However, the instant start ballast produces a glow discharge current, which degrades the integrity of the cathodes during the brief period before the lamp strikes. Over time, with instant starts, the cathodes degrade at a rate, leading to an early failure of the lamp.
Thus, a drawback of the instant start ballast is premature lamp failure. Because an instant start ballast burns through cathodes so quickly, lamps may fail long before their expected lifetimes.
While the program start ballasts are inefficient because they waste power, the instant start ballasts are inefficient because they may require more lamps for a given amount of time. Consequently, it is desirable to take the advantages of the beneficial aspects of the program start ballast (e.g. longer lamp life) and combine them with the advantages of the instant start ballast (e.g. quick start time) to produce an improved lamp ballast. The present application contemplates a method and apparatus that combines the positive aspects of the program start and instant start ballasts without propagating the negative aspects of those ballasts.
According to one aspect of the present application, an electronic ballast is provided. The ballast includes an inverter that converts a DC bus voltage into an AC signal for powering at least one lamp during a preheat phase. A cathode current controller provides a preheat current to the at least one lamp. An open circuit voltage controller provides a lamp firing voltage to the at least one lamp after the preheating phase.
According to another aspect of the present application, a method of lamp operation is provided. An AC line voltage is received, regulated, and converted into a DC bus signal. The DC bus signal is then converted back into an AC signal for operation of lamps. A preheat current is provided to cathodes of the lamps. The preheat current is redirected and combined with another current to ignite the lamps.
According to another aspect of the present application, an electronic ballast is provided. An inverter converts a DC bus voltage into an AC lamp operating signal. A cathode current controlling ballast capacitor system regulates a preheat current to at least two lamps. First and second diode pairs decouple the first and second lamps from each other, respectively.
With reference to
Before power is passed to a lamp or set of lamps 20 by the inverter 18, it is first gated by an open circuit voltage (OCV) controller 22. The controller 22 times how long a pre-heat current should be applied to cathodes of the lamps 20, and passes that information to a cathode current controller 24. More specifically, in one embodiment the open circuit voltage controller 22 will control the voltage to the lamp to be less than about 300 V peak across each lamp 20 during the pre-heat phase. During this time, the cathode current controller 24 applies the pre-heat current to lamps 20 before the operating voltage is applied to the lamps 20 to ignite and operate the lamps in steady-state. The pre-heating phase lasts approximately 0.3 to 0.5 seconds, after which the cathode current controller 24 switches off current to the cathodes of the lamps 20. Next, the open circuit voltage controller 22 will shift up the voltage to ignite the lamp or lamps. In this embodiment, once the voltage across the lamps 20 reaches a range of 450 to 600 V RMS, and more approximately 475 V RMS, the lamps 20 strike and start emitting light. It is to be appreciated that the open circuit voltage controller 22 and cathode current controller 24 may each be one of integrated circuit controllers as well as controllers designed as discrete component circuits. The OCV controller 22 is designed as a buffer and decoupling arrangement or circuit whereby the lamps of the system are isolated from each other, so each lamp works independently. The power factor correction circuit 16, in this embodiment, may be an active power factor correction circuit which is able to accept a wide range of input voltages.
Thus, the embodiment of
Turning now to
The power transformer having primary inductor 42a also includes secondary inductors 62 and 64 (
A reason the secondary winding is split into two secondary windings 62 and 64, is to permit the configuration of the circuit so the first winding 62 may be bypassed, and therefore only the second half of the winding voltage (i.e., from winding 64) and voltage on the inductor 90 will be applied to the lamps. Thus allowing for the reduced voltage across the lamps mentioned above.
The voltage from winding 62 will go through several diodes, including diodes 66, 68, 70 and 72. These diodes are interconnected to upper capacitors 80, 82, 84 and 86. The diode and capacitor arrangement provides a buffering, decoupling operation which permits each individual lamp to be operated separately without interference due to the removal or delamping or failure of other lamps in the system when the individual lamp is at steady state. A more detailed discussion of these diode and capacitor arrangements will be discussed in detail in following figures.
Current from secondary inductor 62 also charges cathode pre-heating primary inductor 90. The inductor 90 transfers power to cathode pre-heating secondary inductors 921, 922, 923. It is to be understood that while cathode preheating windings 921, 922, 923 are shown separated out in
With continuing reference to
A timing circuit 98 may be configured in a variety of designs, including in this embodiment component diode 100, inductor 102, capacitor 104 in parallel with resistor 106, capacitor 108 and resistor 110. Additionally, resistor 112 is placed in parallel with diode 114, and a resistor 116 connects diode 100 to transistor 94. These components are arranged as timing circuit 98 to feed transistor 94, which as mentioned is connected to the gate of transistor 96.
Returning attention to
There are further components shown in
It is to be appreciated the output control scheme of
Each capacitor 160, 162, 164 in the ballast capacitor system operates as a buffer during startup of the lamp. Regardless of when each lamp fires (if they do not fire precisely concurrently), unlit lamps still see the same voltage, e.g., approximately 475V RMS. That is, the ballast capacitor system keeps the firing voltage to unlit lamps from interfering with lighting of other lamps. Additionally, to keep the voltage down to the preferred preheat voltage value low, a decoupling array 166 shorts points A, B, C, and D together during the pre-heat phase. In this manner, the lamps 201, 202, 203 are not exposed to the full voltage supplied by both secondary windings 62, 64, but rather they only see the voltage supplied by winding 64. Thus the lamps do not undergo the phenomenon of glow discharge because the voltage across the lamps is held to a safe level.
In
Turning to
Turning to
The diagram of
When the switch 70 is non-conductive, the path back to point A from points B, C, and D through diodes 178, 182 and 186, respectively, is opened. Current flow in the opposite direction is prevented by diodes 176, 180 and 184 due to the peak charge on capacitors 160, 162, 164. Thus, the cathode pre-heating is removed when switch 70 opens. The switch 70 and decoupling array 166 ensure that uniform cathode heating is being applied to the parallel arrangement of lamps. The decoupling array allows a parallel relationship to exist without complex timing and switching for each parallel lamp.
In an alternate embodiment, illustrated in
In another alternate embodiment, as depicted in
In still another alternate embodiment, as shown in
While the above concepts may be implemented in a number of designs, the following component values may be used in at least one embodiment:
An additional alternate embodiment, shown in
The above concepts have been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the description be construed as including all such modifications and alterations.
Number | Name | Date | Kind |
---|---|---|---|
5170099 | Ueoka et al. | Dec 1992 | A |
5438243 | Kong | Aug 1995 | A |
5512801 | Nilssen | Apr 1996 | A |
5731667 | Luchetta et al. | Mar 1998 | A |
5744915 | Nilssen | Apr 1998 | A |
5834906 | Chou et al. | Nov 1998 | A |
5877592 | Hesterman et al. | Mar 1999 | A |
5920155 | Kanda et al. | Jul 1999 | A |
5959408 | Steel et al. | Sep 1999 | A |
5982113 | Crouse et al. | Nov 1999 | A |
6236168 | Moisin | May 2001 | B1 |
6366031 | Klien | Apr 2002 | B2 |
6809477 | Soules et al. | Oct 2004 | B2 |
20030160554 | Soules et al. | Aug 2003 | A1 |
20040051475 | Griffin | Mar 2004 | A1 |
20040070324 | Lisitsyn | Apr 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060103317 A1 | May 2006 | US |