The invention relates to vehicle systems. More particularly, the invention is directed to a parallel parking system and method for evaluating an area for use as a parking space for a host vehicle.
Vehicle systems are being developed for vehicles, wherein the systems are intended to make a driver more aware of the surroundings. Currently the systems are for both the front (Adaptive Cruise Control and Lane Departure warning) and rear of the vehicle (Rear Park Assist and Blind Spot/Lane Change Aide).
The current vehicle systems and features are being realized using a host of different technologies. Adaptive Cruise Control typically uses millimeter wave radar and laser radar, while Lane Departure Warning uses cameras. Rear Park Assist typically uses ultrasonic sensor and cameras, while Blind Spot detection uses millimeter wave radar. All of the systems and features attempt to increase the driver's awareness of other vehicles and objects that are in close proximity to the host vehicle, thus allowing the driver to make a more informed decision, and in some cases, avoid an accident.
However, none of the current systems help a driver when attempting a parallel parking maneuver. Parallel parking is often a very stressful maneuver for the driver for many reasons. For example, parallel parking is typically done on a busy secondary street and the maneuver is not necessarily executed regularly. One of the first pieces of information the driver needs when contemplating the parallel parking maneuver is whether the host vehicle will fit into the open or potential parking space. Often times this can be a very difficult judgment to make in a timely manner with only a visual glance.
It would be desirable to have a parallel park assist system and a method for evaluating an area for use as a parking space for a host vehicle, wherein the system and method provide an alert to the driver representing the suitability of a potential parking space, while minimizing a required number of sensors.
Concordant and consistent with the present invention, a parallel park assist system and a method for evaluating an area for use as a parking space for a host vehicle, wherein the system and method provide an alert to the driver representing the suitability of a potential parking space, while minimizing a required number of sensors, has surprisingly been discovered.
In one embodiment, a parallel park assist system for a host vehicle comprises: a ultra wide band radar sensor disposed in the host vehicle, wherein the radar sensor obtains a measurement data relating to a potential parking space and transmits a data signal representing the measurement data; a processor adapted to receive the transmitted data signal from the sensor, analyze the data signal, and transmit an alert signal in response to the analysis of the data signal; and a user interface adapted to receive the alert signal and provide an alert to the driver of the host vehicle in response to the alert signal, wherein the alert signal represents the suitability of the potential parking space.
The invention also provides methods for evaluating an area for use as a parking space for a host vehicle.
One method comprises the steps of: providing a sensor disposed in the host vehicle, wherein the sensor obtains a measurement data and transmits a data signal representing a measurement data; providing a processor disposed in the host vehicle and adapted to receive the transmitted data signal from the sensor, analyze the data signal, and transmit an alert signal in response to the analysis of the data signal; positioning the host vehicle adjacent a first parked car, wherein the sensor obtains the measurement data between the host vehicle and the first parked car; maneuvering the host vehicle past a potential parking space below a predetermined speed, wherein the sensor continues to obtain the measurement data; evaluating the measurement data received by the sensor; and transmitting the alert signal to a driver in response to the evaluation of the measurement data, wherein the alert signal represents the suitability of the potential parking space.
Another method comprises the steps of providing a sensor disposed in the host vehicle, wherein the sensor obtains a measurement data and transmits a data signal representing the measurement data providing a processor adapted to receive the transmitted data signal from the sensor, analyze the data signal, and transmit an alert signal in response to the analysis of the data signal, positioning the host vehicle in a pre-determined position relative to a potential parking space, wherein the sensor obtains the measurement data between the host vehicle and at least one parked vehicle; receiving the data signal from the sensor, wherein the data signal represents a location of the at least one parked vehicle relative to the host vehicle; evaluating the data signal; and transmitting the alert signal to a driver in response to the evaluation of the data signal, wherein the alert signal represents the suitability of the potential parking space.
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiment when considered in the light of the accompanying drawings in which:
The following detailed description and appended drawings describe and illustrate various embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, the order of the steps is not necessary or critical.
Referring to
The sensor 12 illustrated is an ultra wideband (UWB) radar sensor having a pre-determined resolution and adapted to measure a location of other objects relative to the host vehicle 10. Other devices and sensors, now known or later developed, may be used to measure the location of other objects relative to the host vehicle 10, as appropriate. The sensor 12 is shown disposed in a rear portion 17 of the vehicle. However, it is understood that the sensor 12 may be disposed in any position and orientation as desired. In certain embodiments, one sensor 12 is disposed on a passenger side of the host vehicle 10 and one sensor 12 is disposed on a driver side of the host vehicle 10. However, it is understood that any number of sensors 12 may be used, as desired. The sensor 12 is in communication with the processor 14, wherein the sensor 12 transmits a data signal 18 to the processor 14. In certain embodiments, the data signal 18 includes information related to azimuth angle and distance range relative to the sensor 12. Other information and data may be included in the data signal 18, as desired. It is understood that the means for communication between the sensor 12 and the processor 14 may be any form of communication. For example, the means for communication may be wireless, Ethernet, vehicle network, serial bus, and the like. Other means of communication may be used, as desired. In certain embodiments, the sensor 12 and the processor 14 integrated in a single module.
The processor 14 may be any device or system adapted to receive the data signal 18 transmitted from the sensor 12, analyze and evaluate the data signal 18, and transmit an alert signal 20 to the user interface 16 in response to the analysis and evaluation of the data signal 18. In certain embodiments, the processor 14 is a micro-computer. It is understood that the processor 14 may be in communication with and may provide control of other devices, systems and components.
As shown, the processor 14 analyzes and evaluates the data signal 18 based upon an instruction set 22. The instruction set 22, which may be embodied within any computer readable medium, includes processor executable instructions for configuring the processor 14 to perform a variety of tasks. It is understood that the processor 14 may execute a variety functions such as controlling the functions of the sensor 12 and user interface 16, for example. It is further understood that the sensor 12 and the processor 14 may be integrated in a single module.
In certain embodiments, the processor 14 includes a storage device 24. The storage device 24 may be a single storage device or may be multiple storage devices. Furthermore, the storage device 24 may be a solid state storage system, a magnetic storage system, an optical storage system or any other suitable storage system or device. It is understood that the storage device 24 is adapted to store the instruction set 22. Other data and information may be stored in the storage device 24, as desired.
The processor 14 may further include a programmable component 26. It is understood that the programmable component 26 may be in communication with any other component of the PPA system 11 such as the sensor 12 and the user interface 16, for example. In certain embodiments, the programmable component 26 is adapted to manage and control processing functions of the processor 14. Specifically, the programmable component 26 is adapted to control the analysis of the data signal 18 and the transmission of the alert signal 20. It is understood that the programmable component 26 may be adapted to manage and control the sensor 12 and the user interface 16. It is further understood that the programmable component 26 may be adapted to store data and information on the storage device 24, and retrieve data and information from the storage device 24.
The user interface 16 is a device or system adapted to receive the alert signal 20 and transmit an alert or warning to the driver of the host vehicle 10, wherein the driver alert represents a “GO”, advising the driver to attempt a parallel park maneuver, or a “NO”, advising the driver not to attempt a parallel park maneuver for a particular space. For example, the user interface 16 may be a liquid crystal display, wherein the driver alert is in text form. As another example, the user interface 16 may be a light system, wherein the “GO” driver alert is represented by a particular color (e.g. green) and the “NO” driver alert is represented by a second color (e.g. red). However, it is understood that any other user interface 16 such as an audio system and a touch screen display may be used, as desired. It is further understood that any driver alert may be used to alert, warn, or advise the driver of the host vehicle 10.
In the alert driver step 108, the processor 14 generates the GO/NO alert signal 20 to the user interface 16 in response to the evaluation of the data signal 18. Specifically, where the factored dimensions of the potential parking space 30 exceed the limitations of the host value, the alert signal 20 represents a “GO” driver alert. Conversely, where the factored dimensions of the potential parking space 30 do not exceed the limitations of the host value, the alert signal represents a “NO” driver alert. Other means for determining the GO/NO status of the alert signal 20 may be used, as desired. In certain embodiments, the processor 14 evaluates the data signal 20 to determine a suitable position of the host vehicle 10 relative to the parked vehicles 28, 32 for initiating a parallel parking maneuver. Additionally, the user interface 16 may indicate to the driver when the host vehicle 10 is in a suitable position for initialing the parallel parking maneuver.
In the alert driver step 208, the processor 14 generates the GO/NO alert signal 20 to the user interface 16 in response to the evaluation of the data signal 18. Where the factored dimensions of the potential parking space 30 exceed the limitations of the host value, the alert signal 20 represents a “GO” driver alert. Conversely, where the factored dimensions of the potential parking space 30 do not exceed the limitations of the host value, the alert signal represents a “NO” driver alert. Other means for determining the GO/NO status of the alert signal 20 may be used, as desired. In certain embodiments, the processor 14 evaluates the data signal 20 to determine a suitable position of the host vehicle 10 relative to the parked vehicles 28, 32 for initiating a parallel parking maneuver. Additionally, the user interface 16 may indicate to the driver when the host vehicle 10 is in a suitable position for initialing the parallel parking maneuver.
The PPA system 11 and methods 100, 200 for evaluating an area for use as a parking space for the host vehicle 10 provide a means for alerting and advising the driver of the host vehicle 10 of the suitability of the potential parking space 30, while minimizing the required number of sensor devices. The PPA system 11 and methods 100, 200 assist the driver by determining whether the host vehicle 10 will fit into the open or potential parking space 30, thereby minimizing the need for judgment decision by the driver. Additionally, the PPA system 11 and methods 100, 200 assist the driver by determining a suitable position of the host vehicle 10 relative to the parked vehicles 28, 32, for initiating the parallel parking maneuver.
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, make various changes and modifications to the invention to adapt it to various usages and conditions.