This invention relates to the fields of environmental science, and particularly to the development of a semi-continuous and/or continuous sampling apparatus which requires enough convenience in operation and high precision for analysis task.
Acidic/basic solutions are usually used in etching process for manufacturing wafer/chip of semiconductor or optic-electron devices, and simultaneously, some unavoidable pollutants are emitted because of direct or indirect exhaust gases while handling acidic/basic solutions, such as hydrogen fluoride, hydrogen chloride, nitric acid, sulfuric acid and ammonia, etc. which are harmful to human health and may cause illness after long-term exposure. Thus, the Taiwan Environment Protection Administration has accordingly drafted and enacted many regulations to govern the air pollutants from such kinds of plants, for examples, the pollutant removal efficiency of the control device should be at least 95%, the emission rate of any one of hydrogen fluoride, nitric acid, hydrogen chloride and phosphoric acid should be less than 0.6 kg/hr, and that of sulfuric acid should be less than 0.1 kg/hr.
Regarding the measurement of emission rate or gas concentration of the above-mentioned acidic/basic flue gases, Tsai, et al., had reported that in the papers, “Design and testing of a personal porous metal denuder, Aerosol Science Technology, 35, 611-616, 2001” and “Comparison of Collection Efficiency and Capacity of Three Acidic Aerosol Samplers, Environment Science Technology, 35, 2572-75, 2001”, describing a design of porous metal denuder, and comparing with silica gel tube and absorption flask for gas absorption efficiency. The denuder of Tsai is made of Teflon material, including two inertial impactors which are capable of collecting some particulates with two dynamic diameters of 9.5 μm and 2.0 μm respectively, a filter paper required to collect particulates smaller than a dynamic diameter of 2.0 μm and two porous metals for removing inorganic acidic/basic gases, such as HNO3, HCl, HF and NH3; wherein the filter paper and porous metals are in series at the downstream of the denuder. Furthermore, in 2004, the Taiwan Environmental Protection Administration adopted the results studied by Tsai and Huang, “Study on the method for measuring hydrogen fluoride, nitric acid and phosphoric acid” funded by the Taiwan Environmental Protection Administration in 2003, as a standard reference method, NIEA A452.70B, “sampling and analysis method for HF, HNO3, HCl, H3PO4, H2SO4 in the exhaust duct—isokinetic sampling method”; wherein the reference method is that, the denuder prepared after the porous metal denuder is coated with 5% Na2CO3 solution and then is used to sample the exhaust acidic gas using the isokinetic sampling method. The samples are taken from the exhaust duct to the laboratory where the porous metal denuder is extracted using ultra-pure water and the concentrations of samples are analyzed using ion chromatograph.
The above-mentioned sampling and analysis process is very complicated and may cause some deviations due to improper operation. Furthermore, the sampling time that requires at least 30 minutes in exhaust duct and 12 hours at the periphery of the factory is not suitable for the circumstance where the concentration of sampling gas fluctuates.
In order to improve the above-mentioned sampling method, some continuous wet denuders have been developed, for example, a wet denuder (as shown in
Simon et al. published four kinds of automated wetted annular denuders (as shown in
Furthermore, in another paper of Simon and Dasgupta, “Wet Effluent Denuder Coupled Liquid/Ion Chromatography System/Annual and Parallel Plate, Anal. Chem., 65, pp. 1134-1139, 1993”, where a parallel plate wet denuder (PPWD) shown in
In the article of Rosman et al., “Laboratory and Field Investigation of a new Simple Design for the Parallel Plate Denuder, Atmosphere Environment, 35, pp. 5301-5310, 2001”, it is reported that in ambient, sampling operation using the parallel plate wet denuder coated with SiO2, oily organic gas absorbed on the surface affected the hydrophilic property of the surface, which can't be recovered even after detergent is used to clean the surface.
The objective of the present invention is to provide a high-efficiency parallel plate wet denuder which can eliminate the problems of gas sampling in flue gas using the standard reference method, provide the convenience in operation and increase the precision for sampling and analysis.
The wet denuder of the present invention as shown in
The size and depth of the pores distributed on the surface of porous glass plate according to the present invention can be controlled by sandblasting process so that the falling water film flowing along the active surface keeps uniform and well-distributed. Furthermore, the active surface of the porous glass 2 is coated with TiO2 nanoparticles and irradiated by UV light from the rear side of the porous glass plate to enhance the superhydrophilicity of the porous glass surface due to photocatalytic activity. Particularly, the porous glass surface coated with TiO2 nanoparticles can be irradiated by UV light to oxidize the residual organic materials on the glass surface after operating a period of time, the superhydrophilicity of the porous glass surface can be recovered by means of photocatalytic activity.
In the text which follows, the invention is described by way of example on the basis of the following exemplary embodiments:
[Apparatus]
The parallel plate wet denuder according to the present invention comprises two separated plates which are made of acrylic material, with 2.5 cm in thickness and 4 mm in width of gap between them. The two plates are connected by stainless steel screw, and sealed with silica gel to prevent gas leakage. The absorption surface with area of 112.5 cm2 is made of porous glass plate and coated with TiO2 thin film.
The processes for preparing TiO2 thin film on the glass plate surface are shown as following list: (1) 0.5 g of TiO2 nanoparticles (P25, Degussa) and 50-ml ultra-pure water are poured into a beaker, then the solution is continuously stirred with a magnetic stone for 10 min. (2) the mixed solution is subsequently poured onto porous glass surface and laid steadily. After 30 min., the glass plate is heated to 300° C. for 2 hours. (3) The treated glass plates are cooled down at room temperature. Thus good wettability of the glass plates is achieved while the coated TiO2 nanoparticles are adhered to the plates firmly. (4) The glass plate been treated with TiO2 coating shall be fixed with silica gel on an acrylic plate. There is a little reservoir on the top of the denuder which makes the distribution of the liquid smoothly while continuous supplying liquid is overflowing from the reservoir. Wherein the uniform liquid film on the glass surface can be achieved due to its super-hydrophilic property after the absorption surface is treated by the foregoing process.
[Gas Absorption]
The gas absorption efficiency experiment is carried out by PPWD for sampling and analyzing acidic gases under various conditions, such as gas flow rates, different categories of gas, etc. The experiment setup is shown in
1. Gases:
High purity nitrogen gas 12 is used as dilution gas and carrier gas and the pipeline for transferring gases are made of Teflon. First of all, the nitrogen gas is distributed into two streams via a three-way control valve V1; one stream is used as the carrier gas (Qc) and flows into the permeation tube and oven 19. The other stream is used as dilution gas (Qd) to dilute the standard gas. The flow rates of these two streams are adjusted by a mass flow rate controller (MKS). Finally, the standard gas with known concentration is introduced into the parallel plate wet denuder 16 for testing gas absorption efficiency experiment. The gas absorption efficiency of the PPWD for HF and HCl can be confirmed by the procedure as has been mentioned above.
2. Liquid:
Ultra-pure water with pH=7.0, is used as the absorption liquid according to the exemplary embodiment. The absorption liquid stored in a high pressure scrubbing solution container 21 is pushed by the nitrogen gas 12 into the denuder via pipeline. The absorption liquid flow rate is adjusted to 1 cc/min by a needle valve V4. The absorption liquid flows downward along the porous glass plate surface to the bottom of the denuder where the absorption liquid is pumped out by a peristaltic pump and the ion concentration is analyzed by ion chromatograph.
3. Calculation of Gas Absorption Efficiency
To calculate the concentration of gas absorbed in scrubbing liquid, the following process is performed:
1. Gas permeation rate of the permeation tube (made by VICI Inc.), mi (ng/min.), is incorporated into equation (1) to acquire the standard gas concentration, Cg (μg/m3):
where:
Theoretical value of gas concentration sampled by the parallel plate wet denuder
The theoretical liquid sample concentration sampled by the PPWD can be calculated by equation (2):
where:
[Calculation of Gas Absorption Efficiency for Parallel Plate Wet Denuder]
(1) The gas absorption efficiency of the parallel plate wet denuder is expressed in equation (3):
where:
The gas absorption efficiency experiment is conducted to test the collection efficiency of the parallel plate wet denuder for acidic gas with different air sampling flow rate. The influence of wettability of the active surface on gas collection efficiency has also been concerned in all research.
The active surface is made of glass, and two types of glass plate surface are chosen for the present tests, one is the smooth glass plate with TiO2 coating, the other is the porous glass plate with TiO2 coating. The experimental results are described according to the two types of active surfaces.
Regarding the smooth glass plate as the active surface of the denuder, it is found that the liquid film is not uniform and the sampling efficiency is not as well as expected after sampling time of one hour. As shown in
Regarding the porous glass plate as the active surface of the denuder, it is found that the roughness of glass plate is helpful for increasing the wettability of the absorption surface, the liquid film is observed uniformly and no more dry zone of the active surface occurs.
Regarding the gas absorption efficiency experimental result, the gas absorption efficiencies are 105.36%±9.06%, 96.76%±1.57% and 90.33%±4.6% when the gas flow rates are 5 L/min., 7 L/min. and 10 L/min., respectively. As can be seen in
According to the foregoing results and discussions, it can be concluded that the wettability of the porous glass plate used as the active surface is a good active surface, particularly the gas absorption efficiency reaches 100% when the gas flow rate of HF gas is 5 L/min.
For further ensuring the absorption efficiency for other acidic gases according to the present denuder, this experiment also performs the HCl gas absorption efficiency test as the comparative embodiment and shows the test results in
Having illustrated and disclosed the preferred embodiments according to the present invention, those skilled in the art should appreciate that these embodiments did not limit the present invention, and numerous changes and modifications maybe made to these embodiments of the prevent invention, and that such changes and modifications may be made without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
095145347 | Dec 2006 | TW | national |