The invention relates to a parallel positioning mechanism, especially for machining and/or manipulation and/or measuring, consisting of a platform for the carrying and/or manipulation with, for instance, a tool, a workpiece, a measuring device or the like, wherein the platform is connected with the machine frame by means of at least one positioning arm.
In the recent past, there has been proposed and constructed a multitude of parallel positioning mechanisms, primarily for the use in machine tools, for the manipulation of robots and the like. Manipulators and robots were primary devices in which parallel positioning mechanisms have been implemented. Their advantages when compared with the mechanisms used in serial robots are, above all, increased rigidity and improved dynamics. The higher rigidity is given by the very essence of the parallel arms as a latticework construction. Improved dynamics is to be found in the fact that the drives can be mounted on the frame and they need not be moved with the movable arms as they are in serial robots, from which there results a lower weight of the moving machine parts. A disadvantage of the existing positioning mechanisms is a more frequent incidence of singular positions, which limit the working space. In the singular position, the mechanism has excessive degrees of freedom and loses its rigidity.
Another disadvantage of many parallel positioning mechanisms is that the parallel arms are connected to the frame of the machine or, at the other end, to the platform carrying the tool, by means of a spherical joint, which has a lower rigidity due to the point contact of force transmission, or the joint is configured as a universal joint with limited movability.
The aforementioned disadvantages and drawbacks are, to a great extent, removed in a parallel positioning mechanism according to the invention, the essence of which resides in that the platform is joint-connected with at least one sliding guide via at least three rotatable joints of which at least two are arranged on a positioning arm for the connection with the sliding guide, wherein the axes of rotation of the rotatable joints are mutually parallel. The platform is joint-connected with at least one sliding guide via at least one positioning arm and further a rotatable joint for the direct connection with the sliding guide, wherein this direct connection can be replaced by means of at least three further positioning arms.
To advantage, the sliding guides extend along straight lines.
The platform may be connected with one sliding guide and through one positioning arm with this or another sliding guide.
Alternatively, the platform may be connected with one sliding guide and through two positioning arms with this or another sliding guide.
In another implementation, the platform may be joint-connected through four positioniong arms with at least two sliding guides.
In another implementation, the platform may be joint-connected through four positioning arms with four sliding guides.
The projections of the axes of rotation of the rotatable joints of the platform into a plane perpendicular to them form a trapezoid.
The sliding guides are parallel with one or two straight lines, or they are in mutually intersecting relationship.
The positioning arms are connected with the sliding guide through positionable carriages that are kinematically connected with driving motors through ball screws with nuts or by a linear drive.
The platform is provided with a translatable chuck, or a translatable work support is arranged in front of or on the base of the machine.
The sliding guides are arranged in a frame of the machine, which may be displaceable with respect to the base of the machine.
The construction of the parallel positioning mechanism according to the invention by a direct connection of the platform with the sliding guide through a single positioning arm or even by the connection of the platform with the sliding guide(s) by using excess, that is four, positioning arms for three degrees of freedom of movement, wherein the angular position in a plane can be held permanently constant, means an important increase in the size of the working space and simultaneously the achievement of an improved homogeneity of mechanical properties of rigidity and dynamics. The use of rotatable joints for all joints contributes to the increase in rigidity.
The direct securing of the platform to the sliding guide by means of the rotatable joint and by means of the single positioning arm, or the use of excess positioning arms for the connection of the platform with the sliding guide(s) reduces the occurrence of singular positions. Excess positioning arms significantly reduce inhomogeneity in the rigidity and dynamic properties in the working space of the machine.
The parallel positioning mechanism according to the invention is diagrammatically illustrated in the accompanying drawing, wherein
A parallel positioning mechanism for machining, for instance on machining centers, milling machines, for manipulation, for instance in industrial robots, with utilization, for instance, even for measuring and the like, consists of a base 1 of the machine, which carries a frame 2 of the machine. The frame 2 of the machine is arranged rigidly or slidably with respect to the base 1 of the machine, while sliding guides 4 are provided therein.
In
As is evident from
In
In
The exact position of the positionable carriages 5 with rtespect to the frame 2 of the machine is measured by means of a measuring system 14. The positionable carriages 5 conduct linear, straigt-line, movements on the sliding guides 4 on the frame 2 of the machine. This movement is thren transmitted through the rotatable joints 11 to the positioning arms 6 which are connected by the rotatable joint 11 with the platform 3. The positioning arms 6 configured as a rigid spatial prism are thermally stabilized or alternatively they are manufactured from materials with a minimum longitudinal thermal expansion. The rotatable joints 11 of the positioning carriages 5 and the platform 3 are constituted by pre-stressed taper roller bearings with high radial and axial rigidity and strength.
The platform 3 carries a chuck 7 with a tool 8, the translational movement of which is achieved by means of a linear rolling guide and a sliding block 13. The movement of the sliding block 13 with the chuck 7 is accmplkished similarly to the drive of the positioning carriages 5, also by means of a rotary driving motor and a roller screw (not shown). The sliding block 13 carries the drive for the Z-axis and the associated measuring system 14 and forms the translational movement of the chuck 7 with the tool 8 along the Z-axis of the machine. The sliding block 13 is mounted in the platform 3 on linear rolling guides.
Between the platform 3 of the machine and the frame 2 of the machine, there is arranged a counterbalancing system with a pneumatic cylinder 15 and a pressurized air container 9; by its force influence, it eliminates that of the weight of the platform 3 and of the parts contained thereon.
The rotary motors 10 control, via transmissions, spherical roller screws 12 with nuts, and with the aid of the measuring systems 14, the translational movements of the positionable carriages 5 on the sliding guides 4 of the frame 4 of the machine. In
The movement of the positionable carriages 5 is transformed via the positionable arms 6 and the rotatable joint 6 into the desired movement of the platform 3 in the X-Y-plane. The platform 3 carries the sliding block 13 with the chuck 7 and the tool 8. Their translational movement along the Z-axis is accomplished by the displacement of the sliding block 13 with respect to the platform 3. The tool 8 may be a machining tool, or a gripping tool for manipulation, or a measuring sensor for measuring. The translatable mounting of the chuch 7 may be replaced by the arrangement of a translatable working support in front of or on the base 1 of the machine (not illustrated); in the alternative, it is possible to use both the translatable chuck 7, and the translatable working support.
In
In
In the framework of the invention, it is also possible to use sliding guides that are extending along courses deviating from straight lines; a necessary condition, though, is the assurance of the parallelism of the axes of the rotatable joints.