This invention pertains to electronic hearing aids and methods for their construction.
Hearing aids are electronic instruments that compensate for hearing losses by amplifying sound. The electronic components of a hearing aid include a microphone for receiving ambient sound, an amplifier for amplifying the microphone signal in a manner that depends upon the frequency and amplitude of the microphone signal, a speaker for converting the amplified microphone signal to sound for the wearer, and a battery for powering the components.
The following detailed description of the present subject matter refers to subject matter in the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter. References to “an”, “one”, or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment. The following detailed description is demonstrative and not to be taken in a limiting sense. The scope of the present subject matter is defined by the appended claims, along with the full scope of legal equivalents to which such claims are entitled.
It is understood that variations in configurations and combinations of components may be employed without departing from the scope of the present subject matter. Hearing assistance devices typically include a housing, a microphone, processing electronics, and a speaker. The examples set forth herein are intended to be demonstrative and not a limiting or exhaustive depiction of variations.
Also shown in
In one embodiment, the state switch 305 and power switch 310 are each formed by a pair of contacts mounted on a battery compartment 255 and battery door 250 such that both switches are opened when the battery door is opened. In certain types of hearing aids, the electronic components are enclosed by a housing that is designed to be worn in the ear for both aesthetic and functional reasons. Such devices may be referred to as in-the-ear (ITE), in-the-canal (ITC), completely-in-the-canal (CIC) type, or invisible-in-the-canal (IIC) hearing aids. Other types of hearing aids, referred to as behind-the-ear (BTE) hearing aids, utilize a housing that is worn behind the ear that contains, among other things, a receiver (i.e., loudspeaker) that conducts sound to an earbud inside the ear via an audio tube. A battery door and battery compartment with integrated power and state switches may be incorporated into any these or other types of hearing aid housings. For example purposes,
In one example embodiment, a hearing aid, comprises: a microphone for converting an audio input into an input signal; processing circuitry for processing the input signal to produce an output signal in a manner that compensates for a patient's hearing deficit; a speaker for converting the output signal into an audio output; a battery for supplying power to the hearing aid; a power switch for disconnecting the battery from a power bus that conveys power to the hearing aid; a state switch for providing a signal to the processing circuitry indicating that the battery has been disconnected; and, wherein the power switch and state switch are configured to operate in parallel such that actuation of the power switch actuates the state switch. The state switch may provide a signal to a GPIO (general purpose input-put) of the processing circuitry indicating that the battery has been disconnected. The hearing aid may further comprise: a housing for containing components of the hearing aid; a battery compartment within the housing for containing the battery and having a battery door; and, wherein the battery compartment and battery door are configured such that opening the battery door actuates the power switch and the state switch. The power switch and the state switch may each comprise a pair of contacts mounted on the battery door and the battery compartment wherein each pair of contacts are opened when the battery door is opened. The processing circuitry may be configured to initiate a shutdown sequence when the state switch is actuated. The processing circuitry may be configured to cease writing to memory when the state switch is actuated. The state switch may be configured such that the GPIO is connected to ground when the state switch is closed and connected to a higher voltage when the state switch is opened by a pull-up resistor.
The present subject matter can be used in digital hearing aids. Digital hearing aids include a processor. In digital hearing aids with a processor programmed to provide corrections to hearing impairments, programmable gains are employed to tailor the hearing aid output to a wearer's particular hearing impairment. The processor may be a digital signal processor (DSP), microprocessor, microcontroller, other digital logic, or combinations thereof. The processing of signals referenced in this application can be performed using the processor. Processing may be done in the digital domain, the analog domain, or combinations thereof. Processing may be done using subband processing techniques. Processing may be done with frequency domain or time domain approaches. Some processing may involve both frequency and time domain aspects. For brevity, in some examples drawings may omit certain blocks that perform frequency synthesis, frequency analysis, analog-to-digital conversion, digital-to-analog conversion, amplification, and certain types of filtering and processing. In various embodiments the processor is adapted to perform instructions stored in memory, which may or may not be explicitly shown. Various types of memory may be used, including volatile and nonvolatile forms of memory. In various embodiments, instructions are performed by the processor to perform a number of signal processing tasks. In such embodiments, analog components are in communication with the processor to perform signal tasks, such as microphone reception, or receiver sound embodiments (i.e., in applications where such transducers are used). In various embodiments, different realizations of the block diagrams, circuits, and processes set forth herein may occur without departing from the scope of the present subject matter.
It is understood that variations in configurations and combinations of components may be employed without departing from the scope of the present subject matter. Hearing assistance devices may typically include an enclosure or housing, a microphone, processing electronics, and a speaker or receiver. The examples set forth herein are intended to be demonstrative and not a limiting or exhaustive depiction of variations.
The present subject matter can be used for a variety of hearing assistance devices, including but not limited to hearing aids such as in-the-ear (ITE), in-the-canal (ITC), or completely-in-the-canal (CIC) type hearing aids. It is understood that other hearing assistance devices not expressly stated herein may fall within the scope of the present subject matter.
This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. The subject matter has been described in conjunction with the foregoing specific embodiments. It should be appreciated that those embodiments may also be combined in any manner considered to be advantageous. Also, many alternatives, variations, and modifications will be apparent to those of ordinary skill in the art. Other such alternatives, variations, and modifications are intended to fall within the scope of the following appended claims.