The following patents/applications, the disclosures of each being totally incorporated herein by reference are mentioned:
U.S. Publication No. US-2006-0114497-A1, Published Jun. 1, 2006, entitled “PRINTING SYSTEM,” by David G. Anderson, et al., and claiming priority to U.S. Provisional Application Ser. No. 60/631,651, filed Nov. 30, 2004, entitled “TIGHTLY INTEGRATED PARALLEL PRINTING ARCHITECTURE MAKING USE OF COMBINED COLOR AND MONOCHROME ENGINES”;
U.S. Publication No. US-2006-0067756-A1, filed Sep. 27, 2005, entitled “PRINTING SYSTEM,” by David G. Anderson, et al., and claiming priority to U.S. Provisional Patent Application Ser. No. 60/631,918, filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE,” and U.S. Provisional Patent Application Ser. No. 60/631,921, filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE”;
U.S. Publication No. US-2006-0067757-A1, filed Sep. 27, 2005, entitled “PRINTING SYSTEM,” by David G. Anderson, et al., and claiming priority to U.S. Provisional Patent Application Ser. No. 60/631,918, Filed Nov. 30, 2004, entitled “PRINTING System with Multiple Operations for Final Appearance and PERMANENCE,” and U.S. Provisional Patent Application Ser. No. 60/631,921, filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE”;
U.S. Pat. No. 6,973,286, issued Dec. 6, 2005, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 10/785,211, filed Feb. 24, 2004, entitled “UNIVERSAL FLEXIBLE PLURAL PRINTER TO PLURAL FINISHER SHEET INTEGRATION SYSTEM,” by Robert M. Lofthus, et al.;
U.S. Application No. US-2006-0012102-A1, published Jan. 19, 2006, entitled “FLEXIBLE PAPER PATH USING MULTIDIRECTIONAL PATH MODULES,” by Daniel G. Bobrow;
U.S. application Ser. No. 10/917,676, filed Aug. 13, 2004, entitled “MULTIPLE OBJECT SOURCES CONTROLLED AND/OR SELECTED BASED ON A COMMON SENSOR,” by Robert M. Lofthus, et al.;
U.S. Publication No. US-2006-0033771-A1, published Feb. 16, 2006, entitled “PARALLEL PRINTING ARCHITECTURE CONSISTING OF CONTAINERIZED IMAGE MARKING ENGINES AND MEDIA FEEDER MODULES,” by Robert M. Lofthus, et al.;
U.S. Pat. No. 7,924,152, issued Apr. 4, 2006, entitled “PRINTING SYSTEM WITH HORIZONTAL HIGHWAY AND SINGLE PASS DUPLEX,” by Robert M. Lofthus, et al.;
U.S. Publication No. US-2006-0039728-A1, published Feb. 23, 2006, entitled “PRINTING SYSTEM WITH INVERTER DISPOSED FOR MEDIA VELOCITY BUFFERING AND REGISTRATION,” by Joannes N. M. deJong, et al.;
U.S. application Ser. No. 10/924,458, filed Aug. 23, 2004, entitled “PRINT SEQUENCE SCHEDULING FOR RELIABILITY,” by Robert M. Lofthus, et al.;
U.S. Publication No. US-2006-0039729-A1, published Feb. 23, 2006, entitled “PARALLEL PRINTING ARCHITECTURE USING IMAGE MARKING ENGINE MODULES (as amended),” by Barry P. Mandel, et al.;
U.S. Pat. No. 6,959,165, issued Oct. 25, 2005, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 10/933,556, filed Sep. 3, 2004, entitled “SUBSTRATE INVERTER SYSTEMS AND METHODS,” by Stan A. Spencer, et al.;
U.S. application Ser. No. 10/953,953, filed Sep. 29, 2004, entitled “CUSTOMIZED SET POINT CONTROL FOR OUTPUT STABILITY IN A TIPP ARCHITECTURE,” by Charles A. Radulski, et al.;
U.S. Publication No. US-2006-0115284-A1, Published Jun. 1, 2006, entitled “SEMI-AUTOMATIC IMAGE QUALITY ADJUSTMENT FOR MULTIPLE MARKING ENGINE SYSTEMS,” by Robert E. Grace, et al.;
U.S. application Ser. No. 10/999,450, filed Nov. 30, 2004, entitled “ADDRESSABLE FUSING FOR AN INTEGRATED PRINTING SYSTEM,” by Robert M. Lofthus, et al.;
U.S. Publication No. US-2006-0115287-A1, Published Jun. 1, 2006, entitled “GLOSSING SYSTEM FOR USE IN A TIPP ARCHITECTURE,” by Bryan J. Roof;
U.S. application Ser. No. 11/000,168, filed Nov. 30, 2004, entitled “ADDRESSABLE FUSING AND HEATING METHODS AND APPARATUS,” by David K. Biegelsen, et al.;
U.S. Publication No. US-2006-0115288-A1, Published Jun. 1, 2006, entitled “GLOSSING SYSTEM FOR USE IN A TIPP ARCHITECTURE,” by Bryan J. Roof;
U.S. Pat. No. 6,925,283, issued Aug. 2, 2005, entitled “HIGH PRINT RATE MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 11/051,817, filed Feb. 4, 2005, entitled “PRINTING SYSTEMS,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/069,020, filed Feb. 28, 2004, entitled “PRINTING SYSTEMS,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/070,681, filed Mar. 2, 2005, entitled “GRAY BALANCE FOR A PRINTING SYSTEM OF MULTIPLE MARKING ENGINES,” by R. Enrique Viturro, et al.;
U.S. Publication No. US-2006-0114313-A1, Published Jun. 1, 2006, entitled “PRINTING SYSTEM,” by Steven R. Moore;
U.S. application Ser. No. 11/084,280, filed Mar. 18, 2005, entitled “SYSTEMS AND METHODS FOR MEASURING UNIFORMITY IN IMAGES,” by Howard Mizes;
U.S. application Ser. No. 11/089,854, filed Mar. 25, 2005, entitled “SHEET REGISTRATION WITHIN A MEDIA INVERTER,” by Robert A. Clark, et al.;
U.S. application Ser. No. 11/090,498, filed Mar. 25, 2005, entitled “INVERTER WITH RETURN/BYPASS PAPER PATH,” by Robert A. Clark;
U.S. application Ser. No. 11/090,502, filed Mar. 25, 2005, entitled IMAGE QUALITY CONTROL METHOD AND APPARATUS FOR MULTIPLE MARKING ENGINE SYSTEMS,” by Michael C. Mongeon;
U.S. application Ser. No. 11/093,229, filed Mar. 29, 2005, entitled “PRINTING SYSTEM,” by Paul C. Julien;
U.S. application Ser. No. 11/095,872, filed Mar. 31, 2005, entitled “PRINTING SYSTEM,” by Paul C. Julien;
U.S. application Ser. No. 11/094,864, filed Mar. 31, 2005, entitled “PRINTING SYSTEM,” by Jeremy C. deJong, et al.;
U.S. application Ser. No. 11/095,378, filed Mar. 31, 2005, entitled “IMAGE ON PAPER REGISTRATION ALIGNMENT,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/094,998, filed Mar. 31, 2005, entitled “PARALLEL PRINTING ARCHITECTURE WITH PARALLEL HORIZONTAL PRINTING MODULES,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/102,899, filed Apr. 8, 2005, entitled “SYNCHRONIZATION IN A DISTRIBUTED SYSTEM,” by Lara S. Crawford, et al.;
U.S. application Ser. No. 11/102,910, filed Apr. 8, 2005, entitled “COORDINATION IN A DISTRIBUTED SYSTEM,” by Lara S. Crawford, et al.;
U.S. application Ser. No. 11/102,355, filed Apr. 8, 2005, entitled “COMMUNICATION IN A DISTRIBUTED SYSTEM,” by Markus P. J. Fromherz, et al.;
U.S. application Ser. No. 11/102,332, filed Apr. 8, 2005, entitled “ON-THE-FLY STATE SYNCHRONIZATION IN A DISTRIBUTED SYSTEM,” by Haitham A. Hindi;
U.S. application Ser. No. 11/109,558, filed Apr. 19, 2005, entitled “SYSTEMS AND METHODS FOR REDUCING IMAGE REGISTRATION ERRORS,” by Michael R. Furst, et al.;
U.S. application Ser. No. 11/109,566, filed Apr. 19, 2005, entitled “MEDIA TRANSPORT SYSTEM,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 11/109,996, filed Apr. 20, 2005, entitled “PRINTING SYSTEMS,” by Michael C. Mongeon, et al.;
U.S. application Ser. No. 11/115,766, Filed Apr. 27, 2005, entitled “IMAGE QUALITY ADJUSTMENT METHOD AND SYSTEM,” by Robert E. Grace;
U.S. application Ser. No. 11/122,420, filed May 5, 2005, entitled “PRINTING SYSTEM AND SCHEDULING METHOD,” by Austin L. Richards;
U.S. application Ser. No. 11/136,959, filed May 25, 2005, entitled “PRINTING SYSTEMS,” by Kristine A. German, et al.;
U.S. application Ser. No. 11/137,634, filed May 25, 2005, entitled “PRINTING SYSTEM,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/137,251, filed May 25, 2005, entitled “SCHEDULING SYSTEM,” by Robert M. Lofthus, et al.;
U.S. Publication No. US-2006-0066885-A1, filed May 25, 2005, entitled “PRINTING SYSTEM,” by David G. Anderson, et al.;
U.S. application Ser. No. 11/143,818, filed Jun. 2, 2005, entitled “INTER-SEPARATION DECORRELATOR,” by Edul N. Dalal, et al.;
U.S. application Ser. No. 11/146,665, filed Jun. 7, 2005, entitled “LOW COST ADJUSTMENT METHOD FOR PRINTING SYSTEMS,” by Michael C. Mongeon;
U.S. application Ser. No. 11/152,275, filed Jun. 14, 2005, entitled “WARM-UP OF MULTIPLE INTEGRATED MARKING ENGINES,” by Bryan J. Roof, et al.;
U.S. application Ser. No. 11/156,778, filed Jun. 20, 2005, entitled “PRINTING PLATFORM,” by Joseph A. Swift;
U.S. application Ser. No. 11/157,598, filed Jun. 21, 2005, entitled “METHOD OF ORDERING JOB QUEUE OF MARKING SYSTEMS,” by Neil A. Frankel;
U.S. application Ser. No. 11/166,460, filed Jun. 24, 2005, entitled “GLOSSING SUBSYSTEM FOR A PRINTING DEVICE,” by Bryan J. Roof, et al.;
U.S. application Ser. No. 11/166,581, filed Jun. 24, 2005, entitled “MIXED OUTPUT PRINT CONTROL METHOD AND SYSTEM,” by Joseph H. Lang, et al.;
U.S. application Ser. No. 11/166,299, filed Jun. 24, 2005, entitled “PRINTING SYSTEM,” by Steven R. Moore;
U.S. application Ser. No. 11/170,975, filed Jun. 30, 2005, entitled “METHOD AND SYSTEM FOR PROCESSING SCANNED PATCHES FOR USE IN IMAGING DEVICE CALIBRATION,” by R. Victor Klassen;
U.S. application Ser. No. 11/170,873, filed Jun. 30, 2005, entitled “COLOR CHARACTERIZATION OR CALIBRATION TARGETS WITH NOISE-DEPENDENT PATCH SIZE OR NUMBER,” by R. Victor Klassen;
U.S. application Ser. No. 11/170,845, filed Jun. 30, 2005, entitled “HIGH AVAILABILITY PRINTING SYSTEMS,” by Meera Sampath, et al.;
U.S. application Ser. No. 11/189,371, filed Jul. 26, 2005, entitled “PRINTING SYSTEM,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/208,871, filed Aug. 22, 2005, entitled “MODULAR MARKING ARCHITECTURE FOR WIDE MEDIA PRINTING PLATFORM,” by Edul N. Dalal, et al.;
U.S. application Ser. No. 11/215,791, filed Aug. 30, 2005, entitled “CONSUMABLE SELECTION IN A PRINTING SYSTEM,” by Eric Hamby, et al.;
U.S. application Ser. No. 11/222,260, filed Sep. 8, 2005, entitled “METHOD AND SYSTEMS FOR DETERMINING BANDING COMPENSATION PARAMETERS IN PRINTING SYSTEMS,” by Goodman, et al.;
U.S. application Ser. No. 11/234,553, filed Sep. 23, 2005, entitled “MAXIMUM GAMUT STRATEGY FOR THE PRINTING SYSTEMS,” by Michael C. Mongeon;
U.S. application Ser. No. 11/234,468, filed Sep. 23, 2005, entitled “PRINTING SYSTEM,” by Eric Hamby, et al.;
U.S. application Ser. No. 11/247,778, filed Oct. 11, 2005, entitled “PRINTING SYSTEM WITH BALANCED CONSUMABLE USAGE,” by Charles Radulski, et al.;
U.S. application Ser. No. 11/248,044, filed Oct. 12, 2005, entitled “MEDIA PATH CROSSOVER FOR PRINTING SYSTEM,” by Stan A. Spencer, et al.; and
U.S. application Ser. No. 11/274,638, filed Nov. 15, 2005, entitled “GAMUT SELECTION IN MULTI-ENGINE SYSTEMS,” by Wencheng Wu, et al.;
U.S. application Ser. No. 11/287,177, filed Nov. 23, 2005, entitled “MEDIA PASS THROUGH MODE FOR MULTI-ENGINE SYSTEM,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 11/287,685, filed Nov. 28, 2005, entitled “MULTIPLE IOT PHOTORECEPTOR BELT SEAM SYNCHRONIZATION,” by Kevin M. Carolan;
U.S. application Ser. No. 11/291,860, filed Nov. 30, 2005, entitled “MEDIA PATH CROSSOVER CLEARANCE FOR PRINTING SYSTEM,” by Keith L. Willis;
U.S. application Ser. No. 11/292,388, filed Nov. 30, 2005, entitled “PRINTING SYSTEM,” by David A. Mueller;
U.S. application Ser. No. 11/292,163, filed Nov. 30, 2005, entitled “RADIAL MERGE MODULE FOR PRINTING SYSTEM,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 11/291,583, filed Nov. 30, 2005, entitled “MIXED OUTPUT PRINTING SYSTEM,” by Joseph H. Lang;
U.S. application Ser. No. 11/312,081, filed Dec. 20, 2005, entitled “PRINTING SYSTEM ARCHITECTURE WITH CENTER CROSS-OVER AND INTERPOSER BY-PASS PATH,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 11/314,828, filed Dec. 21, 2005, entitled “MEDIA PATH DIAGNOSTICS WITH HYPER MODULE ELEMENTS,” by David G. Anderson, et al;
U.S. application Ser. No. 11/314,774, filed Dec. 21, 2005, entitled “METHOD AND APPARATUS FOR MULTIPLE PRINTER CALIBRATION USING COMPROMISE AIM,” by R. Victor Klassen;
U.S. application Ser. No. 11/317,589, filed Dec. 23, 2005, entitled “UNIVERSAL VARIABLE PITCH INTERFACE INTERCONNECTING FIXED PITCH SHEET PROCESSING MACHINES,” by David K. Biegelsen, et al.;
U.S. application Ser. No. 11/317,167, filed Dec. 23, 2005, entitled “PRINTING SYSTEM,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/331,627, filed Jan. 13, 2006, entitled “PRINTING SYSTEM INVERTER APPARATUS”, by Steven R. Moore;
U.S. application Ser. No. 11/341,733, filed Jan. 27, 2006, entitled “PRINTING SYSTEM AND BOTTLENECK OBVIATION”, by Kristine A. German;
U.S. application Ser. No. 11/349,828, filed Feb. 8, 2005, entitled “MULTI-DEVELOPMENT SYSTEM PRINT ENGINE”, by Martin E. Banton;
U.S. application Ser. No. 11/359,065, filed Feb. 22, 2005, entitled “MULTI-MARKING ENGINE PRINTING PLATFORM”, by Martin E. Banton;
U.S. application Ser. No. 11/363,378, filed Feb. 27, 2006, entitled “SYSTEM FOR MASKING PRINT DEFECTS”, by Anderson, et al.;
U.S. application Ser. No. 11/364,685, filed Feb. 28, 2006, entitled “SYSTEM AND METHOD FOR MANUFACTURING SYSTEM DESIGN AND SHOP SCHEDULING USING NETWORK FLOW MODELING”, by Hindi, et al.;
U.S. application Ser. No. 11/378,046, filed Mar. 17, 2006, entitled “PAGE SCHEDULING FOR PRINTING ARCHITECTURES”, by Charles D. Rizzolo, et al.;
U.S. application Ser. No. 11/378,040, filed Mar. 17, 2006, entitled “FAULT ISOLATION OF VISIBLE DEFECTS WITH MANUAL MODULE SHUTDOWN OPTIONS”, by Kristine A. German, et al.;
U.S. application Ser. No. 11/399,100, filed Apr. 6, 2006, entitled “SYSTEMS AND METHODS TO MEASURE BANDING PRINT DEFECTS”, by Peter Paul;
U.S. application Ser. No. 11/403,785, filed Apr. 13, 2006, entitled “MARKING ENGINE SELECTION”, by Martin E. Banton et al.;
U.S. application Ser. No. 11/417,411, filed May 4, 2006, entitled “DIVERTER ASSEMBLY, PRINTING SYSTEM AND METHOD”, by Paul J. Degruchy;
U.S. application Ser. No. 11/432,993, filed May 12, 2006, entitled “TONER SUPPLY ARRANGEMENT”, by David G. Anderson;
U.S. application Ser. No. 11/432,924, filed May 12, 2006, entitled “AUTOMATIC IMAGE QUALITY CONTROL OF MARKING PROCESSES”, by David J. Lieberman;
U.S. application Ser. No. 11/432,905, filed May 12, 2006, entitled “PROCESS CONTROLS METHODS AND APPARATUSES FOR IMPROVED IMAGE CONSISTENCY”, by Michael C. Mongeon et al.; and
U.S. Application Ser. No. 11/483,747, filed Jul. 5, 2006, entitled “POWER REGULATOR OF MULTIPLE MARKING ENGINES”, by Murray O. Meetze, Jr.
The present disclosure relates to a xerographic printing system. More specifically, it relates to a printing system which includes an interposer to compile the outputs of multiple stand-alone printing systems. However, it is to be appreciated that the present exemplary embodiment is also amenable to other like applications.
Cluster printing systems provide a document production system wherein multiple printers are combined into a ‘virtual’ printer via job splitting software. To compile the printed output of the multiple printers, a user must manually recombine the outputs. Disadvantages associated with this type of manual system include a relatively slow compilation process and the opportunity for errors during the compilation stage.
Other approaches to provide document production systems including multiple printers are integrated printing systems. These integrated printing systems physically combine multiple printers via media paths including various nips and rollers. The print media is routed from the image marking areas of the individual printing modules to a common media path highway. The common media path highway integrates a sheet feeder system/module and a finishing system/module. A disadvantage associated with an integrated printing system, as described above, is the need to simultaneously control multiple printing modules and the various media paths. As more printing modules are integrated, the complexity of the overall document production system. Consequently, a sophisticated controller system becomes necessary to schedule operations for each printing module and cope with unplanned events such as jams, shutdowns, printer dead cycling, etc.
This disclosure provided a parallel printing system which includes an interposer to integrate the outputs of multiple stand alone printing systems.
A printing system is disclosed. The printing system comprises a first stand alone printing system and a second stand alone printing system and a second stand alone printing system, two or more interposer modules, each interposer module adapted to receive the print media output stacks from the first and second stand alone printing systems; one or more interface modules, the interface modules operatively connected to the two or more interposer modules, the interface modules adapted to sequentially collect a predetermined sequence of print media sheets associated with the print job and compiled from the print media output stacks received by the interposer modules; and a controller operatively connected to the two or more interposer modules and the one or more interface modules. The controller is configured to generate a command to transport one or more of the print media output stacks generated by one or more of the first and second stand alone printing systems to predetermined interposer print media stack inputs, and the controller is configured to control the sequencing of the print media sheets from the print media output stacks received by the interposer modules to the one or more interface modules, wherein the printing system is configured to merge the received print media sheets associated with the print media output stacks in a predetermined sequence associated with the print job, and outputting the merged print media sheets to the one or more interface modules and the controller is configured to execute the print job by performing a method comprising receiving a first document job from a job queue; assigning each document sheet of the first document job to the first printing system or the second printing system, wherein the first document job is divided into a first printing system print job and a second printing system print job; communicating the first printing system print job to the first printing system and communicating the second printing system print job to the second printing system, the first printing system and second printing system communicating to the controller the completion of their respective print jobs; commanding the print media stack transport system to transport the first printing system output stack to the interposer first stack input; commanding the print media stack transport system to transport the second printing system output stack to the interposer second stack input; and commanding the interposer modules to assemble the first print job from the interposer first and second stack inputs, wherein the printed document sheets associated with the first and second stack inputs are selectively merged and routed to create a printed document sheet sequence representative of the first document print job a post print media handling system.
A method of executing a document job is disclosed. The method comprises receiving a first document print job in a controller, the controller generating a first printing system print job and generating a second printing system print job, wherein the first document print job is divided to generate first and second printing system print jobs. The controller communicates the first printing system print job to the first printing system and communicates the second printing system print job to the second printing system; the first printing system printing the first printing system print job and outputting the first printing system print job printed documents to a first output stacker operatively connected to the first printing system. The second printing system prints the second printing system print job and outputs the second printing system print job printed documents to a second output stacker operatively connected to the second printing system. The controller commands a print media stack transport system to transport the first printing system print job printed documents from the first output stacker to an interposer first stack input; and the controller commands a print media stack transport system to transport the second printing system print job printed documents from the second output stacker to an interposer second stack input; and the controller commands the interposer system to assemble the first document print job from the first and second stack inputs, wherein the printed sheets associated with the first and second stack inputs are selectively merged and routed to create a printed document stream representative of the first document print job.
A xerographic interposer system is disclosed. The xerographic interposer system comprising two or more interposer modules adapted to receive one or more print media input stacks, the interposer modules operatively connected to a print media path adapted to receive print media from the print media input stacks; one or more interface modules, the interface modules operatively connected to the two or more interposer modules; a controller operatively connected to the two or more interposer modules and the one or more interface modules, the controller configured to control the sequencing of print media sheets from the print media input stacks to the one or more interface modules, and the controller configured to generate a command to transport one or more print media stacks produced by one or more printing systems to predetermined interposer print media stack inputs. Two or more printing systems are operatively connected to the controller; and a print media stack transport system is operatively connected to the two or more printing systems and the controller, wherein the print media stack transport system transports print media stacks from the two or more printing systems to two or more interposer modules, and the print media interposer system is configured to merge the received print media input stacks in a predetermined sequence and output the merged print media to a post print media handling system.
With reference to
The interposer 2 includes multiple interposer modules 12, 14, 16 and 18. Interposer module 12 includes an interposer module print media input 22 and corresponding interposer module print media input stack 30. Inter poser module 14 includes an interposer module print media input 24 and corresponding interposer module print media input stack 32. Interposer module 16 includes an interposer module print media input 26 and corresponding interposer module print media input stack 34. Interposer module 18 includes an interposer module print media input 28 and corresponding interposer module print media input stack 36. The fourth interposer 18 output is operatively connected to the input of an interface/purge module 20 which includes a print media output path operatively connected to the post print media handling system 10, and a print media purge path 33 which routes purged print media to a purge output stack 38.
With continuing reference to
In operation, the printing system illustrated in
Subsequently, the controller 4 communicates the first printing system print job to the first printing system, and communicates the second printing system print job to the second printing system. The printing systems print their respective sheets and output the printed sheets to a sheet stacking output. After completion of their respective print jobs, the first and second printing systems communicate to the controller 4 and/or the print media stack transport system 8, the completion of the print jobs.
At this point, the print media stack transport system 8 transports the first printing system output stack to the interposer 2, or more specifically an interposer module print media input, such as interposer module print media input 22, 24, 26 or 28. Furthermore, the print media stack transport system 8 transports the second printing system output stack to the interposer 2, or more specifically an interposer module print media input such as interposer module print media input 22, 24, 26 or 28. However, the first and second printing system output stacks are transported to different interposer module print media inputs for further processing by the interposer system 2.
For purposes of illustrating the operation of the interposer system 2 from this point, assume the output stack of the first printing system is transported to the first interposer module print media input 22, thereby positioning the first printing system output stack as the first interposer module print media input stack 30. Furthermore, assume the output stack of the second printing system is transported to the second interposer module print media input 24, thereby positioning the second printing system output stack as the second interposer module print media input stack 32. With the printing system output stacks positioned, as discussed above, printed sheets 1-50 of the original print job are located within the first interposer module 12 and printed sheets 51-100 of the original print job are located within the second interposer module 14.
To assemble or compile the printed sheets, the interposer system sequentially processes the first interposer print media input stack by routing these printed sheets via interposer module print media paths 23, 25, 27 and 29. The printed media sheets are subsequently routed to the post print media handling system 10 via the interface/purge module print media output 31. Subsequent to the sequential processing of printed sheets 1-50, printed sheets 51-100 are sequentially routed via interposer module print media paths 25, 27 and 29. Printed sheets 51-100 are then routed to the post print media handling system 10 via the interface/purge module print media output 31.
At this point, the original print job is completed, provided any post handling of the printed sheets is finished.
The printing system illustrated in
Other variations and modifications of the printing system described heretofore are described below.
With continuing reference to
Another exemplary embodiment of the printing system illustrated in
With reference to
The interposer system 40 includes a first interposer module 52, a second interposer module 54, a third interposer module 56, a fourth interposer module 58, an interface/purge module 60 and an interposer print media output stacker 62.
The first printing system includes a printing system sheet feeder 66, a printing module 68 for image marking, an output stacker 70 and a GUI 72.
The second printing system includes a printing system sheet feeder 74, a printing module 76 for image marking, an output stacker 78 and a GUI 80.
The third printing system includes a printing system sheet feeder 82, a printing module 84 for image marking, an output stacker 86 and a GUI 88.
The print media stack transport system 50 includes a stack transport command output 89, a first print media stack cart 90, a second print media stack cart 92 and a third media stack cart 94.
With continuing reference to
Print media flow 102, 104, 106 and 108 represent print media flow via the print media stack transport system 50 to interposer modules 52, 54, 56 and 58, respectively. Print media flow 110 represents the optional print media flow from the interposer print media output stacker 62 via the print media stack transport system 50.
In operation, the printing system illustrated in
The printing systems complete their assigned/communicated print jobs and produce print stacks at their respective output stackers 70, 78 and 86.
The print media stack transport system transports the printing system output stacks from the output stackers 70, 78 and 86 to the appropriate interposer modules 52, 54, 56, and 58.
From this point, the interposer system 40 assembles the document print job in the appropriate sheet sequence and ejects any unnecessary sheets, such as a traveler sheet, via the interface/purge module. The assembled document print job is outputted from the interposer system 40 via the interposer print media output stacker 62.
The assembled document print job can be optionally transported via the print media stack transport system 50 to a subsequent operation, for example, a finishing module or storage area, or another means of transporting the assembled document print job can be provided.
With reference to
According to one exemplary embodiment of this disclosure, the printing system described with reference to
According to another exemplary embodiment of this disclosure, the image quality control module includes a scanner and one or more periodic calibration target files associated with the printing systems, wherein the scanner output and the periodic calibration target files control set points associated with the printing systems' total response curves.
In addition, a print media finishing module 122 is integrated with the interposer system 120.
The operation of the printing system illustrated in
The print media stack buffer 136 provides an area to store print media output stacks from one or more of printing systems 126, 128, 130 and 132, until the interposer system 120 has completed any previous document print jobs and/or is put into service. Furthermore, the print media stack buffer 136 provides a staging area for storing one or more print media stacks until all print media stacks required for assembly by the interposer system 120, are completed by the printing systems 126, 128, 130 and 132.
With reference to
Initially, the document print Job A 150 is divided and assigned to one or more printing systems which produce stack a 152, stack b 154, and stack c 156. Subsequently, stack a 152 is assigned 158 to a first stack input of the interposer system, stack b 154 is assigned 160 to a third stack input of the interposer system, and stack c 156 is assigned 162 to a second input of the interposer system. As illustrated in
Subsequent to the loading of stack a, stack b and stack c, the interposer system merges sheets from the interposer stack inputs to assemble print Job A.
With reference to
In operation, the scheduling software initially creates 170 one or more stacks for interposition to create a document Job A.
Next, the stacks are loaded 172 into interposer inputs.
Next, the scheduling software locates and acknowledges 174 all stacks for Job A are present.
Next, the scheduling software receives acknowledgement 176 that the finishing device is ready for Job A.
Next, the scheduling software references the job structure and sends 178 feed commands to each interposer input to reassemble the document job in correct sequence.
Finally, document job sheets 1, 2, 3, . . . are sequentially fed 180 out of the interposer into the finishing device.
With reference to
Initially, the system receives 190 a document job from an incoming job queue.
Next, the scheduling software examines 192 Job A and determines the applicable printer or printing system on a sheet by sheet basis.
Subsequently, the scheduling software assigns 194 each sheet in Job A to a printer or printing system.
At this point, printing system 1 prints 196 its assigned sheets, printing system 2 prints 198 its assigned sheets and printing system 3 prints 200 its assigned sheets.
Next, printing system 1 compiles 202 its sheets into a stack, printing system 2 compiles 204 its sheets into a stack, and printing system 3 compiles 206 its sheets into a stack.
At this point, the stacks are transported 208 to the interposer system.
Next, the stacks are loaded 210 into interposer trays.
Next, the scheduling software locates and acknowledges 212 all stacks for Job A are present.
Next, the scheduling software receives 214 acknowledgement that the finishing device is ready for Job A.
Next, the scheduling software references the job structure and sends 216 feed commands to each interposer tray to reassemble the document job in correct sequence.
Finally, document job sheets 1, 2, 3, . . . are sequentially fed 218 out of the interposer into the finishing device.
With reference to
The interposer system includes a first interposer module 232, a second interposer module 234, a third interposer module 236 and a finishing/stacker module 238.
The first monochrome printing system 240 includes a sheet feeder module 242, a monochrome printing module 244 and a sheet output stacker 246.
The second monochrome printing system 248 includes a sheet feeder module 250, a monochrome printing module 252 and a sheet output stacker 254.
The color printing system 256 includes a sheet feeder module 258, a color printing module 260, a duplex/interface module 262 and an output module 264. The output module 264 includes an output stack 272.
As illustrated in
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4579446 | Fujino et al. | Apr 1986 | A |
4587532 | Asano | May 1986 | A |
4602776 | York et al. | Jul 1986 | A |
4836119 | Siraco et al. | Jun 1989 | A |
5004222 | Dobashi | Apr 1991 | A |
5008713 | Ozawa et al. | Apr 1991 | A |
5080340 | Hacknauer et al. | Jan 1992 | A |
5095342 | Farrell et al. | Mar 1992 | A |
5159395 | Farrell et al. | Oct 1992 | A |
5208640 | Horie et al. | May 1993 | A |
5272511 | Conrad et al. | Dec 1993 | A |
5326093 | Sollitt | Jul 1994 | A |
5435544 | Mandel | Jul 1995 | A |
5473419 | Russel et al. | Dec 1995 | A |
5489969 | Soler et al. | Feb 1996 | A |
5504568 | Saraswat et al. | Apr 1996 | A |
5525031 | Fox | Jun 1996 | A |
5557367 | Yang et al. | Sep 1996 | A |
5568246 | Keller et al. | Oct 1996 | A |
5570172 | Acquaviva | Oct 1996 | A |
5596416 | Barry et al. | Jan 1997 | A |
5629762 | Mahoney et al. | May 1997 | A |
5655759 | Perkins et al. | Aug 1997 | A |
5710968 | Clark et al. | Jan 1998 | A |
5778377 | Marlin et al. | Jul 1998 | A |
5884910 | Mandel | Mar 1999 | A |
5995721 | Rourke et al. | Nov 1999 | A |
6059284 | Wolf et al. | May 2000 | A |
6125248 | Moser | Sep 2000 | A |
6241242 | Munro | Jun 2001 | B1 |
6297886 | Cornell | Oct 2001 | B1 |
6341773 | Aprato et al. | Jan 2002 | B1 |
6384918 | Hubble, III et al. | May 2002 | B1 |
6450711 | Conrow | Sep 2002 | B1 |
6476376 | Biegelsen et al. | Nov 2002 | B1 |
6476923 | Cornell | Nov 2002 | B1 |
6493098 | Cornell | Dec 2002 | B1 |
6537910 | Burke et al. | Mar 2003 | B1 |
6550762 | Stoll | Apr 2003 | B2 |
6554276 | Jackson et al. | Apr 2003 | B2 |
6577925 | Fromherz | Jun 2003 | B1 |
6607320 | Bobrow et al. | Aug 2003 | B2 |
6608988 | Conrow | Aug 2003 | B2 |
6612566 | Stoll | Sep 2003 | B2 |
6612571 | Rider | Sep 2003 | B2 |
6621576 | Tandon et al. | Sep 2003 | B2 |
6633382 | Hubble, III et al. | Oct 2003 | B2 |
6639669 | Hubble, III et al. | Oct 2003 | B2 |
6727999 | Takahashi | Apr 2004 | B1 |
6819906 | Herrmann et al. | Nov 2004 | B1 |
6925283 | Mandel et al. | Aug 2005 | B1 |
6959165 | Mandel et al. | Oct 2005 | B2 |
6973286 | Mandel et al. | Dec 2005 | B2 |
7024152 | Lofthus et al. | Apr 2006 | B2 |
20020078012 | Ryan et al. | Jun 2002 | A1 |
20020103559 | Gartstein | Aug 2002 | A1 |
20030077095 | Conrow | Apr 2003 | A1 |
20030146559 | Middelberg et al. | Aug 2003 | A1 |
20040085561 | Fromherz | May 2004 | A1 |
20040085562 | Fromherz | May 2004 | A1 |
20040088207 | Fromherz | May 2004 | A1 |
20040150156 | Fromherz et al. | Aug 2004 | A1 |
20040150158 | Biegelsen et al. | Aug 2004 | A1 |
20040153983 | McMillan | Aug 2004 | A1 |
20040216002 | Fromherz et al. | Oct 2004 | A1 |
20040225391 | Fromherz et al. | Nov 2004 | A1 |
20040225394 | Fromherz et al. | Nov 2004 | A1 |
20040247365 | Lofthus et al. | Dec 2004 | A1 |
20050071104 | Viturro et al. | Mar 2005 | A1 |
20060033771 | Lofthus et al. | Feb 2006 | A1 |
20060039728 | deJong et al. | Feb 2006 | A1 |
20060066885 | Anderson et al. | Mar 2006 | A1 |
20060067756 | Anderson et al. | Mar 2006 | A1 |
20060067757 | Anderson et al. | Mar 2006 | A1 |
20060245781 | Douglas et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
1 531 610 | May 2005 | EP |
1 626 312 | Feb 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20080018915 A1 | Jan 2008 | US |