This application claims priority under 35 USC 119 from Japanese Patent Application No. 2020-144930 filed on Aug. 28, 2020, the disclosure of which is incorporated by reference herein.
The present disclosure relates to a parallel processing designing device and a parallel processing designing method that relate to the designing of a structural body such as a vehicle body or the like.
One important topic in the designing of a structural body is the establishment of a designing method that can optimize each of plural performances (multiple performances) such as strength, rigidity, lightening of weight, suppressing of vibrations and the like that, depending on the case, are contradictory. Methods are being researched that, simultaneously and in parallel, optimize each of multiple performances by computer simulation.
In Philipp Hennig and Christian J. Schuler, “Entropy Search for Information-Efficient Global Optimization”, Journal of Machine Learning Research, vol. 13, no. June, pp. 1809-1837, 2012 (Document 1), in the case of designing a product, a region in which the performance that is the object is established is determined plural, existing, constraint conditions. As the method for searching for the solution, design variables, which optimize an Entropy Search (ES) that is an acquisition function, are searched for by using Bayesian optimization. Further, a method, which searches only for limited observation points by using ES and which models an executable region with sufficient accuracy, is disclosed.
However, in the disclosure of Document 1, in a case in which there are many design variables, e.g., a case in which there are 30 dimensions or more, the search space increases exponentially, and efficient searching is difficult.
The present disclosure provides a parallel processing designing device and a parallel processing designing method that may efficiently search for an executable region of multiple performances.
A first aspect of the present disclosure is a parallel processing designing device including: an observation point computing section that, in a case in which an order of plural design variables exceeds a predetermined order, eliminates a design variable that has a low contribution to designing, and, for each of plural design variables that are less than or equal to the predetermined order, computes plural observation points that are for searching for a region in which a performance relating the design variable is executable, by using an acquisition function that relates to searching for the executable region and a penalty function that expresses a region in which the observation points cannot be acquired in the acquisition function; a probability distribution computing section that, for each of the plural performances, computes a probability distribution of the performance being executable at the computed plural observation points; and a multiple performance executable region outputting section that outputs, as a multiple performance executable region, an infinite product of the probability distributions that are computed respectively for the plural performances.
By eliminating dimensions that has a low contribution to computation and reducing dimensions, the parallel processing designing device of the first aspect may suppress an exponential increase in the computing costs, and enables real handling of high-dimensional designing.
Further, the parallel processing designing device of the first aspect may enable more efficient searching for observation points, by using a penalty function that expresses regions at which observation points cannot be acquired in the acquisition function.
In a second aspect of the present disclosure, in the above-described first aspect, the observation point computing section may eliminate a design variable for which variance of plural data that exist in a design space expressed by the design variable, is less than or equal to a predetermined threshold value.
The parallel processing designing device of the second aspect may reduce the dimensions of the design variables by eliminating design variables for which the variance of plural data is a predetermined threshold value or less.
In a third aspect of the present disclosure, in the above-described first aspect or second aspect, the acquisition function may be used in searching a vicinity of a boundary of the executable region and a non-executable region.
The parallel processing designing device of the third aspect may acquire observation points that exist in the vicinity of the boundary between an executable region and a non-executable region.
In a fourth aspect of the present disclosure, in any one of the above-described first aspect through third aspect, the penalty function may be defined on the basis of Lipschitz continuity of a black box function that is modeled by using Gaussian process regression.
The parallel processing designing device of the fourth aspect may limit the regions in which observation points are acquired, on the basis of Lipschitz continuity in which there exists an upper limit of the absolute values of the slopes of straight lines that connect two arbitrary points on a graph.
In a fifth aspect of the present disclosure, in any one of the above-described first aspect through fourth aspect, the observation point computing section may use a point, which makes the acquisition function a maximum, as an initial observation point, and may use points, at which a product of the acquisition function and the penalty function becomes a maximum, as other observation points.
The parallel processing designing device of the fifth aspect may simultaneously acquire plural observation points by computing the maximum value of the acquisition function, and the maximum value of the product of the acquisition function and the penalty function, which can be computed simultaneously in the parallel processing.
A sixth aspect of the present disclosure is a parallel processing designing method including: an observation point computing step of, in a case in which an order of plural design variables exceeds a predetermined order, eliminating a design variable that has a low contribution to designing, and, for each of plural design variables that are less than or equal to the predetermined order, computing plural observation points that are for searching for a region in which a performance relating to the design variable is executable, by using an acquisition function that relates to searching for the executable region and a penalty function that expresses a region in which the observation points cannot be acquired in the acquisition function; a probability distribution computing step of, for each of the plural performances, computing a probability distribution of the performance being executable at the computed plurality of observation points; and a multiple performance executable region outputting step of outputting, as a multiple performance executable region, an infinite product of the probability distributions that are computed respectively for the plural performances.
By eliminating dimensions that has a low contribution to computation and reducing dimensions, the parallel processing designing method of the sixth aspect may suppress an exponential increase in the computing costs, and enables real handling of high-dimensional designing.
Further, the parallel processing designing method of the sixth aspect may enable more efficient searching for observation points, by using a penalty function that expresses regions at which observation points cannot be acquired in the acquisition function.
In a seventh aspect of the present disclosure, in the above-described sixth aspect, the observation point computing step may eliminate a design variable for which variance of a plurality of data that exist in a design space expressed by the design variable, is less than or equal to a predetermined threshold value.
The parallel processing designing method of the seventh aspect may reduce the dimensions of the design variables by eliminating design variables for which the variance of plural data is a predetermined threshold value or less.
In an eighth aspect of the present disclosure, in the above-described sixth aspect or seventh aspect, the acquisition function may be used in searching a vicinity of a boundary of the executable region and a non-executable region.
The parallel processing designing method of the eighth aspect may acquire observation points that exist in a vicinity of the boundary between an executable region and a non-executable region.
In a ninth aspect of the present disclosure, in any one of the above-described sixth aspect through eighth aspect, the penalty function may be defined on the basis of Lipschitz continuity of a black box function that is modeled by using Gaussian process regression.
The parallel processing designing method of the ninth aspect may limit the regions in which observation points are acquired, on the basis of Lipschitz continuity in which there exists an upper limit of the absolute values of the slopes of straight lines that connect two arbitrary points on a graph.
In a tenth aspect of the present disclosure, in any one of the above-described sixth aspect through ninth aspect, the observation point computing step may use a point, which makes the acquisition function a maximum, as an initial observation point, and may use points, at which a product of the acquisition function and the penalty function becomes a maximum, as other observation points.
The parallel processing designing method of the tenth aspect may simultaneously acquire plural observation points by computing the maximum value of the acquisition function, and the maximum value of the product of the acquisition function and the penalty function, which can be computed simultaneously in the parallel processing.
In accordance with the above-described aspects, the parallel processing designing device and the parallel processing designing method of the present disclosure may efficiently search for an executable region of multiple performances.
Exemplary embodiments will be described in detail based on the following figures, wherein:
A parallel processing designing device and a parallel processing designing method relating to a present exemplary embodiment are described hereinafter by using
The parallel processing designing device 10 is configured to include a computer 30. The computer 30 has a CPU 32, a ROM 34, a RAM 36, and an input/output port 38. As an example, the computer 30 may be a type that can execute advanced computing processings at high speed, such as an engineering workstation, a supercomputer, or the like.
At the computer 30, the CPU 32, the ROM 34, the RAM 36 and the input/output port 38 are connected to one another via various busses such as an address bus, a data bus, a control bus, and the like. A display 40, a mouse 42, a keyboard 44, a hard disk (HDD) 46, and a disk drive 50 that reads-out information from any of various types of disks 48 (e.g., a CD-ROM, a DVD, or the like), are respectively connected to the input/output port 38 as various types of input/output devices.
Further, a network 52 is connected to the input/output port 38, and transmitting and receiving of information to and from various devices that are connected to the network 52 are possible. In the present exemplary embodiment, a data server 56 to which a database (DB) 54 is connected is connected to the network 52, and transmitting and receiving of information to and from the DB 54 are possible.
Data relating to parallel processing designing and the like are stored in advance in the DB 54. The storing of information into the DB 54 may be registering by the computer 30 or the data server 56, or may be registering by another device that is connected to the network 52.
In the present exemplary embodiment, explanation is given of a case in which data of parallel processing designing and the like are stored in the DB 54 that is connected to the data server 56. However, the information of the DB 54 may be stored in the HDD 46 that is built into the computer 30, or in an external storage device such as an externally attached hard drive or the like.
A parallel processing designing program for parallel processing designing is installed in the HDD 46 of the computer 30. In the present exemplary embodiment, parallel processing designing is executed by the CPU 32 executing the parallel processing designing program. Further, the CPU 32 causes the display 40 to display the results of processing by the parallel processing designing program. Note that there are several methods for installing the parallel processing designing program of the present exemplary embodiment in the computer 30. For example, the parallel processing designing program is installed in the HDD 46 due to the parallel processing designing program being stored together with a set-up program on a CD-ROM or a DVD or the like, and the disk being set in the disk drive 50, and the CPU 32 executing the set-up program. Or, the parallel processing designing program may be installed in the HDD 46 by communication with another information processing device that is connected to the computer 30 via a dial-up line or the network 52.
Parallel processing designing derives an executable region that can optimize each of plural, respectively different types of performances such as strength, rigidity, lightening of weight, suppressing of vibrations, and the like of the object of designing which, depending on the case, are contradictory performances. The deriving of the executable region is generally carried out in accordance with the following processes. First, a model between the variables relating to a performance, and the responses of these variables, is defined. Next, candidates for an executable region are acquired by random sampling on the previously-defined model. Then, a sample that satisfies constraint conditions of the responses is extracted from the acquired results. Although these processes are simple in principle, if there is high dimensionality of the design variables, the space that is to be searched expands exponentially, and, as a result, the computing costs become extremely large.
In the present exemplary embodiment, an exponential increase in the computing costs may be suppressed by using dimension compression that eliminates dimensions that has a low contribution to computation.
Further, in the present exemplary embodiment, by expressing the executable regions by probability distributions, the executable regions of the respective performances of multiple performances can be determined independently, and, by multiplying the executable regions of the respective performances, the multiple performance executable region can be derived easily. Further, even in a case in which a new constraint condition is implemented, by independently deriving a probability distribution relating to the new constraint condition and multiplying the derived probability distribution by the above-described multiple performance executable region, a multiple performance executable region that takes the new constraint condition into consideration can be derived.
0≤Pr(Ck(x))≤1
(2) in
g
k(x)≤0, k∈ {1,2, . . . , K}
The probability of each performance of the multiple performances being executable is as per following Formula (1). The Ck(x) in the left side of Formula (1) is, as described above, a Boolean-valued function in which x is the variable. The δk in the right side of Formula (1) is a small, positive value that expresses the allowable error.
Pr(Ck(x))=Pr(gk(x)<0)≥1−δk (1)
Further, the multiple performance executable region, which is the region in which the performances k (k=1, 2, . . . , K) are realized simultaneously, is the infinite product of the probabilities relating to the respective performances, and is as per following Formula (2).
In step 400, the design of an experiment for deriving an executable region of the multiple performances y, such as strength, rigidity, lightening of weight, suppressing of vibrations, and the like with respect to variable x that is the position of the structural body or the inertial moment or the like that is applied to the structural body, is generated. Further, in step 400, the design that is defined by the design for the experiment is evaluated by simulation by CAE (Computer Aided Engineering) or the like. For example, the value of y that corresponds to variable x is derived discretely as an observed value, by simulation by CAE or the like.
In step 402, constructing of a prediction model is carried out. The present exemplary embodiment uses the method of Gaussian process regression that enables the interpolation and prediction of the observed value y by taking into consideration the correlation of the observed value y with respect to the variable x. Generally, Gaussian process regression determines the correlation between the variable x and the observed value y by a Gaussian distribution, and has the feature of being able to not only continuously interpolate the discrete observed values y probability-wise, but also being able to compute the predicted errors.
In the present exemplary embodiment, cumulative distribution function (CDF) for variable x is computed by using complementing of the discrete data obtained by Gaussian process regression, and the predicted errors 106 and the inequality constraint value 104.
In the present exemplary embodiment, observation points for searching for a multiple performance executable region in the design space are computed by using the results (predicted values, predicted errors) of the Gaussian process regression. However, if the order of the design variables is high-dimensional, the search space expands exponentially. In step 404, it is determined whether or not the order of the design variables of the prediction model that is constructed by using Gaussian process regression is less than or equal to predetermined dimensions. The predetermined dimensions are, for example, any dimensions from 10 dimensions to 30 dimensions.
If the order of the design variables of the prediction model is less than or equal to the predetermined dimensions in step 404, the process moves on to step 406. If the order of the design variables of the prediction model is not less than or equal to the predetermined dimensions in step 404, the process moves on to step 408.
In step 406, observation points are searched for by using a penalty function that is described hereafter in the same way as the acquisition function that is described hereafter, and the training data is updated by adding the new observation points that have been found to the training data of the active learning. Details of the processing of step 406 are described later by using
In step 408, the dimensions that has a low contribution are eliminated. In the present exemplary embodiment, dimensions whose contribution to the designing are low are detected by using VAR (Variance Average Relevance). As shown in
In step 410, construction of a prediction model that has been dimensionally compressed is carried out. More concretely, the observed values y are complemented and the predicted errors and the like are computed for each variable x that has been dimensionally compressed by using the above-described Gaussian process regression.
In step 412, it is determined whether or not conditions for ending the processing are satisfied. The conditions for ending step 412 are defined by following formulas (3), (4), (5), respectively, and determination on the convergence of computation is carried out by using the ending condition expressed by Formula (5). Formula (5) expresses the proportion of regions for which determination on establishment/non-establishment cannot be sufficiently made with respect to the entire region, i.e., the proportion of regions at which observation points have not been computed with respect to the region relating to designing. δk in Formula (4) is a small, positive value that expresses the allowable error. Further, ε in the right side of Formula (5) is a threshold value expressing the ending condition, and is a small, positive value. In a case in which the ending condition of the processing in step 412 is satisfied, the process moves on to step 416. In a case in which the ending condition of the processing in step 412 is not satisfied, the process moves on to step 414.
In step 414, the dimensionally-compressed model that has been constructed is outputted, and is provided to the active learning of step 406.
In step 416, output of a model that expresses the executable regions is carried out, and the processing ends. If the executable regions of the respective performances can be determined as probability distributions Pr(Ck(x)), the multiple performance executable region that satisfies all of the performance constraints can be easily determined as a simultaneous probability distribution as shown by above Formula (2).
In conventional prediction models, each time one observation point is acquired, updating of the acquisition function and the regression model are carried out. However, in the present exemplary embodiment, the initial observation point is acquired by making the acquisition function be a maximum, and the remaining (the other) observation points define a penalty function that is based on Lipschitz continuity, and the point at which simultaneous establishment of the acquisition function and the penalty function becomes a maximum is acquired. From the above, plural points may be acquired simultaneously in parallel processing.
The acquisition function is α(x) that serves as an ES (Entropy Search) that is defined on the basis of Gaussian process regression. α(x) is used in searching for observation points in vicinities of the boundaries (upper layer boundary 124, lower layer boundary 134) between executable region 120 and non-executable regions 122, 132.
The penalty function is formulized by using Lipschitz continuity. In a Lipschitz continuous function that has Lipschitz continuity, the speed of change is limited, and real numbers that have finite values and are suited to the speed of change exist. Accordingly, it can be thought that there is an upper limit of the absolute value of the slope of a straight line that connects two arbitrary points on a graph of this function, and this upper limit value is defined as the Lipschitz constant L of that function.
As described above, in Lipschitz continuity, at any point on the function, when a straight line of a slope of ±L is drawn, the absolute value of the slope expressed by two arbitrary points on the function is smaller than L. Accordingly, at region 160A that is defined by the intersections between the straight lines 152A+, 152A− and the executable region boundary 146, and at region 160B that is defined by the intersections between the straight lines 152B+, 152B− and the executable region boundary 146, and at region 160C that is defined by the intersections between the straight lines 152C+, 152C− and the executable region boundary 146, there is no possibility that the evaluation function will take on an executable region. Conversely, at regions 162A, 162B, 162C, 162D that are other than the regions 160A, 160B, 160C, there is the possibility that an executable region exists.
In the present exemplary embodiment, by defining the penalty function on the basis of Lipschitz continuity, the regions 160A, 160B, 160C at which observation points cannot be obtained in the same acquisition function are expressed. The penalty function is defined as following Formula (7) by using the Lipschitz continuity of the evaluation function (black box function) that is modeled by using the above-described Gaussian process regression, and the average μ and the deviation a that are computed from the posterior distribution. α, β in following Formula (7) respectively are values expressing the boundaries of the executable regions.
In the present exemplary embodiment, as described above, the initial observation point that makes the acquisition function a maximum is acquired, and, for the remaining observation points, points at which simultaneous establishment of the acquisition function and the penalty function becomes a maximum are acquired.
In
In
In
In the present exemplary embodiment, plural observation points can be located by extracting the maximum values of the products that are obtained by successively multiplying the penalty function φj(x) (j=1, 2, 3, . . . ) by the acquisition function α(x).
In step 502, by mapping the information of the acquired observation points in the previous observation model that was dimension-compressed, the training data of the active learning is updated, and the processing returns.
Formula (8) is a 30-dimensional Morris function, and shows a case in which searching for executable regions where the threshold value of the function falls within the range of 10% to 20%. Further, Formula (9) is a formula for computing the F1 score that is based on the precision and the recall.
As described above, in the present exemplary embodiment, at the time of determining a multiple performance executable region by using active learning, by eliminating dimensions that has a low contribution to computation and reducing dimensions, an exponential increase in the computing costs is suppressed, and real handling of high-dimensional designing may be made possible.
Further, in the present exemplary embodiment, by adding a penalty function, which is defined by using Lipschitz continuity, in the acquisition function that is based on Gaussian process regression, parallel processing of the observation point searching is made possible, and it is possible to make the search process even more efficient. In the present exemplary embodiment, for the initial observation point, the point at which the acquisition function becomes a maximum is acquired, and the other observation points are acquired by using the penalty function. The maximum value of the acquisition function, and the maximum value of the product of the acquisition function and the penalty function, may be computed simultaneously in the parallel processing, and therefore, plural observation points may be acquired simultaneously.
In the present exemplary embodiment, because high-dimensional designing may be handled in reality, a solution can be computed efficiently even in cases in which, in vehicle development, where there is a large number of design specifications of components whose ranges for establishment are directly linked to desired performances, or there is a large number of design variables such as control constants, or the like.
Further, in the present exemplary embodiment, by acquiring plural observation points by parallel processing, analysis of executable regions may be possible in a shorter time than in conventional methods. In cases in which it is necessary to proceed with analysis of executable regions with a limited amount of testing processes, a shortening of the processing time may be expected by carrying out processing not in a single process, but rather, simultaneously in plural processes.
In accordance with the present exemplary embodiment, for example, the deriving of engine mount specifications that satisfy a multiple performance executable region is possible. As an example, in studying specifications such as engine mount characteristics, engine mount shape and the like, 20 variables (dimensions) must be studied for one engine mount. However, in accordance with the present exemplary embodiment, due to the reducing of the design dimensions and the parallel processing of observation point acquisition, the derivation of a multiple performance executable region may be executed swiftly and accurately. As a result, an executable region of multiple performances may be located efficiently.
In the present exemplary embodiment, the acquisition function employs ES which is suited to searching for observation points in vicinities of the boundaries of the executable region 120 and the non-executable regions 122, 132. However, PoF (Probability of Feasibility) that is suited to searching for observation points within the executable region 120 may be employed.
Note that the “acquisition function” corresponds to the “acquisition function α(x)” that was described in the Detailed Description of the present specification.
Note that any of various types of processors other than a CPU may execute the processings that are executed by the CPU reading-out software (programs) in the above-described respective exemplary embodiments. Examples of processors in this case include PLDs (Programmable Logic Devices) whose circuit structure can be changed after production such as FPGAs (Field-Programmable Gate Arrays) and the like, and dedicated electrical circuits that are processors having circuit structures that are designed for the sole purpose of executing specific processings such as ASICs (Application Specific Integrated Circuits) and the like, and the like. Further, the processings may be executed by one of these various types of processors, or may be executed by a combination of two or more of the same type or different types of processors (e.g., plural FPGAs, or a combination of a CPU and an FPGA, or the like). Further, the hardware structures of these various types of processors are, more concretely, electrical circuits that combine circuit elements such as semiconductor elements and the like.
Further, although the above-described respective exemplary embodiments describe an aspect in which the program is provided in the form of being stored in advance (installed) in the disk drive 50 or the like, the present disclosure is not limited to this. The program may be provided in a form of being stored on a non-transitory storage medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), a USB (Universal Serial Bus) memory, or the like. Further, the program may be in a form of being downloaded from an external device via a network.
(Supplementary Note 1)
A parallel processing designing device includes:
a memory; and
at least one processor connected to the memory, the processor configured to:
in a case in which an order of plural design variables exceeds a predetermined order, eliminate a design variable that has a low contribution to designing;
for each of plural design variables that are less than or equal to the predetermined order, compute plural observation points that are for searching for a region in which a performance relating the design variable is executable, by using an acquisition function that relates to searching for the executable region and a penalty function that expresses a region in which the observation points cannot be acquired in the acquisition function;
for each of the plural performances, compute a probability distribution of the performance being executable at the computed plural observation points; and
output, as a multiple performance executable region, an infinite product of the probability distributions that are computed respectively for the plural performances.
Number | Date | Country | Kind |
---|---|---|---|
2020-144930 | Aug 2020 | JP | national |