1. Field of the Disclosure
The technology of the disclosure relates to radio-frequency identification (RFID) tags and rectifiers therein.
2. Technical Background
It is well known to employ radio-frequency (RF) identification (RFID) transponders to identify articles of manufacture. RFID transponders are often referred to as “RFID tags.” RFID tags are comprised of an integrated circuit (IC) that is coupled to an antenna. An identification number or other characteristic is stored in the IC or in memory coupled to the IC, which can be provided to another system, such as an RFID reader, to provide identification information for a variety of purposes. For example, if the RFID tag is an active device, the RFID tag includes a transmitter that can transmit the identification to another system. If the RFID tag is a passive or semi-passive device, the RFID tag does not include a transmitter. The passive or semi-passive RFID tag includes a receiver that includes an antenna that receives a wireless RF signal from a transmitter, also known as an interrogation signal. The passive or semi-passive RFID tag responds to receipt of the interrogation signal such as by providing identification information, via backscatter modulation communications.
Passive RFID tags rely on the energy incident on the antenna to provide power to the components within the RFID tag. The passive RFID tags include a power rectifier that takes the time varying electromagnetic signal incident on the antenna and converts the time varying signal into a direct current power supply for use by the components within the RFID tag. The power rectifier includes a number of series connected charge pump stages where the output of a first stage is serially provided to an input of a second stage, and a single cumulative power output from the final stage is provided for use by components with the RFID tag. While the output voltage of the series connected charge pump stages is cumulative, the cumulative voltage is not additively linear due to bias conditions in each stage. Communications robustness, generally associated with the operating range as the key metric, comes from improving efficiency of the rectifier. Conventional rectifier efficiencies may be approximately twenty percent, so there remains room for improvement in rectifier efficiencies.
An RFID tag requires a basic minimum current to operate, and it is necessary to provide this minimum current at a minimum required voltage as well. However, as more current is drawn from the rectifier, the more the voltage of the rectifier droops; circuit operation could be limited by either. Improving performance relies on achieving best power (voltage×current) efficiency, allowing for extended range and greater resilience to variable RF energy propagation conditions. Design optimization for maximum efficiency strives to achieve simultaneous limitation of minimum voltage and minimum current for a given load circuit; to the extent output voltage and current are not simultaneously limiting, input energy requirements are higher than they need be, translating to waste.
Embodiments disclosed herein include a parallel stage power output rectifier for Radio-frequency Identification (RFID) devices. Related components and methods are also disclosed herein. In an exemplary embodiment, an RFID tag receives a radio-frequency (RF) signal comprising RF input energy through an input such as antenna. The RF input energy is provided to a rectifier that splits the RF input energy into two or more stages having parallel electrical outputs. The parallel electrical outputs allow for a more efficient use of the input energy in terms of current draw and improves voltage droop, thus improving the range and operation of the RFID tag.
In this regard, in one embodiment, an RFID tag is provided. The tag comprises a partition comprising an input configured to connect to an RF antenna to receive an RF signal comprising RF input energy and a rectifier configured to split the RF input energy. The rectifier comprises a first charge pump stage configured to receive at least a portion of the RF input energy from the input and provide a first power output. The rectifier also comprises a second charge pump stage configured to receive at least a portion of the RF input energy from the input and provide a second power output electrically parallel to the first power output.
In another embodiment, a RFID rectifier configured to split input radio-frequency (RF) energy into multiple power stages is provided. In an exemplary embodiment, the rectifier comprises a first charge pump stage configured to receive RF input energy from an antenna and provide a first power output. The rectifier also comprises a second charge pump stage configured to receive the RF input energy from the antenna and provide a second power output electrically parallel to the first output.
In another embodiment, a method for splitting input radio-frequency (RF) energy into multiple power stages is provided. In an exemplary embodiment the method comprises receiving at a first charge pump stage in a rectifier RF input energy from an antenna and providing a first power output from the first charge pump stage. The method also comprises receiving at a second charge pump stage in the rectifier RF input energy from the antenna and providing a second power output from the second charge pump stage, wherein the second power output is electrically parallel to the first power output.
As non-limiting examples, the parallel electrical outputs are provided to different partitions within the RFID tag. The parallel outputs allow for more flexibility in designing the rectifier because a single strand of serially connected charge pump stages no longer has to provide all the voltage and current for the RFID tag. By providing the loads in parallel, the voltage and current loads are optimized for more efficient use of the incident input energy.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.
Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.
Embodiments disclosed herein include a parallel stage power output rectifier for Radio-frequency Identification (RFID) devices. Related components and methods are also disclosed here. In an exemplary embodiment, an RFID tag receives a radio-frequency (RF) signal comprising RF input energy through an input such as antenna. The RF input energy is provided to a rectifier that splits the RF input energy into two or more stages having parallel electrical outputs. The parallel electrical outputs allow for a more efficient use of the input energy in terms of current draw and improves voltage droop, thus improving the range and operation of the RFID tag.
In this regard,
With continuing reference to
With continuing reference to
In operation, the analog partition 14 acts on an incoming RF signal 22 in two ways. First, the information content of the RF signal 22 is interpreted by the demodulator 26 while energy needed for all tag functions is derived from the rectifier 24. The rectifier 24 provides direct current for use by the partitions 14, 16, and 18. Given the nature of typical incoming RF signals 22, the incident power is usually measured in microwatts, and the corresponding voltages and currents produced by the rectifier 24 are similarly small. In an exemplary embodiment, the analog partition 14 may require approximately 1 V to operate, the digital partition 16 may require approximately 700 mV to operate, and the memory partition 18 may require around 1.5 V to operate. The power storage partition 19 may require more than 2 V (e.g., ˜1.8 V for a red LED, ˜2.4 V for an amber LED, ˜3.6 V for a blue LED) to operate. It is worth noting that typically all the analog components need about the same voltage levels, similarly, all the digital components need about the same voltage level. Thus, it is possible to think of the partitions by power supply voltage level requirements instead of analog, digital, or the like. However, because related circuit topologies (analog, digital, etc.) each need about the same supply voltage, it is likely that any partition will fall loosely within the analog, digital, memory, power storage partitions set forth herein.
An RFID tag requires a basic minimum current to operate, and it is necessary to provide this minimum current at a minimum required voltage as well. However, as more current is drawn from the rectifier, the more the voltage of the rectifier droops; circuit operation could be limited by either. Improving performance relies on achieving best power (voltage×current) efficiency, allowing for extended range and greater resilience to variable RF energy propagation conditions. Design optimization for maximum efficiency strives to achieve simultaneous limitation of minimum voltage and minimum current for a given load circuit; to the extent output voltage and current are not simultaneously limiting, input energy requirements are higher than they need be, translating to waste.
In this regard, embodiments disclosed herein include a parallel stage power output rectifier for Radio-frequency Identification (RFID) devices. In an exemplary embodiment, an RFID tag receives a radio-frequency (RF) signal comprising RF input energy through an input such as antenna. The RF input energy is provided to a rectifier that splits the RF input energy into two or more stages having parallel electrical outputs. The parallel electrical outputs allow for a more efficient use of the input energy in terms of current draw and improves voltage droop, thus improving the range and operation of the RFID tag.
In this regard,
With continuing reference to
With continuing reference to
To provide an example of a charge pump stage 36 that can be provided in the rectifier 24, in
To provide another example alternate exemplary conventional charge pump structure 54 that can be provided the rectifier 24,
Note that the diodes 46, 48 and the FETs 56, 58, 60, and 62 are all defined herein to be rectification devices. Other arrangements of rectification devices or similar elements may be used to create alternate charge pump structures as desired.
In contrast to the electrically parallel power outputs of the rectifier 24 in
Rectifier 24 provides greater efficiencies by providing the plurality of power outputs 32(1-N) in parallel. This arrangement works because it reduces the load on each output 32. That is, instead of all the voltage and current being produced at a single output 72 and that output 72 having to supply current to each partition, rectifier 24 provides a separate power output 32 for each partition 14, 16, and 18 (as well as any others that may exist). The greater efficiency of rectifier 24 is illustrated by graph 78 presented in
Note that within a charge pump stage 30, a plurality of sub-stages 36 may be arranged in series to achieve a desired operating voltage. However, as noted, because the load on a given charge pump stage 30 is less than on the rectifier 70, the efficiencies of the present disclosure are achieved.
Further note that the charge pump stages 30 do not have to be uniform. For example, a first charge pump stage 30A(1) of rectifier 24A illustrated in
An alternate embodiment of a parallel-stage power output rectifier, rectifier 24B, is illustrated in
In contrast to the intermediate output tap 80 being electrically coupled to the initial or first sub-stage 36B(2)(1) in
As another alternate embodiment, a rectifier 24D illustrated in
Instead of a literal capacitor 84, the capacitor 84 of
Note also, that in certain designs, the designer may use one or more analog partitions, one or more digital partitions, one or more memory partitions and/or one or more power storage partitions. Each such partition may have power provided by a respective charge pump stage using an appropriate number of sub-stages. Such variations are contemplated and within the scope of the present disclosure.
It should be appreciated that the embodiments disclosed above are useful in the unlicensed UHF bands (902-928 MHz in the United States) as non-limiting frequencies. Higher frequencies (e.g., greater than 1 GHz) may also be used by the above disclosed embodiments without limitation. Higher frequencies introduce stray parasitic inductances and capacitances. Furthermore, propagation delays through active devices (e.g., transistors and diodes) may also impact performance.
In this regard, one additional and optional approach associated with higher frequencies may be conversion of higher frequencies to lower frequencies prior to rectification. To preserve the energy budget for an RFID tag, for example, a design may include providing near lossless downconversion. This downconversion is not limited to the RFID context and may be used, for example, in radiometry and remote sensing circuits and related applications. One approach would be an RF-powered cross-coupled oscillator in which the RF carrier is injected across what would otherwise be the power supply nodes, with steady-state oscillation at a resonant frequency that is a sub-multiple of the carrier. This arrangement effectively downconverts the incident energy to a lower frequency, where rectification of the incident energy can be performed with lower loss. A net increase in overall efficiency can be achieved.
As an example, a non-limiting downcoversion factor of two can be used. Downconversion ratios of 4:1 or even 10:1 are possible. Thus, for example, rectification can be performed at frequencies of, for example, 100 MHz to 400 MHz, where parasitic losses in the transistors can be significantly lower using conventional fabrication techniques. Similarly, carrier frequencies, such as 12 GHz, can be employed, showing a frequency capability more than an order of magnitude higher than current passive RFID systems. This flexibility can allow for operation in unlicensed ISM bands such as 2.45 GHz and 5.6 GHz, as non-limiting examples.
Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, the antenna arrangements may include any type of antenna desired, including but not limited to dipole, monopole, and slot antennas. The distributed antenna systems that employ the antenna arrangements disclosed herein could include any type or number of communications mediums, including but not limited to electrical conductors, optical fiber, and air (i.e., wireless transmission).
Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.